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Abstract. Ran and Reurings (Proc Am Math Soc 132(5):1435–1443,
2003) extended the Banach contraction principle to the setting of par-
tially ordered metric spaces and recently Proinov (J Fixed Point Theory
Appl 22:21, 2020) extended and unified many earlier fixed point theo-
rems. In this paper we will present analogous results for the significantly
wider class of mappings on preordered metric spaces. We give non-trivial
examples of Kannan-type mappings.
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1. Introduction

Ran and Reurings [16] established a fixed point theorem that extends the
Banach contraction principle to the setting of partially ordered metric spaces.
In the original version, Ran and Reurings used a continuous function. Next,
Nieto and Rodŕıguez-López [11] established a similar result replacing the
continuity of the nonlinear operator by monotonicity. These studies have
been continued by many authors, see for example [4,12].

The key feature in this theorem is that the contractivity condition on
the nonlinear map is only assumed to hold on elements that are comparable
in the partial order.

In this paper, we present the extension of the existing results to (ψ−ϕ)-
type contractions, (ψ−ϕ)-type generalized contractions and and Kannan-type
mappings on preordered spaces where a preordered binary relation is weaker
than the partial order.

Let (X, d) be a metric space and T be a selfmap of X satisfying the
following type condition

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)} (1)

for all x, y ∈ X, where 0 � K < ∞ are fixed.
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Condition (1) does not ensure the existence of a fixed point [7, Example
1.1]. The situation changes when T is additionally an asymptotically regular
mapping, i.e., limn→∞ d(Tn+1x, Tnx) = 0 for all x ∈ X.

Despite this the set of asymptotically regular mappings satisfying the
condition (1) is rich. It includes Banach’s contractions, Kannan’s mappings

with K <
1
2

(not necessarily continuous) and many more, see [5,9,17].

Example 1.1. Let X = [0, 2] and d be the usual metric on X. Define T : X →
X by Tx = 1 if 0 � x � 1 and Tx = 0 if 1 < x � 2. T is not a continuous
mapping. If x, y ∈ [0, 1] or x, y ∈ (1, 2], then d(Tx, Ty) = 0. If x ∈ [0, 1]
and y ∈ (1, 2], then d(Tx, Ty) = 1 and d(x, Tx) + d(y, Ty) = 1 − x + y >
2 − x � 1. Therefore T satisfies (1) with K = 1 and M = 0. Of course T is
asymptotically regular.

Remark 1.2. If T satisfies

d(Tx, Ty) � M · d(x, y) + K · {d(x, Tx) + d(y, Ty)}
for all x, y ∈ X, where 0 < M < 1 and 0 � K < ∞ (see [14, Example 4.5]),
then T satisfies

d(Tx, Ty) � K + 1
1 − M

{d(x, Tx) + d(y, Ty)}
for all x, y ∈ X.

The situation is different when M = 1. This is illustrated in the example
below.

Example 1.3. Fix an ε > 0. Let X = [0,∞) be with usual metric and T :
X → X be a mapping defined by Tx = 0 for x ∈ [0,∞) ∩ Q and Tx = x + ε
for x ∈ [0,∞) ∩ (R \ Q).

T does not satisfy (1) on X, there is no constant K ∈ [0,∞) such that
for all x, y � 0 satisfying |Tx − Ty| � K · {|x − Tx| + |y − Ty|}. Take x = 0
and y ∈ [0,∞) ∩ (R \Q), then any such y � (K − 1)ε, and this is impossible.
Also,

|Tx − Ty| > max{|x − y|, |x − Tx|, |y − Ty|, 1
2
{|x − Ty| + |y − Tx|}},

take x = 0 and y =
√

2, so T does not satisfy Ćirić’s condition and of
course T is not a Lipschitz mapping. Moreover, T is not an asymptotically
regular mapping. Let ε ∈ (0,∞) ∩ (R \ Q). Then Tn(ε) = (n + 1)ε and
|Tn+1(ε) − Tn(ε)| → ε > 0 as n → ∞.

On the other hand, T satisfy

|Tx − Ty| � |x − y| + {|x − Tx| + |y − Ty|}
for all x, y � 0.

Indeed,
• if x, y � 0 are irrational numbers, then |Tx − Ty| = |x − y| and the

inequality is satisfied

|Tx − Ty| � |x − y| + {|x − Tx| + |y − Ty|} = |x − y| + 2ε;
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• if x, y � 0 are rational numbers, then the inequality is satisfied

|Tx − Ty| = 0 � |x − y| + {|x − Tx| + |y − Ty|} = |x − y| + x + y;

• if x, y � 0 and x is rational and y is irrational, then the inequality is
satisfied

|Tx − Ty| = y + ε � |x − y| + {|x − Tx| + |y − Ty|} = |x − y| + x + ε.

So it makes sense to study the mappings described using the control functions
(see below).

We will now recall the necessary concepts.

Definition 1.4. Let X �= ∅ be a set. Binary relation � on X is

(a) reflexive if x � x for all x ∈ X,
(b) transitive if x � z for all x, y, z ∈ X such that x � y and y � z.

A reflexive and transitive relation on X is a preordered on X. In such a case
(X,�) is a preordered space. Write x ≺ y when x � y and x �= y.

Example 1.5. (a) Let � be the binary relation on R given by

x � y ⇔ (x = y or 0 � x < y).

Then � is a partial order (and so preordered) on R, but is different from
�.

(b) Let X = C([a, b],R) with the usual metric d(f, g) = maxt∈[a,b] |f(t) −
g(t)|. Consider on X the partial order � defined by

f, g ∈ X, f � g ⇔ ∀t∈[a,b] f(t) � g(t).

Then (X, d,�) is a partially ordered and complete metric space.

Definition 1.6. An preordered metric space is a triple (X, d,�) where (X, d)
is a metric space and � is a preorder on X.

One of the most important hypotheses that we shall use in next section
is the monotonicity of the involved mappings.

Definition 1.7. Let � be a binary relation on X and T : X → X be a
mapping. We say that T is �-non-decreasing if Tx � Ty for all x, y ∈ X
such that x � y.

After the appearance of the Ran and Reurings’ result [16], Nieto and
Rodŕıguez-López [11] changed the continuity of the mapping T with the con-
dition non-decreasing regularity.

Definition 1.8. Let (X, d) be a metric space, let A ⊂ X be a non-empty
subset and let � be a binary relation on X. The triple (X, d,�) is said to be
non-decreasing regular if for all sequence {xn} ⊂ A such that xn → x ∈ A
and xn � xn+1 for all n ∈ N, we have xn � x for all n ∈ N.

For example, the triple (C[0, 1), d,�) from Example 1.5(b) is
non-decreasing regular.
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2. A fixed point theorem for (ψ − ϕ)-type contraction

In this section we extend some fixed point theorems established by Ran and
Reurings [16] and Nieto and Rodŕıgez-López [11] and O’Regan and Petruşel
[12] and the author [4] to mappings with the control functions on preordered
metric spaces, where a preordered binary relation is weaker than a partial
order.

Ćirić [2] introduced the notion of orbital continuity. If T is a self-
mapping of a metric space (X, d) then the set O(T, x) = {Tnx : n =
0, 1, 2, . . .} is called the orbit of T at x and T is called orbitally continu-
ous at a point z ∈ X if for any sequence {xn} ⊂ O(T, x) for some x ∈ X,
xn → z implies Txn → Tz as n → ∞.

Continuity of T obviously implies orbital continuity but not conversely,
[2].

The weaker form of continuity is as follows [13]: a self-mapping T of
a metric space (X, d) is called k−continuous, k = 1, 2, . . ., if T kxn → Tz
whenever {xn} is a sequence in X such that T k−1xn → z as n → ∞.

It is easy to see that 1−continuity is equivalent to continuity and

continuity ⇒ 2 − continuity ⇒ 3 − continuity ⇒ . . . ,

but not conversely. Also continuity of T k and k−continuity of T are indepen-
dent conditions when k > 1, see [13, Examples 1.2–1.5].

We will begin our discussion when a mapping T meets the classic con-
traction conditions. The starting point will be the following observation.

Lemma 2.1. [15, Lemma 2.1] Let (X, d) be a metric space and {xn} be a
sequence in X which is not a Cauchy and limn→∞ d(xn+1, xn) = 0. Then
there exists ε > 0and two subsequences {xnk

} and {xmk
} of {xn} such that

lim
k→∞

d(xnk+1, xmk+1) = ε+, (2)

and

lim
k→∞

d(xnk
, xmk

) = lim
k→∞

d(xnk+1, xmk
) = lim

k→∞
d(xnk

, xmk+1) = ε. (3)

We will use this result in the proof of the following theorem, which
requires only the fulfillment of the conditions on the set of comparable points,
that is, for all x, y ∈ X such that x � y. In this way we will transfer some
Proinov’s results [15] to preordered sets.

Theorem 2.2. Let (X, d,�) be a preordered complete metric space and T :
X → X be a monotone (�-non-decreasing) mapping and such that x0 � Tx0

for some x0 ∈ X, and

ψ(d(Tx, Ty)) � ϕ(d(x, y)) (4)

for any x, y ∈ X with x � y and d(Tx, Ty) > 0, where the functions ψ,ϕ :
(0,∞) → R satisfy the the following conditions:

(i) ψ is non-decreasing;
(ii) ϕ(t) < ψ(t) for any t > 0;
and one of the following conditions:
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(iii1) lim supt→ε+ ϕ(t) < ψ(ε+) for any ε > 0;
(iii2) lim supt→ε ϕ(t) < lim inft→ε+ ψ(t) for any ε > 0;
(iii3) lim supt→ε+ ϕ(t) < lim inft→ε ψ(t) for any ε > 0.
Suppose that one of the following conditions holds:
(a) T is k-continuous for some k � 1;
(b) T is orbitally continuous,
(c) (X, d,�) is non-decreasing regular

Then T has a fixed point.
If for every (x, y) ∈ X × X there exists w ∈ X such that x � w and

y � w, we obtain uniqueness of the fixed point, say z. Moreover, for each
x0 ∈ X such that x0 � Tx0, the sequence{Tnx0} of iterates converges to z.

Proof. Let x0 ∈ X be a point satisfying x0 � Tx0. We define a sequence
{xn} ⊂ X as follows

xn = Txn−1, n � 1. (5)

Regarding that T is monotone mapping together with (5), we have

x0 � Tx0 = x1 implies x1 = Tx0 � Tx1 = x2.

Inductively, we obtain

x0 � x1 � x2 � · · · � xn−1 � xn � xn+1 � · · ·
Note that the sequence {xn = Txn−1} is asymptotically regular.

Indeed, set dn = d(xn+1, xn) for n � 0. We will prove that dn → 0 as
n → ∞. It is trivial if dn = 0 for some n � 0. Suppose dn > 0 for every
n � 0. Applying (4) and (ii), we obtain

ψ(dn+1) � ϕ(dn) < ψ(dn). (6)

Then it follows from (6) and (i) that dn+1 < dn for every n � 0. Hence, the
sequence {dn} is positive, strictly decreasing and it is bounded below. This
implies that there exists d � 0 such that dn → d+ as n → ∞.

Assume that d > 0 and ψ and ϕ satisfy (iii1). Taking the limit superior
as n → ∞ in the first inequality (6), we obtain

ψ(d+) = lim
n→∞ ψ(dn+1) � lim sup

n→∞
ϕ(dn) � lim sup

d→d+
ϕ(t),

which is a contradiction to (iii1). Hence, limn→∞ d(xn, xn+1) = 0.
Assume that d > 0 and ψ and ϕ satisfy (iii2). Since dn → d+ as n → ∞,

so taking the limit as n → ∞ in the first inequality (6), we obtain

lim inf
t→d+

ψ(t) � lim inf
n→∞ ψ(dn+1) � lim sup

n→∞
ϕ(dn) � lim sup

t→d
ϕ(t),

which is a contradiction to (iii2). Hence, limn→∞ d(xn, xn+1) = 0.
Assume that d > 0 and ψ and ϕ satisfy (iii3). Since dn → d+ as n → ∞,

so taking the limit as n → ∞ in the first inequality (6), we obtain

lim inf
t→d

ψ(d) � lim inf
n→∞ ψ(dn+1) � lim sup

n→∞
ϕ(dn) � lim sup

t→d+
ϕ(t),

which is a contradiction to (iii3). Hence, limn→∞ d(xn, xn+1) = 0.
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If xn = xn+1 for some n � 0, then xn = Txn, so xn is the fixed point
of T .

Suppose, xn �= xn+1 for all n � 0. Assume that {xn} is not a Cauchy
sequence.

Let ψ and ϕ satisfy (iii1). It follows from Lemma 2.1 that there exists
ε > 0 and two subsequences {xnk

} and {xmk
} of {xn} such that the limits

(2) and (3) hold. It follows from (2) that d(xnk+1, xmk+1) > ε for all k � 1.
Applying (4) with x = xnk

and y = xmk
, we get

ψ(d(xnk+1, xmk+1)) � ϕ(d(xnk
, xmk

)) (7)

for all k � 1. Hence, taking into account that ϕ(t) < ψ(t), we obtain

ψ(d(xnk+1, xmk+1)) � ϕ(d(xnk
, xmk

)) < ψ(d(xnk
, xmk

)).

From this and monotonicity of ψ, we deduce that d(xnk+1, xmk+1) < d
(xnk

, xmk
). Then it follows from (2) and (3) that d(xnk+1, xmk+1) → ε+

and d(xnk
, xmk

) → ε+ as k → ∞. Taking the limit superior as k → ∞ in (7),
we get

ψ(ε+) = lim
k→∞

ψ(d(xnk+1, xmk+1))

� lim sup
k→∞

ϕ(d(xnk
, xmk

))

� lim sup
t→ε+

ϕ(t),

which is a contradiction to (iii1).
Let ψ and ϕ satisfy (iii2). Then, similarly to the previous case from (7),

we get

lim inf
t→ε+

ψ(t) � lim inf
k→∞

ψ(d(xnk+1, xmk+1)) �

� lim sup
k→∞

ϕ(d(xnk
, xmk

) �

� lim sup
t→ε

ϕ(t),

which is a contradiction to (iii2).
Let ψ and ϕ satisfy (iii3). As in Lemma 2.1 (see [15, Lemma 2.2])

there exists ε > 0 and two subsequences {xnk
} and {xmk

} of {xn} such
that limk→∞ d(xnk

, xmk
) = ε+ and limk→∞ d(xnk+1, xmk+1) = ε. Hence, we

conclude that d(Txnk
, Txmk

) = d(xnk+1, xmk+1) > 0 and inequality (7) hold
for infinitely many values of k. Then

lim inf
t→ε

ψ(t) � lim inf
k→∞

ψ(d(xnk+1, xmk+1)) �

� lim sup
k→∞

ϕ(d(xnk
, xmk

) �

� lim sup
t→ε+

ϕ(t),

which is a contradiction to (iii3).
Therefore, in any case, {xn = Tnx0} is a Cauchy sequence. Because X

is complete limn→∞ xn = z ∈ X.
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Part (a). Suppose that T is k−continuous. Since T k−1xn → z, k−continuity
of T implies that T kxn → Tz as n → ∞. By uniqueness of the limit (for each
j � 1 we have, T jxn → z as n → ∞), z = Tz.
Part (b). Suppose that T is orbitally continuous. Since xn → z, orbital con-
tinuity implies that Txn → Tz as n → ∞. This yields, by uniqueness of the
limit, z = Tz.
Part (c). Due to assumption of non-decreasing regularity, we have xn � z for
all n � 0.

If d(Tnx0, T z) = 0 for infinitely many values of n, then

d(z, Tz) � d(z, Tnx0) + d(Tnx0, T z) = d(z, Tnx0)

for these values of n. Taking the limit as n → ∞, we get d(z, Tz) � 0 which
implies z = Tz.

Suppose d(Tnx0, T z) > 0 holds for infinitely many values of n. Then
applying (4), we have

ψ(d(Tn+1x0, T z)) � ϕ(d(Tnx0, z)) (8)

holds for these values of n. Since ψ and ϕ satisfy condition (ii), by (8), we
have

ψ(d(Tn+1x0, T z)) � ϕ(d(Tnx0, z)) < ψ(d(Tnx0, z)).

From this and monotonicity of ψ, we have d(Tn+1x0, T z) < d(Tnx0, z). Tak-
ing the limit as n → ∞, we get d(z, Tz) � 0. This means that z = Tz.

To prove uniqueness, we assume that v ∈ X is another fixed point of
T such that v �= z. By hypothesis, there exists w ∈ X such that z � w and
v � w.

Let {wn = Twn−1} be the Picard sequence of T based on w0 = w. As
T is �-non-decreasing, v = Tv � Tw = w1 and z = Tz � Tw = w1. By
induction, v � wn and z � wn for all n � 0.
Case 1. If v = wn0 for some n0 � 0, then v = Tv = Twn0 = wn0+1 and by
induction, wn = v for all n � n0, so wn → v as n → ∞.
Case 2. If v ≺ wn for all n � 0, then d(v, wn) > 0 for all n � 0 and by (4)
and (ii), we have

ψ(d(v, wn+1)) = ψ(d(Tv, Twn)) � ϕ(d(v, wn)) < ψ(d(v, wn)). (9)

This implies that d(v, wn+1) < d(v, wn) for n � 0. Hence the sequence
{d(v, wn)} is positive, strictly decreasing and bounded below. This implies
that there exists d � 0 such that d(v, wn) → d+ as n → ∞. If d > 0 we
obtain a contradiction.

Let ψ and ϕ satisfy (iii1). Taking the limit superior as n → ∞ in the
first part of inequality (9) we obtain

ψ(d+) = lim
n→∞ ψ(d(v, wn+1)) � lim sup

n→∞
ϕ(d(v, wn)) � lim sup

t→d+
ϕ(t),

which is a contradiction to (iii1). Hence, wn → v as n → ∞.
Let ψ and ϕ satisfy (iii2). Since d(v, wn) → d+ as n → ∞, so taking

the limit as n → ∞ in the first inequality (9), we obtain

lim inf
t→d+

ψ(t) � lim inf
n→∞ ψ(d(v, wn+1)) � lim sup

n→∞
ϕ(d(v, wn)) � lim sup

t→d
ϕ(t),
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which is a contradiction to (iii2). Hence, wn → v as n → ∞.
Let ψ and ϕ satisfy (iii3). Since d(v, wn) → d+ as n → ∞, so taking

the limit as n → ∞ in the first inequality (9), we obtain

lim inf
t→d

ψ(d) � lim inf
n→∞ ψ(d(v, wn+1)) � lim sup

n→∞
ϕ(d(v, wn)) � lim sup

t→d+
ϕ(t),

which is a contradiction to (iii3). Hence, wn → v as n → ∞.
Thus, wn → v and wn → z. The uniqueness of the limit concludes that

v = z, so T has a unique fixed point.
It is clear that for each x0 ∈ X such that x0 � Tx0, the sequence

{Tnx0} converges to z. �

Remark 2.3. (A) If ψ(t) = t and ϕ(t) = M · t, where M ∈ [0, 1), then Theo-
rem 2.2 is a generalization of the Banach fixed point theorem (1922) and
the Ran–Reurings fixed point theorem (2003) [16] and Nieto–Rodŕıguez-
López theorem (2005) [11].

(B) If ψ(t) = t, then Theorem 2.2 is a generalization of Boyd-Wong’s fixed
point theorem (1969) [1].

(C) Taking ϕ(t) = α(t)ψ(t), where α : (0,∞) → (0, 1) such that lim supt→ε+

α(t) < 1 for any ε > 0, we will get some generalization of Geraghty’s
theorem [3], [15, Corollary 3.15]. Especially in the case ϕ(t) = α(t) · t
we obtain well-known fixed point theorem of Geraghty (1973). Taking
ϕ(t) = M · ψ(t), M ∈ (0, 1), we get special case of Skof’s fixed point
theorem (1977), see [15, Corollary 3.17], [18].

(D) Let ψ : (0,∞) → �, � ⊂ R be an open interval and F : � → R be
an upper semicontinuous function with F (t) < t for all t ∈ �. Taking
ϕ(t) = F (ψ(t)) we obtain improvement of Moradi fixed point theorem
(2014), see [15, Corollary 3.14] and the references given there.

(E) Setting ϕ(t) = ψ(t) − τ where τ > 0 we obtain improvement of War-
dowski fixed point theorem (2012), see [15, Corollary 3.21] and the refer-
ences given there. Note that the fixed point theorem of Wardowski and
a special case of the fixed point theorem of Skof (see (C)) are equivalent
[15, Theorem 3.23].

(F) Theorem 2.2 remains true if ϕ(t) = ψ(t) − φ(t), where ψ : (0,∞) → R

and φ : (0,∞) → (0,∞) are functions such that:
(i′) ψ is non-decreasing;
(ii′) lim inft→ε+ φ(t) > 0 for any ε > 0,

see [15, Section 4] and the references given there.

Remark 2.4. The assumptions in Theorem 2.2 that ensure the existence of
exactly one fixed point are important, see [11].

Remark 2.5. The presented theorems remain true in preordered dislocated
metric spaces because we do not use axiom d(x, x) = 0. Recall (X, ̂d) is
called a dislocated metric space if the following conditions are satisfied for all
x, y, z ∈ X,

̂d(x, y) = 0 implies x = y,
̂d(x, y) = ̂d(y, x),
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̂d(x, y) � ̂d(x, z) + ̂d(z, y).

The motivation of defining this notion was to get better results in logic pro-
gramming semantics [8].

3. A fixed point theorem for (ψ − ϕ)-type generalized
contraction

Now we provide a fixed point theorem for a self-mapping T on a preordered
complete metric space satisfying a generalized contractive-type condition.
This theorem requires more restrictive assumptions.

Theorem 3.1. Let (X, d,�) be a preordered complete metric space and T :
X → X be a monotone (�-non-decreasing) mapping and such that x0 � Tx0

for some x0 ∈ X, and

ψ(d(Tx, Ty)) � ϕ(m(x, y)), (10)

where

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1
2
[d(x, Ty) + d(y, Tx)]},

for any x, y ∈ X with x � y and d(Tx, Ty) > 0, where the functions ψ,ϕ :
(0,∞) → R satisfy the the following conditions:

(i) ψ is non-decreasing and bounded below (inft>ε ψ(t) > −∞ for any ε >
0);

(ii) ϕ(t) < ψ(t) for any t > 0;
(iii) lim supt→ε+ ϕ(t) < ψ(ε+) for any ε > 0.
Suppose that one of the following conditions holds:
(a) T is k−continuous for some k � 1;
(b) T is orbitally continuous,
(c) (X, d,�) is non-decreasing regular

Then T has a fixed point.
If for every (x, y) ∈ X × X there exists w ∈ X such that x � w and

y � w and {Tnw} is an asymptotically regular sequence, we obtain uniqueness
of the fixed point, say z. Moreover, for each x0 ∈ X such that x0 � Tx0, the
sequence{Tnx0} of iterates converges to z.

Proof. Following the proof of Theorem 2.2, we have a �-non-decreasing se-
quence {xn = Txn−1}, n � 1:

x0 � x1 � x2 � · · · � xn−1 � xn � xn+1 � · · ·
Conditions (i)–(iii) imply that T is asymptotically regular mapping. Let

dn = d(xn, xn+1). We have to prove that dn → 0 as n → ∞.
It is trivial if dn = 0 for some n � 0. Suppose dn > 0 for every n � 0.

It follows from (10) that

ψ(dn+1) � ϕ(m(xn, xn+1)). (11)

It is easy to show that m(xn, xn+1) = max{dn, dn+1}. Hence, if dn � dn+1 for
some n � 0, then m(xn, xn+1) = dn+1. In this case condition (11) becomes
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ψ(dn+1) � ϕ(dn+1) which is a contradiction to (ii). Consequently dn+1 < dn

and m(xn, xn+1) = dn for all n � 0. The sequence {dn} is positive, strictly
decreasing and bounded below, which implies that there exists d � 0 such
that dn → d+ as n → ∞. It remains to prove that d = 0. Assume d > 0. It
follows from (11) and (ii) that

ψ(dn+1) � ϕ(dn) < ψ(dn). (12)

From this we conclude that {ψ(dn)} is a decreasing sequence. It follows from
the second part of (i), that {ψ(dn)} is bounded below since dn > d. Therefore,
{ψ(dn)} is a convergent sequence. In view of (12) the sequence {ϕ(dn)} is
also convergent with the same limit. Then

ψ(d+) = lim
n→∞ ψ(dn) = lim

n→∞ ϕ(dn) � lim sup
t→d+

ϕ(t),

which is a contradiction to (iii). Hence, limn→∞ d(xn, xn+1) = 0.
If xn = xn+1 for some n � 0, then xn = Txn, so xn is the fixed point

of T .
Suppose, xn �= xn+1 for all n � 0. Assume that {xn} is not a Cauchy

sequence. It follows from Lemma 2.1 that there exists ε > 0 and two subse-
quences {xnk

} and {xmk
} of {xn} such that the limits (2) and (3) hold. It

follows from (2) that d(xnk+1, xmk+1) > ε > 0 for all k � 1. Applying (10)
with x = xnk

and y = xmk
, we get

ψ(d(xnk+1, xmk+1)) � ϕ(m(xnk
, xmk

))

for all k � 1. Hence, taking into account that ϕ(t) < ψ(t), we obtain

ψ(d(xnk+1, xmk+1)) � ϕ(m(xnk
, xmk

)) < ψ(m(xnk
, xmk

)). (13)

From this and monotonicity of ψ, we have d(xnk+1, xmk+1) < m(xnk
, xmk

).
Then it follows from (2) and (3) that d(xnk+1, xmk+1) → ε+ and m(xnk

, xmk
)

→ ε+. Taking the limit superior as k → ∞ in (13), we get

ψ(ε+) = lim
k→∞

ψ(d(xnk+1, xmk+1)) �

� lim sup
k→∞

ϕ(m(xnk
, xmk

)) �

� lim sup
t→ε+

ϕ(t),

which is a contradiction to (iii).
Therefore, {xn = Tnx0} is a Cauchy sequence. Because X is complete

limn→∞ xn = z ∈ X.
Part (a). Suppose that T is k−continuous. Since T k−1xn → z, k−continuity
of T implies that T kxn → Tz as n → ∞. By uniqueness of the limit (for each
j � 1 we have, T jxn → z as n → ∞), z = Tz.
Part (b). Suppose that T is orbitally continuous. Since xn → z, orbital con-
tinuity implies that Txn → Tz as n → ∞. This yields, by uniqueness of the
limit, z = Tz.
Part (c). Due to assumption of non-decreasing regularity, we have xn � z for
all n � 0.



Vol. 23 (2021) Fixed point theorems in preordered sets Page 11 of 20 71

If d(Tnx0, T z) = 0 for infinitely many values of n, then

d(z, Tz) � d(z, Tnx0) + d(Tnx0, T z) = d(z, Tnx0)

for these values of n. Taking the limit as n → ∞, we get d(z, Tz) � 0 which
implies z = Tz.

Assume d(z, Tz) = ε > 0. It follows from Tnx0 → z as n → ∞ that
d(Tnx0, T z) → d(z, Tz), which implies that d(Tnx0, T z) > 0 holds for infin-
itely many values of n. Then applying (10), we have

ψ(d(Tn+1x0, T z)) � ϕ(m(Tnx0, z)) (14)

holds for these values of n. By the definition m(Tnx0, z) equals the maximum
of four quantities d(Tnx0, z), d(Tnx0, T

n+1x0), 1
2 [d(Tnx0, T z)+d(z, Tn+1x0)]

and d(z, Tz). Taking into account that d(Tnx0, z) → 0, d(Tnx0, T
n+1x0) →

0, d(z, Tn+1x0) → 0 and d(Tnx0, T z) → d(z, Tz) as n → ∞, we deduce that
m(Tnx0, z) = d(z, Tz) for sufficiently large values of n. Then from (14) we
obtain

ψ(d(Tn+1x0, T z)) � ϕ(d(z, Tz)) (15)

for infinitely many values of n. Taking the limit inferior as n → ∞ in (15),
we get

lim inf
t→ε

ψ(t) � lim inf
n→∞ ψ(d(Tnx0, T z)) � ϕ(ε)

which is a contradiction to (i)–(ii), because if the functions ψ and ϕ satisfy
the conditions (i) and (ii), then ϕ(ε) < lim inft→ε ψ(t) for any ε > 0. Hence,
d(z, Tz) = 0. This means that z = Tz.

To prove uniqueness, we assume that v ∈ X is another fixed point of
T such that v �= z. By hypothesis, there exists w ∈ X such that z � w and
v � w.

Let {wn = Twn−1} be the Picard sequence of T based on w0 = w. As
T is �-non-decreasing, v = Tv � Tw = w1 and z = Tz � Tw = w1. By
induction, v � wn and z � wn for all n � 0.
Case 1. If v = wn0 for some n0 � 0, then v = Tv = Twn0 = wn0+1 and by
induction, wn = v for all n � n0, so wn → v as n → ∞.
Case 2. If v ≺ wn for all n � 0, then d(v, wn) > 0 for all n � 0 and by (10)
and (ii), we have

ψ(d(v, wn+1)) = ψ(d(Tv, Twn)) � ϕ(m(v, wn)) < ψ(m(v, wn)). (16)

From this and monotonicity of ψ, we have

d(v, wn+1) < m(v, wn) (17)

for all n � 0. By the definition m(v, wn) equals the maximum of four quan-
tities d(v, wn), d(v, Tv) = 0, d(wn, Twn) = d(Tnw0, T

n+1w0) → 0 as n → n
(by asymptotic regularity) and 1

2 [d(v, wn+1) + d(wn, T v)]. Hence for suffi-
ciently large values of n,

m(v, wn) = max{d(v, wn),
1
2
[d(v, wn+1) + d(v, wn)]}.
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If m(v, wn) = 1
2 [d(v, wn+1) + d(v, wn)] then by (17),

d(v, wn+1) <
1
2
[d(v, wn+1) + d(v, wn)],

so

d(v, wn+1) < d(v, wn).

If m(v, wn) = d(v, wn), then by (17),

d(v, wn+1) < d(v, wn).

Consequently the sequence {d(v, wn)} is positive and for sufficiently large
values of n is strictly decreasing, which implies that there exists p � 0 such
that d(v, wn) → p+ as n → ∞. Assume p > 0. It follows from (16), (17) and
(ii),

ψ(d(v, wn+1)) � ϕ(m(v, wn)) = ϕ(d(v, wn)) < ψ(m(v, wn)) (18)

for sufficiently large values of n. From this, we conclude that {ψ(d(v, wn)}
is a decreasing sequence for these values of n and is bounded below since
d(v, wn) > p. Therefore {ψ(d(v, wn)} is a convergent sequence. In view of
(18) the sequence {ϕ(d(v, wn)} is also convergent with the same limit. Then

ψ(p+) = lim
n→∞ ψ(d(v, wn)) = lim

n→∞ ϕ(d(v, wn)) � lim sup
t→p+

ϕ(t),

which is a contradiction to (iii). Hence, d(v, wn) → 0 as n → ∞.
Thus, wn → v and wn → z. The uniqueness of the limit concludes that

v = z, so T has a unique fixed point.
It is clear that for each x0 ∈ X such that x0 � Tx0, the sequence

{Tnx0} converges to z. �

Remark 3.2. In the above theorem, it is possible to test the thesis by consid-
ering the following functions

• ϕ(t) = F (ψ(t)), ϕ(t) = M · ψ(t), ϕ(t) = ψ(t) − τ with appropriately
selected assumptions, see [15, Corollary 5.9, 5.12 and Theorem 5.13] and
references therein. In particular, fixed point theorems of Wardowski–Van
Dung (2014) and Li–Jiang (2016) are special cases of Skof’s generalized
fixed point theorem;

• ϕ(t) = ψ(t) − φ(t) with appropriately selected assumptions, see [15,
Section 6] and references therein.

4. Fixed point theorems for Kannan-type mappings

We can easily prove the following result for Kannan-type mappings satisfying
(1) in preordered spaces, see [6, Theorems 3.5, 3.8].

Theorem 4.1. Let (X, d,�) be a preordered complete metric space and T :
X → X be an asymptotically regular and monotone (�-non-decreasing) map-
ping and such that x0 � Tx0 for some x0 ∈ X, and satisfying

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)}
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for any x, y ∈ X with x � y, where 0 � K < ∞. Suppose that one of the
following conditions holds:
(a) T is k−continuous for some k � 1;
(b) T is orbitally continuous;
(c) (X, d,�) is non-decreasing regular and 0 � K < 1.

Then T has a fixed point.
If for every (x, y) ∈ X × X there exists w ∈ X such that x � w and

y � w, we obtain uniqueness of the fixed point, say z. Moreover, for each
x0 ∈ X such that x0 � Tx0, the sequence{Tnx0} of iterates converges to z.

Remark 4.2. The assumptions in Theorem 4.1 that ensure the existence of
exactly one fixed point are important, see [6, Examples 3.9 and 3.10].

The key feature in this theorem is that the contractivity condition on
the nonlinear map is only assumed to hold on elements that are comparable.

Example 4.3. Let X = {0, 1, 2, 3, 8} be a set of non-negative integers with
usual metric. Then (X, d) is a complete metric space. Consider on X the
partial order

x � y ⇔ (x = y or 1 � x < y).

Define T : X → X as follows: T0 = 0, T1 = 2, T2 = 3, T3 = 8 and T8 = 8.
T is continuous, asymptotically regular and T satisfies

d(Tx, Ty) > max{d(x, y), d(x, Tx), d(y, Ty),
1
2
(d(x, Ty) + d(y, Tx))},

take x = 1 and y = 3. In particular, T is not a nonexpansive mapping.
T does not satisfy (1) on X, there is no constant K ∈ [0,∞) such that

for all x, y ∈ X satisfying d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)}, take x = 0
and y = 8.

On the other hand, d(Tx, Ty) � 6{d(x, Tx) + d(y, Ty)} for all x � y,
i.e., for all x, y ∈ {1, 2, 3, 8} ⊂ X, where {1, 2, 3, 8} �= X.

Our another generalization of the last theorem is inspired by theorem
of Geraghty [3,7].

Let S denote the class of those functions α : [0,∞) → [0, 1) which
satisfy the simple condition: α(tn) → 1 ⇒ tn → 0, for example, α1(t) = e−t,
α2(t) = 1

1+t , t > 0. Generally we do not assume that α is continuous in any
sense.

Theorem 4.4. Let (X, d,�) be a preordered complete metric space and T :
X → X be an asymptotically regular and monotone (�-non-decreasing) map-
ping and such that x0 � Tx0 for some x0 ∈ X, and

d(Tx, Ty) � α(d(x, y)) · d(x, y) + K · {d(x, Tx) + d(y, Ty)} (19)

for any x, y ∈ X with x � y, where a function α ∈ S and 0 � K < ∞.
Suppose that one of the following conditions holds:
(a) T is k−continuous for some k � 1;
(b) T is orbitally continuous;
(c) (X, d,�) is non-decreasing regular and 0 � K < 1.
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Then T has a fixed point.
If for every (x, y) ∈ X × X there exists w ∈ X such that x � w and

y � w, we obtain uniqueness of the fixed point, say z. Moreover, for each
x0 ∈ X such that x0 � Tx0, the sequence{Tnx0} of iterates converges to z.

Proof. Following the proof of Theorem 2.2, we have a �-non-decreasing se-
quence {xn = Txn−1}, n � 1:

x0 � x1 � x2 � · · · � xn−1 � xn � xn+1 � · · ·
If xn = xn+1 for some n � 0, then xn = Txn, so xn is the fixed point of T .

Suppose, xn �= xn+1 for all n � 0. Assume that {xn} is not a Cauchy
sequence. Then lim supn,m→∞ d(xn, xm) > 0. By the triangle inequality,

d(xn, xm) � d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm),

so by (19)

d(xn, xm) � α(d(xn, xm)) · d(xn, xm)

+ (K + 1) · {d(xn, xn+1) + d(xm, xm+1)}.

Under the assumption lim supn,m→∞ d(xn, xm) > 0, asymptotic regularity of
{xn}, the inequality

d(xn, xm)
d(xn, xn+1) + d(xm, xm+1)

� K + 1
1 − α(d(xn, xm))

now implies

lim sup
n,m→∞

K + 1
1 − α(d(xn, xm))

= +∞,

from which

lim sup
n,m→∞

α(d(xn, xm)) = 1.

From the properties of the α function, lim supn,m→∞ d(xn, xm) = 0, which
is a contradiction. Thus {xn} is a Cauchy sequence. Because X is complete
limn→∞ xn = z ∈ X.
Part (a) and (b). Analogically as in the proof of Theorem 2.2, z is a fixed
point of T .
Part (c). Due to assumption of non-decreasing regularity, we have xn � z for
all n � 0.

Since Tnx0 → z and d(Tn+1x0, T
nx0) → 0 as n → ∞, using that

Tnx0 � z for all n ∈ N, we get

d(Tz, z) � d(Tz, Tn+1x0) + d(Tn+1x0, z)

� α(d(z, Tnx0)) · d(z, Tnx0) + K{d(z, Tz) + d(Tnx0, T
n+1x0)}

+ d(Tn+1x0, z),

so

(1 − K)d(Tz, z) � α(d(z, Tnx0)) · d(z, Tnx0) + Kd(Tnx0, T
n+1x0)+

+ d(Tn+1x0, z) → 0,
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as n → ∞. In consequence, d(Tz, z) = 0. Hence z = Tz.
To prove uniqueness, we assume that v ∈ X is another fixed point of

T such that v �= z. By hypothesis, there exists w ∈ X such that z � w and
v � w.

Let {wn = Twn−1} be the Picard sequence of T based on w0 = w. As
T is �-non-decreasing, v = Tv � Tw = w1 and z = Tz � Tw = w1. By
induction, v � wn and z � wn for all n � 0.
Case 1. If v = wn0 for some n0 � 0, then v = Tv = Twn0 = wn0+1 and by
induction, wn = v for all n � n0, so wn → v as n → ∞.
Case 2. If v ≺ wn for all n � 0, then by (19)

d(v, wn+1) = d(Tv, Twn) �
� α(d(v, wn)) · d(v, wn) + K{d(v, Tv) + d(wn, wn+1)} =

= α(d(v, wn)) · d(v, wn) + Kd(wn, wn+1).

Assume wn �→ v, i.e., lim supn→∞ d(v, wn) > 0. Under the asymptotic regu-
larity of {wn}, the inequality

d(v, wn+1) � α(d(v, wn)) · [d(v, wn+1) + d(wn+1, wn)] + Kd(wn, wn+1),

[1 − α(d(v, wn))] · d(v, wn+1) � [K + α(d(v, wn))] · d(wn, wn+1),

now implies, lim supn→∞ α(d(v, wn)) = 1, so lim supn→∞ d(v, wn) = 0, which
is a contradiction. Hence, wn → v as n → ∞.

Thus, wn → v and wn → z. The uniqueness of the limit concludes that
v = z, so T has a unique fixed point.

It is clear that for each x0 ∈ X such that x0 � Tx0, the sequence
{Tnx0} converges to z.

�

The next existential result is inspired by theorem of Boyd and Wong [1].
A mapping T satisfying d(Tx, Ty) � ϕ(d(x, y)) where ϕ(t) < t for each t > 0,
may not posses a fixed point unless some additional condition is assumed on
ϕ. Boyd and Wong [1] assumed ϕ to be upper semi-continuous from the right.

Let U denote the class of all mappings ϕ : [0,∞) → [0,∞) satisfying
(i) ϕ(t) < t for all t > 0,
(ii) ϕ is upper semi-continuous, that is tn ↓ t � 0 ⇒ lim supn→∞ ϕ(tn) �

ϕ(t).

Theorem 4.5. Let (X, d,�) be a preordered complete metric space and T :
X → X be an asymptotically regular and monotone (�-non-decreasing) map-
ping and such that x0 � Tx0 for some x0 ∈ X, and

d(Tx, Ty) � ϕ(d(x, y)) + K · {d(x, Tx) + d(y, Ty)}. (20)

for any x, y ∈ X with x � y, where a function ϕ ∈ U and 0 � K < ∞.
Suppose that one of the following conditions holds:
(a) T is k−continuous for some k � 1;
(b) T is orbitally continuous,
(c) (X, d,�) is non-decreasing regular and 0 � K < 1.
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Then T has a fixed point.

Proof. Following the proof of Theorem 2.2, we have a �-non-decreasing se-
quence {xn = Txn−1}, n � 1:

x0 � x1 � x2 � . . . � xn−1 � xn � xn+1 � . . .

If xn = xn+1 for some n � 0, then xn = Txn, so xn is the fixed point of T .
Suppose, xn �= xn+1 for all n � 0. Assume that {xn} is not a Cauchy

sequence. Then there exists ε > 0 and integers ni,mi ∈ N such that mi >
ni � i and

d(xni
, xmi

) � ε for i = 1, 2, . . .

Also, choosing mi small as possible, if may be assumed that

d(xni
, xmi−1) < ε.

Hence for each i ∈ N, we have

ε � d(xni
, xmi

) � d(xni
, xmi−1) + d(xmi−1, xmi

) < ε + d(xmi−1, xmi
),

and it follows from asymptotic regularity that

lim
i→∞

d(xni
, xmi

) = ε.

(It also provides Lemma 2.1.) Next observe, that

d(xni
, xmi

) � d(xni
, xni+1) + d(xni+1, xmi+1) + d(xmi+1, xmi

)

� d(xni
, xni+1)

+ ϕ(d(xni
, xmi

)) + K · {d(xni
, xni+1) + d(xmi

, xmi+1)}
+ d(xmi+1, xmi

)

= ϕ(d(xni
, xmi

)) + (K + 1) · {d(xni
, xni+1) + d(xmi

, xmi+1)}.

Letting i → ∞, using asymptotic regularity and upper semi-continuity of ϕ,
we obtain

0 < ε = lim
i→∞

d(xni
, xmi

) � lim sup
i→∞

ϕ(d(xni
, xmi

)) � ϕ(ε) < ε,

which is a contradiction. Hence {xn} is a Cauchy sequence. Because X is
complete limn→∞ xn = z ∈ X.
Part (a) and (b). Analogically as in the proof of Theorem 2.2, z is a fixed
point of T .
Part (c). Due to assumption of non-decreasing regularity, we have xn � z for
all n � 0.

Since Tnx0 → z and d(Tn+1x0, T
nx0) → 0 as n → ∞, using that

Tnx0 � z for all n ∈ N and (20), we get

d(Tz, z) � d(Tz, Tn+1x0) + d(Tn+1x0, z)

� ϕ(d(z, Tnx0)) + K{d(z, Tz) + d(Tnx0, T
n+1x0)}

+ d(Tn+1x0, z),

so

(1 − K)d(Tz, z) � ϕ(d(z, Tnx0)) + Kd(Tnx0, T
n+1x0) + d(Tn+1x0, z) → 0,
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as n → ∞. In consequence, d(Tz, z) = 0. Hence z = Tz. �

Remark 4.6. We do not know whether in this case with assumptions that for
every (x, y) ∈ X × X there exists w ∈ X such that x � w and y � w and
K > 0, there is exactly one fixed point. When K = 0, see Theorem 2.2 or [4,
Theorem 3.6 and 3.10].

Attempting to obtain in preordered set results inspired by the recent
work of Karapınar et al. [10] encounters serious difficulties and opens the way
for further research. Now we present a partial result in this direction.

Theorem 4.7. Let (X, d,�) be a preordered complete metric space and T :
X → X be an asymptotically regular and monotone (�-non-decreasing) map-
ping and such that x0 � Tx0 for some x0 ∈ X, and

ψ(d(Tx, Ty)) � ϕ(d(x, y)) + K · {d(x, Tx) + d(y, Ty)} (21)

for any x, y ∈ X with x � y and d(Tx, Ty) > 0, where 0 < K < ∞ and
where the functions ψ,ϕ : (0,∞) → R satisfy one of the following conditions:

(i) lim supt→ε ϕ(t) < lim inft→ε+ ψ(t) for any ε > 0;
(ii) lim supt→ε+ ϕ(t) < lim inft→ε ψ(t) for any ε > 0;
(iii) lim supt→ε ϕ(t) < ψ(ε+) for any ε > 0.
Suppose that one of the following conditions holds:
(a) T is k−continuous for some k � 1;
(b) T is orbitally continuous.
Then T has a fixed point.

Proof. Following the proof of Theorem 2.2, we have a �-non-decreasing se-
quence {xn = Txn−1}, n � 1:

x0 � x1 � x2 � · · · � xn−1 � xn � xn+1 � · · ·
If xn = xn+1 for some n � 0, then xn = Txn, so xn is the fixed point of T .

Let ψ and ϕ satisfy (i). Suppose, xn �= xn+1 for all n � 0. Assume that
{xn} is not a Cauchy sequence. It follows from Lemma 2.1 that there exists
ε > 0 and two subsequences {xnk

} and {xmk
} of {xn} such that the limits

(2) and (3) hold. It follows from (2) that d(xnk+1, xmk+1) > ε > 0 for all
k � 1 and exists k0 � 1 such that d(xnk

, xmk
) > 0 for all k � k0. Applying

(21) with x = xnk
and y = xmk

, we get

ψ(d(xnk+1, xmk+1)) � ϕ(d(xnk
, xmk

)) + K · {d(xnk
, xnk+1) + d(xmk

, xmk+1)}
for all k � k0. Taking into account the asymptotic regularity of T and (2)
and (3), letting the limit as k → ∞, we get

lim inf
t→ε+

ψ(t) � lim inf
k→∞

ψ(d(xnk+1, xmk+1))

� lim sup
k→∞

ϕ(d(xnk
, xmk

)) � lim sup
t→ε

ϕ(t),

which is a contradiction to (i). Therefore, {xn} is a Cauchy sequence. Because
X is complete limn→∞ xn = z ∈ X.

Let ψ and ϕ satisfy (ii). Suppose, xn �= xn+1 for all n � 0. Assume
that {xn} is not a Cauchy sequence. Same as in Lemma 2.1 [15, Lemma 2.2]
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there exists ε > 0 and two subsequences {xnk
} and {xmk

} of {xn} such that
limk→∞ d(xnk+1, xmk+1) = ε and limk→∞ d(xnk

, xmk
) = ε+. It follows from

this that d(xnk
, xmk

) > ε > 0 for all k � 1 and there exists k0 � 1 such
that d(xnk+1, xmk+1) > 0 for all k � k0. Applying (21) with x = xnk

and
y = xmk

, we get

ψ(d(xnk+1, xmk+1)) � ϕ(d(xnk
, xmk

)) + K · {d(xnk
, xnk+1) + d(xmk

, xmk+1)}
for all k � k0. Taking into account the asymptotic regularity of T and letting
the limit as k → ∞, we get

lim inf
t→ε

ψ(t) � lim inf
k→∞

ψ(d(xnk+1, xmk+1))

� lim sup
k→∞

ϕ(d(xnk
, xmk

)) � lim sup
t→ε+

ϕ(t),

which is a contradiction to (ii). Therefore, {xn} is a Cauchy sequence. Because
X is complete limn→∞ xn = z ∈ X.

Let ψ and ϕ satisfy (iii). Suppose, xn �= xn+1 for all n � 0. Assume that
{xn} is not a Cauchy sequence. It follows from Lemma 2.1 that there exists
ε > 0 and two subsequences {xnk

} and {xmk
} of {xn} such that the limits

(2) and (3) hold. It follows from (2) that d(xnk+1, xmk+1) > ε > 0 for all
k � 1 and exists k0 � 1 such that d(xnk

, xmk
) > 0 for all k � k0. Applying

(21) with x = xnk
and y = xmk

, we get

ψ(d(xnk+1, xmk+1)) � ϕ(d(xnk
, xmk

)) + K · {d(xnk
, xnk+1) + d(xmk

, xmk+1)}
for all k � k0. Taking into account the asymptotic regularity of T and (2)
and (3), letting the limit as k → ∞, we get

ψ(ε+) = lim
k→∞

ψ(d(xnk+1, xmk+1)

� lim sup
k→∞

ϕ(d(xnk
, xmk

)) � lim sup
t→ε

ϕ(t),

which is a contradiction to (iii). Therefore, {xn} is a Cauchy sequence. Be-
cause X is complete limn→∞ xn = z ∈ X.

Analogically as in the proof of Theorem 2.2, z is a fixed point of T . �

We will now give an example of a mapping that satisfy (20) and (21)
with ϕ(t) = t

1+t and ψ(t) = t, t > 0.

Example 4.8. Let X = [0, 1] be with the usual metric. Define T : X → X by
Tx = x

1+x if x ∈ [0, 1) and T1 = 3
4 . Obviously T is not a Lipschitz mapping.

If x = 3
4 and y = 1, then

|Tx − Ty| =
9
28

= max{|x − y|, |x − Tx|, |y − Ty|, 1
2
{|x − Ty| + |y − Tx|}},

so T does not satisfy Ćirić’s condition. Next we observe there is no constant
0 � M < 1 and K ∈ [0,∞) such that for all x, y ∈ X satisfying |Tx − Ty| �
M ·|x−y|+K ·{|x−Tx|+|y−Ty|}. Indeed, if x = 0 and y = ε > 0 (sufficiently
small), then |T0−Tε| = ε

1+ε � M · ε+K · (ε− ε
1+ε ), so M +K � 1−M

ε → ∞
as ε ↓ 0.

On the other hand, T satisfy |Tx − Ty| � ϕ(|x − y|) with ϕ(t) = t
1+t if

x, y ∈ [0, 1). Note that if x = 3
4 and y = 1, then |T ( 34 )−T1| = 9

28 > 1
5 = ϕ(14 ).
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For x = 0 and y = 1, |T0 − T1| = 3
4 = ϕ(1) + {|0 − T0| + |1 − T1|}, and easy

calculations (for 0 < x < 1 and y = 1) show that the mapping T satisfies

|Tx − Ty| � ϕ(|x − y|) + {|x − Tx| + |y − Ty|}
for all x, y ∈ [0, 1].
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contractions. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/6686644.
((article ID 6686644, 8 pages))
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[12] O’Regan, D., Petruşel, A.: Fixed point theorems for generalized contractions
in ordered metric spaces. J. Math. Anal. Appl. 341, 1241–1252 (2008)

[13] Pant, A., Pant, R.P.: Fixed points and continuity of contractive maps. Filomat
31(11), 3501–3506 (2017)

[14] Proinov, P.D.: Fixed point theorems in metric spaces. Nonlinear Anal. 64, 546–
557 (2006)

[15] Proinov, P.D.: Fixed point theorems for generalized contractive mappings in
metric spaces. J. Fixed Point Theory Appl. 22, 21 (2020)

[16] Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered
sets and some applications to matrix equations. Proc. Am. Math. Soc. 132,
1435–1443 (2003)

[17] Reich, S.: Kannan’s fixed point theorem. Boll. Un. Mat. Ital. (4) 4, 1–11 (1971)

[18] Skof, F.: Teoremi di punto fisso per applicazioni negli spazi metrici. Atti. Acad.
Sci. Torino Cl. Sci. Fis. Mat. Natur. 111, 323–329 (1977)

Jaros�law Górnicki
Department of Mathematics and Applied Physics
Rzeszów University of Technology
P.O. Box 85 35-959 Rzeszów
Poland
e-mail: gornicki@prz.edu.pl

Accepted: October 5, 2021.


	Fixed point theorems in preordered sets
	Abstract
	1. Introduction
	2. A fixed point theorem for (ψ-)-type contraction
	3. A fixed point theorem for (ψ-)-type generalized contraction
	4. Fixed point theorems for Kannan-type mappings
	References




