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Abstract. Let M be a closed manifold and A ⊆ H1
dR(M) a polytope.

For each a ∈ A, we define a Novikov chain complex with a multiple
finiteness condition encoded by the polytope A. The resulting polytope
Novikov homology generalizes the ordinary Novikov homology. We prove
that any two cohomology classes in a prescribed polytope give rise to
chain homotopy equivalent polytope Novikov complexes over a Novikov
ring associated with said polytope. As applications, we present a novel
approach to the (twisted) Novikov Morse Homology Theorem and prove
a new polytope Novikov Principle. The latter generalizes the ordinary
Novikov Principle and a recent result of Pajitnov in the abelian case.

Mathematics Subject Classification. 57R58, 53D40, 37D15, 55Nxx.

1. Introduction

Given a closed manifold M and a cohomology class a ∈ H1
dR(M), one can

define the so-called Novikov homology HN•(a), introduced by Novikov [11,12].
Roughly speaking, HN•(a) is defined by picking a Morse representative α ∈ a

and a cover on which α pulls back to an exact form df̃ , and then mimicking
the definition of Morse homology using f̃ as the underlying Morse function.
The groups HN•(a) enjoy three distinctive features

• (Novikov module) The Novikov homology HN•(a) is a finitely generated
module over the so-called Novikov ring Nov(a).

• (Cohomology invariance) The Novikov homology HN•(a) does not de-
pend on the choice of Morse representative α of the prescribed coho-
mology class a.

• (Ray invariance) Morse forms on the same positive half-ray induce
identical Novikov homologies: HN•(r · a) ∼= HN•(a) for all r > 0.

The (twisted) Novikov Morse Homology Theorem says that HN•(a) is
isomorphic to the twisted singular homology H• (M,Nov(a)).1 Using the
Novikov Morse Homology Theorem, one can thus investigate the relation
between HN•(a) and HN•(b), when a �= b, by studying H• (M,Nov(a)) and

1See Corollary 3.4 for a precise statement.
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H• (M,Nov(b)) and their respective twisted coefficient systems Nov(a) and
Nov(b) instead. The latter is a “purely” algebraic task.

In this article, we refine the construction of Novikov homology HN•(a)
and define what we call polytope Novikov homology HN•(a,A) by including
multiple finiteness conditions imposed by a polytope A = 〈a0, . . . , ak〉 ⊆
H1

dR(M) containing a. These polytope Novikov homology groups HN•(a,A)
retain the three features of HN(a) mentioned above, modulo replacing Nov(a)
by a “smaller” Novikov ring Nov(A). The Main Theorem in Sect. 2 gives a
dynamical relation between HN•(a,A) and HN•(b,A), i.e., by staying in the
realm of Novikov homology and not resorting to the algebraic counterpart of
twisted singular homology.

Theorem. (Main Theorem2) For every subpolytope B ⊆ A and two cohomol-
ogy classes a, b ∈ A, there exists a commutative diagram

HN•(a,A) HN•(b,A)

HN• (a,A|B) HN• (b,A|B)

∼=

∼=

induced by continuation on the chain level.

The statement of the Main Theorem might be known to some experts
in the field, but lacks a proof in the literature. Similar variants of the Main
Theorem have been proved in different settings; most noteworthy are [5,7,13,
25]. For example, in [13], Ono considers Novikov–Floer homology on a closed
symplectic manifold3 and proves the following.

Theorem. (Ono [13]) If two symplectic isotopies have fluxes that are close to
each other, then their respective Novikov–Floer homologies are isomorphic.

The Novikov–Floer homologies mentioned in Ono’s Theorem are de-
fined over a common Novikov ring that takes into account several finiteness
conditions simultaneously—this modification is analogous to our implemen-
tation of polytopes. Within this analogy, the upper isomorphism in the Main
Theorem corresponds to the isomorphism in Ono’s Theorem, but with less
assumptions: the nearby assumption of the fluxes in Ono’s result would trans-
late to a smallness assumption on A, which is not needed here. Let us mention
that the formulation and setup of the Main Theorem comes closest to a recent
result due to Groman and Merry [5, Theorem 5.1].

At the end of the paper, we present two applications of the Main
Theorem. In the first application, we recover the aforementioned Novikov
Morse Homology Theorem:4 The proof, modulo details, goes as follows: tak-
ing A = 〈0, a〉, setting B = 〈a〉, invoking the lower isomorphism in the Main

2See Theorem 2.24 for the precise statement. Also note that the actual theorem contains
a stronger chain-level statement.
3For the sake of simplicity, we omit the precise conditions.
4This is not a circular argument, since the Novikov Morse Homology Theorem is not used
in Sect. 2.
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Theorem, and unwinding the definitions reveals

HN•(a) ∼= HM•(f,Nov(a)),

where the right-hand side is Morse homology with local coefficients Nov(a).
The latter is known to be isomorphic to singular homology with twisted
coefficients, for a quick proof, see [1, Theorem 4.1], and thus, we recover
the Novikov Morse Homology Theorem. This line of reasoning is analogous
to the proof of [5, Theorem 5.3] and seems to be a novel approach to the
Novikov Morse Homology Theorem: the proof draws a direct connection be-
tween Novikov and twisted Morse homology instead of using the Novikov
Principle and/or equivariant Morse homology; see [4,8,19] for proofs of the
Novikov Morse Homology Theorem using the latter.

The second application is concerned with a general polytope Novikov
Principle:5

Theorem. (Polytope Novikov Principle) Let B ⊆ A be a subpolytope. Then,
for every a ∈ A, there exists a Morse representative α ∈ a, such that

CN• (α,A|B) � C•
(
M̃A

)
⊗Z[ΓA] Nov(A|B),

as Novikov modules.

The proof idea is similar to the sketch above—one relates the polytope
Novikov complex to a twisted Morse complex by including the 0-vertex in
the polytope A and using the Main Theorem. We call this the 0-vertex trick
(cf. Lemma 3.1). To get from the twisted Morse complex to the equivariant
singular chain complex, we use a Morse–Eilenberg type result (cf. Lemma
3.2) and a chain homotopy equivalence CM(h̃) � C•

(
M̃A

)
over the group

ring of deck transformations Z[ΓA].
Immediate consequences of the polytope Novikov Principle include the

ordinary Novikov Principle (cf. Corollary 3.8) and a recent “conical” Novikov
Principle [17, Theorem 5.1]6 in the abelian case (cf. Corollary 3.10).

Remark. Symplectic homology is a version of Floer homology well suited
to certain non-compact symplectic manifolds. In [18], we combine ideas of
Ono’s Theorem, the magnetic case [5], and of the present paper to construct
a polytope Novikov symplectic homology, which is related to Ritter’s twisted
symplectic homology [20]. The analogue of the Main Theorem remains true.
Applications include Novikov number-type bounds on the number of fixed
points of symplectomorphisms with prescribed flux on the boundary, and the
study of symplectic isotopies of such maps.

2. Novikov homology and polytopes

2.1. Definition and properties of ordinary Novikov homology

In this subsection, we quickly recall the (ordinary) definition of the Novikov
chain complex and its homology, together with some well known properties.

5This is a slightly imprecise formulation; see Theorem 3.6 for the precise statement.
6See Theorem 3.9 for a statement below.
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The main purpose is to fix the notation for the remainder of the section. For
a thorough treatment of Novikov homology, we recommend [4,19,22] and the
recently published [1]. For more details on the construction of the Novikov
ring, see for instance [6, Chapter 4].

Fix once and for all a closed smooth oriented and connected finite-
dimensional manifold M . For any Morse–Smale pair (α, g) one can define the
Novikov chain complex

(CN•(α, g), ∂•),

whose homology is called Novikov homology of (α, g)

HNi(α, g) := ker ∂i

/
im ∂i+1 , i ∈ N0 = {0, 1, 2, . . . } .

It is a standard fact that two Morse–Smale pairs with cohomologous Morse
forms induce isomorphic Novikov homologies, and thus, we shall write HN•(a)
with a = [α] to denote the Novikov homology of pairs (α, g).
Notation. Sometimes, we will also omit the g in the notation of the chain
complex. Moreover, Latin lowercase letters, e.g., a, b, will typically denote
cohomology classes, while the respective lowercase Greek letters are repre-
sentatives in the corresponding cohomology classes, e.g., α ∈ a, β ∈ b.

Let us quickly recall the relevant definitions. Each cohomology class a
determines a period homomorphism Φa : π1(M) → R defined by integrating
any representative α ∈ a over loops γ in M .7 Denote by ker(a) the kernel of
the period homomorphism Φa and let π : M̃a → M be the associated abelian
cover, i.e., a regular covering with Γa := Deck(M̃a) ∼= π1(M)

/
ker(a) . Then,

α pulls back to an exact form on M̃a, i.e., π∗α = df̃α for some f̃α ∈ C∞(M̃a).
Define

Vi(α) :=
⊕

x̃∈Criti(f̃α)

Z〈x̃〉, i ∈ N0,

where Criti(f̃α) denotes the critical points of f̃α with Morse index i. The ith
Novikov chain group CNi(α) can then be defined as the downward completion
of Vi(α) with respect to f̃α, which shall be denoted by

V̂i(α)f̃α
or more concisely V̂i(α)α. (1)

Explicitly, elements ξ ∈ CNi(α) are infinite sums with a finiteness condition
determined by f̃α:

ξ =
∑

x̃∈Criti(f̃α)

ξx̃ x̃ ∈ CNi(α) ⇐⇒ ∀c ∈ R : {x̃
∣∣ ξx̃ �= 0 ∈ Z, f̃α(x̃) > c} is finite.

The boundary operator is defined by counting Novikov–Morse trajectories of
f̃α

∂ : CNi(α) → CNi−1(α), ∂ξ :=
∑
x̃, ỹ

ξx̃ · #alg M(x̃, ỹ; f̃α) ỹ,

7Cohomologous one-forms induce the same period homomorphism by Stokes’ Theorem.
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where

M(x̃, ỹ; f̃α) = {γ̃ ∈ C∞(R, M̃)
∣∣ ˙̃γ + ∇g̃ f̃α(γ̃) = 0, γ̃(−∞) = x̃, γ̃(+∞) = ỹ}

is the usual moduli space with g̃ = π∗g the pullback metric. Denote
M(x̃, ỹ; f̃α) = M(x̃, ỹ; f̃α) /R . Similarly, we denote by M(x, y;α) and
M(x, y;α) the moduli spaces downstairs. The #alg indicates the algebraic
count, i.e., counting the Novikov–Morse trajectories with signs determined
by a choice of orientation of the underlying unstable manifolds.

The Novikov ring Λα associated with α ∈ a is defined as the upward
completion of the group ring Z[Γa] with respect to the period homomorphism
Φa, and therefore

λ =
∑

A∈Γa

λA A ∈ Λα ⇐⇒ ∀c ∈ R : {A
∣∣λA �= 0 ∈ Z, Φa(A) < c} is finite.

The Novikov ring Λα does not depend on the choice of representative α ∈ a,
and thus, we shall write Λa. Moreover, Λa acts on CN•(α) in the obvious
way. By fixing a preferred lift x̃j in each fiber of the finitely many zeros xj ∈
Z(α) :=

{
x ∈ M

∣∣α(x) = 0
}
, one can view CN•(α) as a finitely generated

Λa-module

CNi(α) ∼=
⊕

xj∈Z(α)

Λa〈x̃j〉 as Novikov ring modules. (2)

Another standard fact asserts that the boundary operator ∂ is Λa-linear, and
consequently, the Novikov homology HN•(a) carries a Λa-module structure.
The latter is implicitly using the fact that isomorphism of Novikov homologies
for cohomologous Morse forms, which is suppressed in the notation HN•(a),
is also Λa-linear.

Remark 2.1. If M is not orientable, one can still define a Novikov homology
by replacing Z with Z2 in all the definitions above.

2.2. Novikov homology with polytopes

We are now ready to refine the Novikov chain complex using polytopes—this
notion is key for the proofs of all incoming theorems.

Definition 2.2. Given a0, . . . , ak ∈ H1
dR(M), denote by

A = 〈a0, . . . , ak〉 ⊂ H1
dR(M)

the polytope spanned by the vertices {al}l=0,...,k, i.e., the set of all convex
combinations

a =
k∑

l=0

cl · al with cl ∈ [0, 1] and
k∑

l=0

cl = 1.

To any polytope A, we associate a regular cover

π : M̃A → M determined by Deck(M̃A) ∼= π1(M)
/

k⋂
l=0

ker(al) ,
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and we shall abbreviate

ΓA := Deck(M̃A).

Example 2.3. For the polytope A = 〈a〉, the covering M̃A agrees with the
abelian cover M̃a associated with a ∈ H1

dR(M). The same is true for any
polytope A, whose other vertices al satisfy ker(a) ⊆ ker(al).

The defining condition of M̃A ensures that each vertex al pulls back to
the trivial cohomology class, and so does every a ∈ A; see Lemma 2.7. We
write f̃α ∈ C∞(M̃A) to denote some primitive of π∗α for α a representative
of a ∈ A. Now, we fix a smooth section

θ : A −→ Ω1(M), a �→ θa

of the projection of closed one-forms to their cohomology class. In other
words, θa is a representative of a. This enables us to talk about a “preferred”
representative of each cohomology class in the polytope.

For every polytope a ∈ A, we define

Vi(θa,A) :=
⊕

x̃∈Criti(f̃θa)
Z〈x̃〉.

The subtle but crucial difference to Vi(θa) is that M̃A does not necessarily
coincide with the abelian cover M̃a.

Definition 2.4. Let A be a polytope with section θ : A → Ω1(M). Then, the
(polytope) Novikov chain complex groups

CNi(θa,A), i ∈ N0,

are defined as the intersections of the downward completions of Vi(θa,A) with
respect to any f̃β : M̃A → R for b ∈ A. In other words, with the notation of
(1)

CNi(θa,A) :=
⋂
b∈A

V̂i(θa,A)β .

Remark 2.5. Let β ∈ b be any representative. The choice of primitive f̃β of
π∗β is unique up to adding constants and hence does not affect the finiteness
condition. Additionally, two primitives f̃β and f̃β′ induce the same finiteness
condition for β, β′ ∈ b. Indeed, f̃β′ − f̃β = h ◦ π for some smooth h : M → R

with dh = β′ − β. Since M is compact, we get

f̃β(x̃) > c =⇒ f̃β′(x̃) > min
z

h(z) + c and f̃β′(x̃) > d =⇒ f̃β(x̃) > d − max
z

h(z)l

two finiteness conditions are equivalent. This justifies Definition 2.4.

Unpacking Definition 2.4, we see

ξ =
∑

x̃∈Criti(f̃θa)
ξx̃ x̃ ∈ CNi(θa,A) ⇐⇒ ∀b ∈ A,∀c ∈ R :

#{x̃
∣∣ ξx̃ �= 0, f̃β(x̃) > c} < +∞, (3)
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where it does not matter which primitives f̃β we use, cf. Remark 2.5. The
right-hand side describes a finiteness condition that has to hold for all b ∈ A,
and hence, we will refer to it as the multi finiteness condition.
Notation. In view of Remark 2.5, we shall write

CNi(θa,A) =
⋂
b∈A

V̂i(θa,A)b

from now on.
In a similar fashion, we can define yet another completion of Vi(θa,A)

by taking the completion with respect to less one-forms.

Definition 2.6. Let B ⊆ A be a subpolytope, i.e., the convex hull of a subset
of the vertices of A. Then, we define

CNi (θa,A|B) :=
⋂
b∈B

V̂i(θa,A)b

the restricted (polytope) Novikov chain complex groups of B ⊆ A.

By definition, we get the inclusion

CN•(θa,A) ⊆ CN• (θa,A|B) , for all subpolytopes B ⊆ A.

The next lemma asserts that CN•(θa,A) is uniquely determined by the ver-
tices of A. In other words, one only needs to check the multi-finiteness con-
dition for the finitely many vertices al. This is a straightforward adaptation
of [25, Lemma 7.3].

Lemma 2.7. Let θ : A → Ω1(M) be as above. Then

CNi(θa,A) =
⋂
b∈A

V̂i(θa,A)b =
k⋂

l=0

V̂i(θa,A)al
=

k⋂
l=0

CNi (θa,A|al
) , ∀a ∈ A.

More generally, for every subpolytope B ⊆ A spanned by bj = alj

CNi(θa,A|B) =
⋂
j

CNi

(
θa,A|bj

)
, ∀a ∈ A.

One can play a similar game with the Novikov rings:

Definition 2.8. Define the (polytope) Novikov ring

ΛA =
⋂
b∈A

Ẑ[ΓA]b,

where Ẑ[ΓA]b denotes the upward completion of the group ring Z[ΓA] with
respect to the period homomorphism Φb : ΓA → R. Analogously, for every
subpolytope B ⊆ A, we define the restricted polytope Novikov ring

ΛA|B =
⋂
b∈B

Ẑ[ΓA]b.
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As before, we get

ΛA ⊆ ΛA|B , for all subpolytopes B ⊆ A.

The obvious analogue to Lemma 2.7 holds for Novikov rings as well. These
rings enable us to view the polytope Novikov chain complexes as finite Novikov
modules just as in the ordinary setting (2).

Next, we try to equip the groups CN•(θa,A) with a boundary operators
that turns them into a genuine chain complex. The obvious candidate would
be

∂θa
: CN•(θa,A) → CN•−1(θa,A), ∂θa

ξ :=
∑
x̃,ỹ

ξx̃ · #alg M
(
x̃, ỹ; f̃θa

)
ỹ.

(4)

Note that the moduli space above actually also depends on a choice of metric
g, and so does the boundary operator ∂θa

. When we want to keep track of
the metric, we will write CN•(θa, g,A). For restrictions A|B, we define the
boundary operator analogously.

Formally, the definition of ∂θa
looks identical to the definition of ∂ on

CN•(α), and morally it is. However, there are two major differences. First, the
cover M̃A might differ from the abelian cover M̃a of a. Second, it is not clear
whether ∂ = ∂θa

preserves the multi finiteness condition, i.e., whether ∂ξ lies
in CN•(θa,A). Luckily, we will achieve this by replacing the original section
θ with a perturbed section ϑ : A → Ω1(M) (cf. Theorem 2.14). Whenever the
chain complex is defined, we make the following definition.

Definition 2.9. Let ϑ : A → Ω1(M) be a section, such that (CN•(ϑa, gϑa
,A), ∂)

defines a chain complex. Then, we call the induced homology (polytope)
Novikov homology and denote it by

HN•(ϑa, gϑa
,A) or more abusively HN•(ϑa,A).

Analogously, we define

HN• (ϑa, gϑa
,A|B) = HN• (ϑa,A|B) .

Remark 2.10. Analogously to ordinary Novikov homology, one can show that
the Novikov homologies HN•(ϑa,A) and HN• (ϑa,A|B) are both finitely gen-
erated modules over the Novikov rings ΛA and ΛA|B , respectively, thus gen-
eralizing the Novikov-module property. This follows from the fact that the
boundary operator (4) is ΛA-linear (and similarly for the restricted case).

2.3. Technical results for Sect. 2.4

In this subsection, we state and prove all the technical auxiliary results needed
for the proof of Theorem 2.14, which roughly speaking asserts the well-
definedness of the polytope chain complexes and their respective homologies
after modifying the section θ : A → Ω1(M) to a new section ϑ : A → Ω1(M).
Notation. For any (closed) one-form ρ, we will denote by ∇gρ the dual vector
field to ρ with respect to the metric g. Note that with this notation, we have
∇gH = ∇gdH for any smooth function H : M → R.
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Proposition 2.11. Let (ρ, g) be a Morse–Smale pair. Then, for every δ > 0,
there exists a constant Cρ = Cρ(δ, g) > 0, such that

‖∇gρ(z)‖ < Cρ =⇒ ∃x ∈ Z(ρ) with d(x, z) < δ,

where both ‖ · ‖ and d( · , · ) are induced by g.

Proof. Suppose the assertion does not hold. Then, there exists a δ > 0, a
positive sequence Ck → 0, and (zk) ⊂ M , such that

‖∇gρ(zk)‖ < Ck and zk ∈ M \
⋃

x∈Z(ρ)

Bδ(x).

By compactness of M , we can pass to a subsequence (zk) converging to
some z ∈ M . The above however implies ‖∇gρ(z)‖ = 0, which is equivalent
to z ∈ Z(ρ). At the same time, z lies in M \ ⋃

x∈Z(ρ) Bδ(x), which is a
contradiction. This concludes the proof. �

Notation. Such a constant Cρ > 0 is often referred to as a Palais–Smale
constant (short: PS-constant). The main case of interest is the exact one,
i.e., ρ = dH, for which we will abbreviate CdH = CH . Sometimes, we will
also abbreviate Cρ = C.

The next lemma builds the main technical tool of Sect. 2.4. The idea is
to perturb one-forms α close to a given reference Morse–Smale pair (ρ, g), so
that the pertubations, say α′, maintain their cohomology classes of α, become
Morse, have the same zeros as ρ, and are still relatively close to ρ. This is
reminiscent of Zhang’s arguments [25, Section 3].

Lemma 2.12. Let (ρ, g) be a Morse–Smale pair, δ > 0 so small that the balls
B2δ(x), with x ∈ Z(ρ), are geodesically convex8 and lie in pairwise disjoint
charts of M , and C = Cρ(δ, g) > 0 as in Proposition 2.11.

Let α ∈ Ω1(M) with

‖α − ρ‖ <
C

8
and a = [α],

where ‖ · ‖ is the norm induced by g. Then, there exists a Morse–Smale pair
(α′, g′), with α′ ∈ a, satisfying

• ‖α′ − ρ‖ ≤ 5 · ‖α − ρ‖,
• α′∣∣

Bδ(x)
= ρ

∣∣
Bδ(x)

for all x ∈ Z(ρ) and
• Z(α′) = Z(ρ).

Moreover, ‖∇g′
α′(z)‖′ < C

8 implies z ∈ Bδ(x)9 for some zero x ∈ Z(α′),
where ‖ · ‖′ is the norm induced by g′.

Proof. Since ρ is a Morse form, there are only finitely many zeros x ∈ Z(ρ).
Around each such x, we will perturb α without changing its cohomology

8This is a well-known result in Riemannian geometry; see [24].
9This is still the ball of radius δ with respect to the distance metric induced by g.
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class: enumerate the finitely many zeros of ρ by {xi}i=1,...,k and pick positive
bump functions hi : M → R≥0 with

⎧
⎪⎨
⎪⎩

hi ≡ 0, on M \ B2δ(xi)
hi ≡ 1, on Bδ(xi)
‖∇ghi‖ ≤ 2

δ .

Since every B2δ(xi) is simply connected, there exist unique smooth functions
fi : B2δ(xi) → R satisfying

fi(xi) = 0 and dfi = (α − ρ)
∣∣
B2δ(xi)

. (5)

We set

α′ = α −
k∑

i=1

d(hi · fi). (6)

By construction, we have α′ ∈ a, α′ = ρ on Bδ(x) for x ∈ Z(ρ), and that
α′ agrees with α outside of

⋃k
i=0 B2δ(xi). Consequently, α′ − ρ and α − ρ

agree outside of
⋃k

i=0 B2δ(xi). This means that for the inequality in the first
bullet point, it suffices to argue why the bound holds inside each ball B2δ(xi).
Inserting the definitions grants

‖α′ − ρ‖B2δ(xi) = ‖α − ρ − hi · dfi − fi · dhi‖B2δ(xi)

≤ (1 − hi)‖α − ρ‖B2δ(xi) + ‖fi‖B2δ(xi) · ‖∇ghi‖B2δ(xi)

≤ ‖α − ρ‖B2δ(xi) +
2
δ

· ‖fi‖B2δ(xi).

Recall that fi was chosen, such that fi(xi) = 0. Due to the geodesic convexity
of the balls B2δ(xi), we can apply the mean value inequality

|fi(y)| = |fi(xi) − fi(y)| ≤ ‖∇gfi‖B2δ(xi) · d(xi, y) ≤ ‖α − ρ‖B2δ(xi) · 2δ,

∀y ∈ B2δ(xi).

All in all, this implies

‖α′ − ρ‖B2δ(xi) ≤ ‖α − ρ‖B2δ(xi) +
4δ

δ
‖α − ρ‖B2δ(xi) = 5 · ‖α − ρ‖B2δ(xi).

This proves the first inequality in the first bullet point. From this, we will
deduce that Z(ρ) = Z(α′): the inclusion Z(ρ) ⊆ Z(α′) is clear as ρ agrees
with α′ around Z(ρ). The reverse inclusion is obtained by observing that for
y ∈ Z(α′), we have

‖∇gρ(y)‖ = ‖∇gρ(y) − ∇gα′(y)︸ ︷︷ ︸
=0

‖ ≤ ‖ρ − α′‖ ≤ 5 · ‖α − ρ‖ < C,

by assumption on ρ and the inequality above. Proposition 2.11 then implies
that z has to be a zero of ρ, as well. This proves Z(ρ) = Z(α′), in particular
that α′ is a Morse form.

To get a Riemannian metric g′ that turns (α′, g′) into a Morse–Smale
pair, it suffices to perturb g on an open set that intersects all the Novikov–
Morse trajectories of (α′, g); see [19, Page 38–40] for more details. Since
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Z(ρ) = Z(α′), we can take a perturbation g′ that agrees with g on M \⋃k
i=1 Bδ(xi) and is close to g in the C∞-topology.

The last assertion of the statement follows from the observation that,
for α′ fixed, the map g′ �→ ‖∇g′

α′‖′ is continuous, and thus, for g′ close to g,
we get

‖∇gα′(z)‖ ≤ |‖∇gα′(z)‖ − ‖∇g′
α′(z)‖′|︸ ︷︷ ︸

<ε

+‖∇g′
α′(z)‖′.

Assuming ‖∇g′
α′(z)‖′ < C

8 , we thus end up with

‖∇gρ(z)‖ ≤ ‖∇gρ(z) − ∇gα′(z)‖ + ‖∇gα′(z)‖

≤ ‖ρ − α′‖ + ε +
C

8
using the above inequality,

≤ 5 · ‖ρ − α‖ + ε +
C

8
by the first bullet point,

<
5 · C

8
+ ε +

C

8
by assumption.

Taking ε ≤ C
4 and invoking Proposition 2.11 then conclude the proof. �

Lemma 2.12 can be applied to a whole section θ : A → Ω1(M) nearby a
reference Morse–Smale pair (ρ, g) and give rise to a perturbed section ϑ : A →
Ω1(M) that is still relatively close to ρ, so that each ϑa agrees with ρ near
the zeros x ∈ Z(ρ).

Proposition 2.13. Let (ρ, g) and C = Cρ > 0 as in Lemma 2.12, denote N =⋃
i B2δ(xi) with xi ∈ Z(ρ), and let θ : A → Ω1(M) be a section satisfying

‖θa − ρ‖ <
C

8
. (7)

Then, there exists a section

ϑ = ϑ(θ, ρ, g) : A −→ Ω1(M)

and a positive constant D = D(N, g) > 0 with the following significance:10

• Z(ϑa) = Z(ρ) for all a ∈ A,
• ϑa

∣∣
Bδ(xi)

= ρ
∣∣
Bδ(xi)

for all xi ∈ Z(ρ), a ∈ A.

Moreover, for every ϑa, there exists a Riemannian metric gϑa
close to g with

gϑa

∣∣
M\N

= g
∣∣
M\N

, such that

• (ϑa, gϑa
) is Morse–Smale,

• ‖ϑb − ρ‖ϑa
≤ D · ‖ϑb − ρ‖ ≤ 5 · D · ‖θb − ρ‖ for all a, b ∈ A,

where ‖ · ‖ϑa
is the operator norm induced by gϑa

.

Proof. Since the whole section θ : A → Ω1(M) is C
8 -close to (ρ, g), we can

take (ρ, g) as a reference pair and apply Lemma 2.12 to every θa and denote
ϑa the corresponding perturbation. Recall from the proof of Lemma 2.12 that
ϑa is obtained by an exact perturbation of θa around the zeros of ρ—a closer
inspection reveals that this exact perturbation varies smoothly along θa, in

10The choice of D > 0 is independent of the assumption (7).
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particular that ϑ defines a smooth section. The first two bullet points follow
immediately from Lemma 2.12.

We choose gϑa
= g(θa)′ just as g′ in Lemma 2.12, i.e., by means of a small

perturbation of g inside N . The argument in [19] shows that sufficiently small
perturbations give rise to Riemannian metrics that are uniformly equivalent
to the original g; in other words, we may choose gϑa

, such that (ϑa, gϑa
) is

Morse–Smale and
1

D2
gϑa

(v, v) ≤ g(v, v) ≤ D2gϑa
(v, v), ∀v ∈ TM, ∀a ∈ A,

with D > 0 a constant that only depends on N and g. Using this inequality
and invoking, the first bullet point of Lemma 2.12 conclude the proof. �

2.4. Section perturbations

We can finally state and prove Theorem 2.14 by applying the previous results
in the special case of exact reference pairs:

Theorem 2.14. Let θ : A → Ω1(M) be a section and (H, g) a reference Morse–
Smale pair on M . Then, there exists a perturbed section

ϑ = ϑ(θ,H, g) : A −→ Ω1(M)

and a choice of Riemannian metrics gϑa
with the following significance:

• (Morse–Smale property) Each pair (ϑa, gϑa
) is Morse–Smale, for all

a ∈ A;
• (Chain complex) The chain complex (CN• (ϑa, gϑa

,A) , ∂ϑa
) is well

defined for every pair (ϑa, gϑa
) as above;

• (Ray invariance) The chain complexes are equal upon scaling, i.e.,
CN• (ϑa, gϑa

,A) = CN• (r · ϑa, gϑa
, r · A) for all r > 0, a ∈ A.11

The rough idea is to “shift-and-scale”: we shift and scale the polytope
A, so that it is sufficiently close to a given exact one-form dH in the operator
norm ‖ · ‖ coming from g. Then, one can perturb the scaled section by means
of Proposition 2.13 and scale back. This will be the desired section ϑ on A.
By construction, we will then see that the three bullet points are satisfied.
The choices involved (i.e., choice of section θ, reference pair (H, g), and per-
turbation coming from Theorem 2.14) will prove harmless—they result in
chain homotopy equivalent complexes. This is proven in the next subsection
(cf. Theorem 2.19).

At the cost of imposing a smallness condition on the underlying section,
we get the same results for perturbations associated with non-exact reference
pairs (cf. Corollary 2.17) and the same independence of auxiliary data holds
(cf. Theorem 2.22).

Proof of Theorem 2.14. As a first candidate for ϑ, we pick

ϑ : A −→ Ω1(M), ϑa := θa + dH.

11Note that here the metric is not scaled.
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This is still a section, but does not satisfy the bullet points above. Since θ is
smooth, there exists

ε = ε(θ,H, g, δ) > 0,

such that

ε · θa + dH is
CH

D · 1000
-close to dH,

with respect to ‖ · ‖ induced by g, CH = CH(δ, g) > 0 and D = D(N, g) > 0
chosen as in Proposition 2.13. Now, we can apply Proposition 2.13 to the
section ε · a �→ ε · θa + dH and obtain a new section12

ϑε : ε · A −→ Ω1(M).12.

Finally, we scale back and redefine

ϑ = ϑ(θ,H, g, ε) : A −→ Ω1(M), a �→ 1
ε

· ϑε(ε · a).

Thus, we have

ε · ϑa = ϑε(ε · a), ∀a ∈ A.

For each ϑε(ε·a), we choose a Riemannian metric denoted by ga as in Proposi-
tion 2.13. Thus, (ϑε(ε ·a), ga) is Morse–Smale, and so is (ϑa, ga), since scaling
does not affect the Morse–Smale property. This proves the first bullet point.

Claim. CN• (ϑε(ε · a), ε · A) = CN•(ε · ϑa, ε · A) is a well-defined chain com-
plex for any a ∈ A.

Indeed, assume for contradiction that there exists a Novikov chain ξ =∑
x̃ ξx̃ x̃ ∈ CN• (ϑε(ε · a), ε · A), such that

∂ξ /∈ CN•−1 (ϑε(ε · a), ε · A) .

This means that there are some ε · b ∈ ε · A, c ∈ R and sequences x̃n with
ξx̃n

�= 0, ỹn pairwise distinct, γ̃n ∈ M
(
x̃n, ỹn; f̃ε·ϑa

)
, and

f̃ϑε(ε·b)(ỹn) = f̃ε·ϑb
(ỹn) ≥ c;

see Remark 2.5. Denote by γn = π◦ γ̃n the Novikov–Morse trajectories down-
stairs. The energy expression can then be massaged as follows:

0 ≤ E(γ̃n) = E(γn) = −
∫

γn

ϑε(ε · a)

= −
∫

γn

ϑε(ε · b) +
∫

γn

ϑε(ε · b) − ϑε(ε · a)

= f̃ϑε(ε·b)(x̃n) − f̃ϑε(ε·b)(ỹn) +
∫

γn

ϑε(ε · b) − ϑε(ε · a)

12Explicitly, this section is of the form

ε · a �→ ε · θa + dH −
∑

i

d(fi · hi),

where fi depends smoothly on θa and satisfies dfi = ε ·θa, fi(xi) = 0 around critical points
xi of H, see Lemma 2.12, (5) and (6) applied to ε · θa + dH and ρ = dH.
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≤ f̃ϑε(ε·b)(x̃n) − c +
∫

γn

ϑε(ε · b) − ϑε(ε · a).

Showing that the rightmost term is bounded by m ·E(γn), m ∈ (0, 1) suffices
to obtain a contradiction: admitting such a bound leads to

0 ≤ E(γn) ≤ (1 − m)−1 ·
(
f̃ϑε(ε·b)(x̃n) − c

)
.

In particular, c ≤ f̃ϑε(ε·b)(x̃n) for all n. However, ξ belongs to CN• (ε · ϑa, ε · A)
and ξx̃n

�= 0, and thus, the multi-finiteness condition implies that there are
only finitely many distinct x̃n. Up to passing to a subsequence, we can there-
fore assume x̃n = x̃ and also ỹn ∈ π−1(y).13 The corresponding Novikov–
Morse trajectories

γn ∈ M (x, y;ϑε(ε · a))

have uniformly bounded energy

E(γn) ≤ (1 − m)−1 ·
(
f̃ϑε(ε·b)(x̃) − c

)
;

therefore, γn has a C∞
loc-convergent subsequence. At the same time

M (x, y;ϑε(ε · a)) is a 0-dimensional manifold, which means that the con-
vergent subsequence γn eventually does not depend on n. This contradicts
our assumption that the endpoints ỹn upstairs are pairwise disjoint.

Therefore, we are only left to show the bound

A(γn) :=
∫

γn

ϑε(ε · b) − ϑε(ε · a) ≤ 1
2
E(γn)

to conclude the Claim. For this purpose, we define

Sn :=
{

s ∈ R
∣∣ ‖∇ga (ϑε(ε · a)) (γn(s))‖ga

≥ CH

8

}
.

The crucial observation is that both ϑε(ε · b) and ϑε(ε · a) agree with dH
around Crit(H), by choice of ϑε via Proposition 2.13. In particular

ϑε(ε · b) − ϑε(ε · a)
∣∣
Bδ(z)

= 0, ∀z ∈ Crit(H) = Z(ϑε(ε · b)) = Z(ϑε(ε · a)).

Lemma 2.12 says that for s ∈ R \ Sn, we get

γn(s) ∈
⋃

z∈Z(ϑε(ε·a))

Bδ(z);

consequently ∫

R\Sn

(ϑε(ε · b) − ϑε(ε · a)) γ̇n(s) ds = 0. (8)

The Lebesgue measure μ(Sn) can be bounded using the energy

E(γn) = −
∫

γn

ϑε(ε · a) =
∫

R

‖∇ga (ϑε(ε · a)) (γn(s))‖2
ga

ds ≥ μ(Sn) ·
(

CH

8

)2

;

13The latter is possible, since Z(ε · ϑa) = Z(ε · dH) = Crit(H) is finite.
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thus

μ(Sn) ≤
(

8
CH

)2

· E(γn). (9)

And finally

|A(γn)| ≤ ‖ϑε(ε · b) − ϑε(ε · a)‖ga
·
∫

Sn

‖γ̇n(s)‖ga
ds by (8),

≤ (‖ϑε(ε · b) − dH‖ga

+ ‖dH − ϑε(ε · a)‖ga

) · μ(Sn)
1
2 · E(γn)

1
2

≤ 5D · (‖ε · ϑb − dH‖
+ ‖dH − ε · ϑa‖) · 8

CH
· E(γn) Proposition 2.13, (9),

≤ 80 · D · CH

D · 1000 · CH
· E(γn) by choice of scaling ε > 0,

<
1
10

E(γn).

This proves the Claim.
Now, we observe that scaling ϑa by r > 0 does not affect the zeros

and that the moduli spaces associated with (ϑa, ga) are in one-to-one corre-
spondence with those of (r · ϑa, ga). It is also clear that the multi- finiteness
condition imposed by A is equivalent to that of r · A. All in all, this means
that for any r > 0, the polytope chain complexes associated with (r · ϑa, ga)
agree with each other. This proves the ray invariance. Setting r = 1

ε and
using the Claim prove the remaining first bullet point. �

Remark 2.15. Instead of running the argument for the sections ϑε : ε · A →
Ω1(M), we could also work with ϑ = 1

ε · ϑε : A → Ω1(M) by directly by
applying Proposition 2.13 to the section

a �→ θa + d
(
ε−1H

)

and (ε−1H, g). These two approaches are equivalent; the only difference is
psychological: we find it more natural to visualize the shrinking of the poly-
tope opposed to the scaling of Morse functions. Note that the analogous
bound at the end of the proof of Theorem 2.14 holds upon replacing H by
ε−1H. This follows from the nice scaling behavior of the PS constants:

Cε−1H(δ, g) = ε−1CH(δ, g);

therefore, “ε · θa + dH is CH

D·1000 -close to dH” if and only if “θa + d(ε−1H) is
Cε−1H

D·1000 = CH

ε·D·1000 -close to d(ε−1H)”.

Remark 2.16. The skeptical reader might wonder whether ∂2
ϑa

= 0 really
holds. Viewing the chain group CN•(ϑa,A) as a certain twisted chain group
allows for a quick and simple proof—see Remark 2.35.

The key in the proof of Theorem 2.14 was to obtain control over the
energy by perturbing the section θ : A → Ω1(M) via Proposition 2.13. The
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perturbation was chosen, so that there would be no contribution to the en-
ergy near the zeros. Similar ideas to control the energy can be found in [2,
Subsection 3.6.2], [25].

The question remains why we used an (exact) reference pair (H, g) in-
stead of a more general Morse–Smale pair (ρ, g) in Theorem 2.14. The answer
is simple: the given argument already breaks down in the very first line—the
corresponding ϑ is not a section anymore, since the ρ-shift changes the co-
homology class. However, whenever the section θ : A → Ω1(M) is already
sufficiently close to (ρ, g) in terms of the corresponding PS-constant Cρ > 0,
we do not need to shift and scale θ, and can perturb θ directly:

Corollary 2.17. Let (ρ, g) be a Morse–Smale pair, C = Cρ > 0, N =
⋃

i B2δ(xi)
with xi ∈ Z(ρ), and D = d(N, δ) > 0 as in Proposition 2.13. Let θ : A →
Ω1(M) be a smooth section, such that

‖θa − ρ‖ <
Cρ

D · 1000
,

with ‖ · ‖ the operator norm induced by g. Then, there exists a perturbed
section

ϑ = ϑ(θ, ρ, g) : A −→ Ω1(M), (10)

and gϑa
, such that the same conclusions as in Theorem 2.14 hold.

Proof. Upon replacing ε · θa + dH and dH with θa and ρ, the proof is word
for word the same as the one of Theorem 2.14. �

2.5. Independence of the data

The section ϑ = ϑ(θ,H, g) constructed in Theorem 2.14 does not only depend
on (θ,H, g), but also comes with a choice of scaling ε(θ,H, g, δ) > 0. We
shall prove that any valid perturbation ϑi = ϑi(θi,Hi, gi, εi) in the sense of
Theorem 2.14 gives rise to chain homotopy equivalent chain complexes. The
same is true for perturbations coming from Corollary 2.17, and at the end of
the subsection, we will show that both perturbations lead to chain homotopy
equivalent Novikov complexes.

Remark 2.18. All the chain maps and chain homotopy equivalences con-
structed from here on are Novikov-module morphisms, i.e., linear over the
Novikov ring. We will not explicitly state this every time for better readabil-
ity.

Theorem 2.19. For i = 0, 1, let θi : A → Ω1(M) be sections, (Hi, gi) Morse–
Smale pairs and δi > 0, εi(θi,Hi, gi, δi) > 0 as in proof of Theorem 2.14.

Then any two perturbed sections

ϑi = ϑi(θi,Hi, gi, εi) : A → Ω1(M), (11)

in the sense of Theorem 2.14, induce chain homotopy equivalent polytope
complexes

CN•(ϑ0
a,A) � CN•(ϑ1

a,A), ∀a ∈ A. (12)
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Proof of Theorem 2.19. We may assume ε1 ≥ ε0. Denote by

ϑi(σi,Hi, gi, εi), i = 0, 1,

the respective sections on A as in the first part of the proof of Theorem 2.14.
Let

h : R → R≥0 (13)

be a positive smooth function with h ≡ 0 on (−∞, e) and h ≡ 1 on (1 −
e,+∞), for some small e > 0, and set

ϑs = (1 − h(s)) · ϑ0 + h(s) · ϑ1.

Fix a ∈ A and pick gi := gϑi
a
, i = 0, 1 two metrics as in Theorem 2.14. Let

gs = gs(a) be a homotopy of Riemannian metrics connecting g0 to g1 and
assume that (ϑs

a, gs) is regular—this is rectified by Remark 2.20. Note that
here gs actually depends on a.

To this regular homotopy, we can now associate a chain continuation

Ψ10 : CN•(ϑ
0
a, A) −→ CN•(ϑ

1
a, A), ξ =

∑
x̃

ξx̃ x̃ 	→
∑
x̃,ỹ

ξx̃ · #alg M
(
x̃, ỹ; f̃ϑs

a

)
ỹ.

(14)

Analogously to the case of the boundary operator in Theorem 2.14, proving
that Ψ10 defines a well-defined Novikov chain map essentially boils down to
proving that it respects the multi-finiteness condition—the rest follows by
standard Novikov–Morse techniques. Thus, proceeding as in Theorem 2.14
reveals that it suffices14 to bound∫

γn

ϑs
b − ϑs

a (15)

by either a multiple m ∈ (0, 1) of the energy E(γn), where b is some coho-
mology class in A, or a uniform bound15 altogether. Set

S0
n :=

{
s ∈ (−∞, 0)

∣∣ ‖∇g0ϑ0
a(γn(s))‖g0 ≥ CH

ε0 · 8

}
,

S1
n :=

{
s ∈ (1,+∞)

∣∣ ‖∇g1ϑ1
a(γn(s))‖g1 ≥ CH

ε1 · 8

}
.

This time around we need to divide by εi as we are running the continuation
directly on the original polytope A instead of the scaled polytope (see Remark
2.15). As in the previous proof of Theorem 2.14, the s ∈ R≤0 \ S0

n and

14This is also implicitly using that f̃ϑs
b

= f̃ϑ0
b

+ hs ◦ π for a smooth family hs ∈ C∞(M),

since ϑs
b are cohomologous for all s. Hence

−
∫

γn

ϑs
b = −f̃ϑ1

b
(ỹn) + f̃ϑ0

b
(x̃n) +

∫

[0,1]

∂hs

∂s
(γn(s)) ds

︸ ︷︷ ︸
≤C

,

for some uniform constant C.
15Uniform in b and n ∈ N, that is.
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s ∈ R≥1 \ S1
n do not contribute to (15) as γn(s) will be near the zeros of Hi,

where ϑi
b = ϑi

a. On the other hand, using similar arguments, we obtain
∣∣∣∣
∫

S0
n∪S1

n

(ϑs
b − ϑs

a) γ̇n(s) ds

∣∣∣∣ ≤ 2 · max
i=0,1

‖ϑi
b − ϑi

a‖i · μ(Si
n)

1
2 · E(γn)

1
2

≤ 2 · max
i=0,1

(
‖ϑi

b − dHi‖i + ‖dHi − ϑi
a‖i

)
· εi · 8

CH
· E(γn)

≤ max
i=0,1

4 · 5 · D · εi · 8 · CH

D · εi · 1000 · CH
· E(γn)

≤ 1

5
· E(γn),

where we have used Proposition 2.13 as in Theorem 2.14. We are left to bound
(15) for s ∈ [0, 1]. For this, we compute via Cauchy–Schwarz

∣∣∣∣
∫

[0,1]

(ϑs
b − ϑs

a) γ̇n(s) ds

∣∣∣∣ ≤ max
s∈[0,1]

‖ϑs
b − ϑs

a‖s · E(γn)
1
2 .

By compactness of [0, 1], A and continuity of ϑ : [0, 1]×A → Ω1(M), we may
bound

max
s∈[0,1]

‖ϑs
b − ϑs

a‖s ≤ F,

where F > 0 is a uniform constant in s ∈ [0, 1] and b ∈ A—recall that gs

depends on a, but that does not matter. In particular, this proves
∣∣∣∣
∫

γn

ϑs
b − ϑs

a

∣∣∣∣ ≤ F · E(γn)
1
2 +

1
5

· E(γn), ∀n ∈ N, b ∈ A.

A case distinction now does the job: for any n ∈ N, we either have 1
5E(γn) ≥

F ·E(γn)
1
2 or 1

5E(γn) < F ·E(γn)
1
2 . In the first case, we can bound the norm

of (15) by 2
5 · E(γn), whereas in the second case, we get 1

5 · E(γn)
1
2 < F , and

thus, we may bound the norm of (15) by 10F 2. This proves
∣∣∣∣
∫

γn

ϑs
b − ϑs

a

∣∣∣∣ ≤ max
{

10F 2,
2
5
E(γn)

}
.

As explained before, this suffices to conclude that Ψ10 defines a well-defined
Novikov chain map, which defines the desired chain homotopy equivalence
(see proof of Theorem 2.14 for more details). This concludes the proof. �

Remark 2.20. The (linear) homotopy (ϑs
a, gs) chosen in the proof of Theorem

2.19 might be non-regular. One can replace (ϑs
a, gs) with an arbitrarily close

regular homotopy ((ϑs
a)′, g′

s) connecting the same data. The only bit where
this affects the previous argument in Theorem 2.19 is when trying to bound
maxs∈[0,1] ‖ϑs

b − (ϑs
a)′‖′

s. Using that ϑs
a is smooth in s and close to (ϑs

a)′, we
still get the desired uniform bound b.

As a consequence of Theorems 2.14 and 2.19, we obtain the analogue
results for restrictions to subpolytopes B ⊆ A:
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Corollary 2.21. Let θ : A → Ω1(M) be a section. Then, for every perturbed
section ϑ : A → Ω1(M) coming from Theorem 2.14 and subpolytope B ⊆ A,
we obtain a well- defined polytope chain complex

(CN• (ϑa,A|B) , ∂ϑa
) , ∀a ∈ A, (16)

satisfying all the bullet points of Theorem 2.14. Any other choice ϑ′ = ϑ′

(θ′,H ′, g′) does not affect the chain complexes up to chain homotopy equiva-
lence.

Moreover, the inclusion

ιB : CN•(ϑa,A) −→ CN• (ϑa,A|B) (17)

defines a Novikov-linear chain map for all a ∈ A.

Proof. The proof of the first part is literally the same as in Theorems 2.14
and 2.19. To see that the inclusion defines a chain map, it suffices to observe
that both boundary operators in (17) are identical upon restricting to the
smaller complex CN•(ϑa,A). �

In the preceding subsection, we also defined a polytope chain complex
variant using perturbed sections with respect to non-exact reference pairs (cf.
Corollary 2.17). While this variant requires the underlying section to satisfy
some a priori smallness conditions, it does agree with the polytope chain
complex variant of Theorem 2.14.

Theorem 2.22. Let (ρ, g) and θ : A → Ω1(M) be as in Corollary 2.17, and
denote by ϑρ = ϑ(θ, ρ, g) the corresponding perturbed section. Let ϑH =
ϑ(θ,H, gH , ε) be any perturbed section as in Theorem 2.14. Then,

CN•(ϑρ
a,A) � CN•(ϑH

a ,A), ∀a ∈ A. (18)

Let θi : A → Ω1(M) be any other two sections i = 0, 1 with reference pairs
(ρi, gi) satisfying the conditions of Corollary 2.17. Then, for any two choices
ϑρi = ϑ(θi, ρi, gi), one has

CN•(ϑρ0
a ,A) � CN•(ϑρ1

a ,A), ∀a ∈ A. (19)

Moreover, both (18) and (19) continue to hold in the restricted case B ⊆ A.

Proof. The proof idea is again arguing via continuations as in Theorem 2.19
above—we will use the latter as carbon copy and adapt the same notation.
Define

ϑs = (1 − h(s)) · ϑρ + h(s) · ϑH .

By the same logic as in Theorem 2.19, it suffices to control the expression∫

γ

ϑs
b − ϑs

a, (20)

for all b ∈ A, to get the desired continuation chain map to conclude (18). For
this purpose, we define

Sρ :=
{

s ∈ (−∞, 0)
∣∣ ‖∇g0ϑρ

a(γ(s))‖g0 ≥ Cρ

8

}
,
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SH :=
{

s ∈ (1,+∞)
∣∣ ‖∇g1ϑHa(γ(s))‖g1 ≥ CH

ε · 8

}
.

Here, g0 and g1 (abusively) denote Riemannian metrics gϑρ
a

and gϑH
a

coming
from Proposition 2.13.

Observe that by assumption and choice of (ϑρ
a, g0), we have

‖ϑρ
b − ρ‖g0 ≤ 5 · D0 · ‖θb − ρ‖g ≤ 5 · D0 · Cρ

D0 · 1000
;

see proof of Corollary 2.17 and Proposition 2.13.
Just as in the proof of Theorem 2.19, there is no contribution to (20)

for s in the complement of [0, 1] ∪ Sρ ∪ SH . At the same time, we can again
bound ∣∣∣∣

∫

Sα

(ϑs
b − ϑs

a) γ̇(s) ds

∣∣∣∣ <
1
10

· E(γ),

and ∣∣∣∣
∫

[0,1]

(ϑs
b − ϑs

a) γ̇(s) ds

∣∣∣∣ ≤ F · E(γ)
1
2 .

This suffices to obtain the desired control over (20) and proves (18); see proof
of Theorem 2.19 for more details. Last but not least, (19) follows by applying
(18) twice:

CN•(ϑρ0
a ,A) � CN•(ϑH

a ,A) � CN•(ϑρ1
a ,A), ∀a ∈ A.

�

Theorems 2.19 and 2.22 readily imply:

Corollary 2.23. Let θi : A → Ω1(M) with i = 0, 1 be two sections and ϑi

associated perturbations as in Theorem 2.14 (or Corollary 2.17). Then, the
resulting polytope Novikov homologies are isomorphic

HN•(ϑ0
a,A) ∼= HN•(ϑ1

a,A), ∀a ∈ A.

Corollary 2.23 is the analogue to the independence of Morse–Smale pairs
(α, g) in the case of ordinary Novikov homology. The latter can also be recov-
ered from the former by taking the trivial polytope A = 〈a〉. Nevertheless,
keeping track of the section θ, or rather its perturbations, will prove useful,
especially when establishing the commutative diagram in the Main Theorem
2.24.

2.6. Non-exact deformations and proof of the main theorem

The power of the polytope machinery will become evident in this subsection—
roughly speaking, the notion of polytopes allows us to compare the Novikov
homologies coming from two different cohomology classes, see Main Theorem
2.24. In Sect. 3, we present some applications of the Main Theorem 2.24.

Theorem 2.24. (Main Theorem) Let A ⊂ H1
dR(M) be a polytope and θ : A →

Ω1(M) a section. Then, there exists a perturbation ϑ : A → Ω1(M) of θ, such
that for every subpolytope B ⊆ A and any two cohomology classes a, b ∈ A,
there exists a commutative diagram
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CN•(ϑa,A) CN•(ϑb,A)

CN• (ϑa,A|B) CN• (ϑb,A|B) ,

ιB

	

ιB

	

where the horizontal maps are Novikov-linear chain homotopy equiva-
lences. In particular

HN•(ϑa,A) HN•(ϑb,A)

HN• (ϑa,A|B) HN• (ϑb,A|B) .

∼=

∼=

with all the maps being Novikov linear.

Proof. Most of the ideas have already been established in the previous sub-
section, especially in the proof of Theorems 2.14 and 2.19. Fix a reference
Morse–Smale pair (H, g) and pick a perturbation ϑ = ϑ(θ,H, g, ε) as in The-
orem 2.14. Let h : [0, 1] → R be a smooth function as in (13) and define a
homotopy

ϑs
ab := (1 − h(s)) · ϑa + h(s) · ϑb, ∀s ∈ R.

Pick gs a smooth homotopy connecting the two metrics gϑa
and gϑb

and
assume that (ϑs

ab, gs) is regular (see Remark 2.20). The idea now is to show
that the chain continuation map

Ψba : CN•(ϑa, gϑa
,A) −→ CN•(ϑb, gϑb

,A)

associated with the regular homotopy (ϑs
ab, gs) is well defined and makes the

desired diagram commute. The argument that Ψba is a well-defined Novikov
chain map is the same as in Theorem 2.19 and follows by controlling terms
of the form: ∫

γ

ϑc − ϑs
ab, with c ∈ A.

Note that this time around we do not need to put an s-dependence on ϑc

(this corresponds to ϑb in the proof of Theorem 2.19), since the endpoints of
ϑs

ab have the same zeros as ϑc, namely Z(ϑc) = Crit(H). The s-dependence
on ϑc is the only bit that used the cohomologous assumption in Theorem
2.19, and indeed, the remaining part of the proof is verbatim the same and
is thus omitted.

We use the very same homotopy to define a chain continuation

Ψba|B : CN• (ϑa,A|B) −→ CN• (ϑb,A|B) .

From this, we obtain the following commutative diagram on the chain level:

CN•(ϑa,A) CN•(ϑb,A)

CN• (ϑa,A|B) CN• (ϑb,A|B) .

ιB

Ψba

ιB

Ψba|B
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Here, the ιB denote the inclusions (17), which are chain maps (cf. Corollary
2.21). By symmetry and the standard argument, we get continuations Ψab and
Ψab|B in the opposite direction by reversing the underlying regular homotopy.
It is also easy to see that continuation maps are linear over the underlying
Novikov ring. This proves that the two horizontal chain maps above define the
desired chain homotopy equivalences. In particular, the chain diagram above
induces the desired diagram in homology and thus concludes the proof. �
Remark 2.25. In light of Theorems 2.19, 2.22 and Corollary 2.23, one can
upgrade Theorem 2.24 and use different sections on the left and on the right
of the the diagram, that is

CN•(ϑ0
a,A) CN•(ϑ1

b ,A)

CN•
(
ϑ0

a,A|B
)

CN•
(
ϑ1

b ,A|B
)
.

ιB

	

ιB

	

The upper and lower chain homotopy equivalences, however, do come from
compositions of chain continuations rather than genuine chain continuations.

2.7. Twisted Novikov complex

Throughout this subsection, we shall assume that θ : A → Ω1(M) has already
been perturbed as in Theorem 2.14.16 We present an alternative description
of CN•(θa,A) by means of local coefficients. For an extensive treatment of
local coefficients, we recommend [23] and [1, Chapter 2] in the case of Morse
homology.

Definition 2.26. Let G ⊆ R be an additive subgroup. Then, define

Nov(G;Z) := Nov(G)

as the ring17 consisting of formal sums
∑

g∈G ngt
g with ng ∈ Z, satisfying

the finiteness condition

∀c ∈ R :
{
g
∣∣ng �= 0, g < c

}
is finite.

Whenever G is the image of a period homomorphism Φa : π1(M) → R,
we write

Nov(a) := Nov(G), G = im(Φa).

It turns out that Nov(a) is isomorphic to Λa, where the isomorphism is given
by sending a deck transformation A ∈ Γa to tΦa(A)—both finiteness condi-
tions match and we obtain:

Proposition 2.27. For any cohomology class a ∈ H1
dR(M), we have

Λa
∼= Nov(a),

as rings.

16Strictly speaking, we could also use perturbations coming from Corollary 2.17 at the
expanse of working with small sections. For the sake of exposition, we refrain from stating
this explicitly.
17The addition and multiplication of Nov(G) are the obvious ones: ng tg + mg tg = (ng +

mg) tg and (ng tg) · (nh th) := ng · nh tg+h.
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In view of Proposition 2.27, we will also refer to Nov(a) as Novikov ring
of a. Inspired by the definition of Nov(a), we will now define yet another ring
Nov(A), which will be isomorphic to ΛA almost by definition.

Definition 2.28. Let A := 〈a0, . . . , ak〉 be a polytope. Define

Nov(A;Z) := Nov(A),

as the ring consisting of elements
∑

A∈ΓA

nA t
Φa0 (A)
0 · · · t

Φak
(A)

k , nA ∈ Z, (21)

with a multi-finiteness condition

∀l = 0, . . . , k, ∀c ∈ R :
{
A
∣∣nA �= 0, Φal

(A) < c
}

is finite.

Similarly, for any subpolytope B ⊆ A, we define a (potentially) larger
group

Nov (A|B) ⊇ Nov(A)

consisting of the same formal sums (21), but with a (potentially) less-restrictive
multi- finiteness condition

For all l such that al ∈ B and c ∈ R :
{
A
∣∣nA �= 0, Φal

(A) < c
}

is finite.

Analogously to Proposition 2.27, we have:18

Proposition 2.29. For any polytope A, we have

ΛA ∼= Nov(A)

as rings. Similarly, we obtain

ΛA|B ∼= Nov(A|B),

as well.

Let us mention that these Novikov rings are commutative rings, since
ΓA is abelian. Indeed, the commutator subgroup of π1(M) is contained in
every kernel ker(al); in particular

ABA−1B−1 ∈
k⋂

l=0

ker(al), thus ABA−1B−1 = 0 ∈ ΓA.

Each polytope A comes with a representation

ρA : π1(M,x0) × Nov(A) → Nov(A), ρA(η, λ) = t
−Φa0 (η)
0 · · · t

−Φak
(η)

k · λ.

Sometimes, we will write out Φal
(η) =

∫
η
al. The importance of the minus

sign will become clear in Definition 2.31. To any such representation, one can
associate a local coefficient system

Nov(A) : Π1(M) → modNov(A),

18Note that A = B in ΓA if and only if Φal (A) = Φal (B) for all l = 0, . . . , k.
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which is unique up to isomorphisms of local coefficients. We briefly recall the
construction:19 fix a basepoint x0 ∈ M and pick for every x ∈ M a homotopy
class of paths {ηx} relative to the endpoints x0 and x. Set

Nov(A)(x) := Nov(A), ∀x ∈ M.

For every homotopy class {γ} relative to the endpoints x and y, we first define
a loop

γ := ηx ∗ γ ∗ η−1
y : S1 → M,

based at x0, and then define20

Nov(A)(γ) : Nov(A)(y) −→ Nov(A)(x),Nov(A)(γ)( · ) := ρA
(
γ, · ) .20(22)

Taking a closer look at (22) reveals that the Novikov ring isomorphism
Nov(A)(γ) is given by multiplication with

t
− ∫

γ
a0

0 · · · t
− ∫

γ
ak

k ∈ Z[ΓA] ⊆ Nov(A);

hence, we may also view it as a Z[ΓA]-module isomorphism.

Remark 2.30. Usually, local coefficients are considered to take values in the
category of abelian groups and are often called “bundle of abelian groups”.
Mapping into modNov(A) will allow us to obtain actual Novikov-module iso-
morphisms at times where working with bundle of abelian groups would
merely grant group isomorphisms.

With this, we define the anticipated twisted Novikov complexes.

Definition 2.31. Let θ : A → Ω1(M) be a section as above. We define the
twisted Novikov chain complex groups by

CN• (θa,Nov(A)) :=
⊕

x∈Z(θa)

Nov(A) 〈x〉, ∀a ∈ A.

The twisted boundary operator ∂ = ∂θa
is defined by

∂(λx) :=
∑

y, γ∈M(x,y;θa)

Nov(A)(γ−1)(λ) y

=
∑

y, γ∈M(x,y;θa)

t

∫
γ

a0

0 · · · t

∫
γ

ak

k · λ y, ∀λ ∈ Nov(A).

The twisted chain complexes(
CN• (θa,Nov (A|B)) , ∂θa

)
, ∀a ∈ A

are defined analogously. The corresponding twisted Novikov homologies are
denoted by

HN• (θa,Nov(A)) and HN• (θa,Nov (A|B)) , ∀a ∈ A, B ⊆ A.

19This stems from the construction of a category equivalence between the fundamental
groupoid and the fundamental group of a sufficiently nice topological space. This procedure
allows to switch back and forth between local coefficients and representations, see [10, Page

17], [1, Chapter 2] and [3] for more details.
20Note that Γ(γ ∗ η) = Γ(γ) ◦ Γ(η).
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For every flow line γ ∈ M(x, y; θa), we call

Nov(A)(γ−1) = t

∫
γ

a0

0 · · · t
∫
γ

ak

k

the Novikov twist of γ.

Remark 2.32. A priori it is not clear that ∂ maps into the prescribed chain
complex. We will prove this in the next subsection; see Proposition 2.34.

The Novikov twist of γ determines the lifting behavior of γ. Indeed, if
γ0, γ1 are two paths from x to y with unique lifts γ̃1(0) = γ̃0(0) = x̃, then

γ̃0(1) = γ̃1(1) ⇐⇒
∫

γ0∗γ−1
1

al = 0, ∀l = 0, . . . , k

⇐⇒
∫

γ0

al =
∫

γ1

al, ∀l = 0, . . . , k

⇐⇒
∫

γ0

al =
∫

γ1

al, ∀l = 0, . . . , k

⇐⇒ t

∫
γ0

a0

0 · · · t

∫
γ0

ak

k = t

∫
γ1

a0

0 · · · t

∫
γ1

ak

k .

This will be key in the next subsection.
As the next examples show, we recover the twisted Morse chain complex

and its homology as a special case.

Example 2.33. Pick A = 〈0, a〉 and a section θ : A → Ω1(M). Then

Nov(A|a) ∼= Nov(a) ∼= Λa,

thanks to Proposition 2.27 and Example 2.3. Furthermore, the twisted chain
complex

CN• (θ0,Nov(A|a)) = CN• (θ0,Nov(a))

agrees with the twisted Morse complex

CM• (h,Nov(a)) , where θ0 = dh.

2.8. Comparing twisted and polytope complexes

In general, the same issues as in Sect. 2.2 arises when trying to prove that the
twisted Novikov complexes are well defined: it is not clear whether ∂ maps
into the desired chain complex. This is a non-issue in the special case of
θ0 = dh, i.e., twisted Morse homology—the reason is that the 0-dimensional
moduli spaces M(x, y;h) are compact, hence finite. Compare this to [20]. In
the following however, we will see that the twisted chain groups can always
be identified with CN•(θa,A), so that ∂ and ∂ agree, which then resolves the
well-definedness issue by Theorem 2.14. In other words, the twisted chain
complex is an equivalent description of the polytope chain complex.

Proposition 2.34. Let θ : A → Ω1(M) be a section as above. Then, the twisted
and polytope Novikov chain groups are isomorphic

CN• (θa,Nov(A)) ←→ CN•(θa,A), (23)
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as Novikov modules. The isomorphism is preserved upon restrictions A|B,
and ∂ = ∂ up to the identification (23).

In particular, the twisted Novikov chain complexes are well defined with

HN• (θa,Nov(A)) = HN•(θa,A) and HN• (θa,Nov (A|B)) = HN• (θa,A|B) ,

for all a ∈ A and subpolytopes B ⊆ A.

Proof. First of all recall that we can view the i-th polytope Novikov chain
groups as finitely generated Novikov modules by fixing a finite set of preferred
lifts x̃m ∈ π−1(xm), for each zero xm of θa of index i

CNi(θa,A) ∼=
⊕
m

ΛA〈x̃m〉, as Novikov ring modules.

Since ΛA ∼= Nov(A) (cf. Proposition 2.29), we end up with

CNi(θa,A) ∼=
⊕
m

ΛA〈x̃m〉 ∼=
⊕
m

Nov(A)〈xm〉 = CNi (θa,Nov(A)) .

Both boundary operators ∂ and ∂ are ΛA- and Nov(A)-linear, and thus, it
suffices to compare ∂x̃m and ∂xm. On the one hand, we have

∂x̃m =
∑

n

λm,nỹn, with λm,n =
∑

A∈ΓA

#alg M
(
x̃m, Aỹn; f̃θa

)
A ∈ ΛA,

(24)

and on the other hand

∂xm =
∑

n

⎛
⎝ ∑

γ∈M(xm,yn,θa)

t

∫
γ

a0

0 · · · t

∫
γ

ak

k

⎞
⎠ yn. (25)

In the previous subsection, we have seen that the Novikov twist t

∫
γ

a0

0 · · · t

∫
γ

ak

k

of γ uniquely determines the lifting behavior of γ. Thus, if γ̃ denotes the
unique lift which starts at x̃n and ends at some ỹ, we get

ỹ = Aỹn,

with A ∈ ΓA ⊂ ΛA corresponding to t

∫
γ

a0

0 · · · t

∫
γ

ak

k ∈ Nov(A). This proves
that (24) and (25) agree up to identifying the respective isomorphic Novikov
rings. The same proof also shows that the restricted complexes associated
with A|B agree.

With the identification of twisted and polytope complexes at hand, we
can invoke Theorem 2.14 (recall that we already assumed that θ is perturbed
accordingly) and deduce that the twisted chain complex is well defined. By
the first part, it follows that the corresponding homologies agree. This finishes
the proof. �

Remark 2.35. The twisted complex can be used to deduce properties of the
polytope complex and vice versa. For instance, trying to prove that ∂2 = 0
is equivalent to proving ∂2 = 0, which has a far more pleasant proof—the
reason is that the Novikov twists are nicely behaved with respect to the
compactification of the moduli spaces, see for instance [20, Proposition 1].
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3. Applications of the main theorem

3.1. The 0-vertex trick and the Morse–Eilenberg Theorem

All the applications we are about to present boil down to what we call the 0-
vertex trick. The idea is to relate the polytope chain groups to twisted Morse
chain groups by extending the underlying polytope A with 0 ∈ H1

dR(M) as an
additional vertex, and then using the Main Theorem 2.24. This trick suffices
to prove the (twisted) Novikov Morse Homology Theorem (cf. Theorem 3.3
and Corollary 3.4).

For the polytope Novikov Principle (cf. Theorem 3.6), we shall need a
Morse variant of the Eilenberg Theorem [3, Theorem 24.1], which has been
proven in [1, Theorem 2.21]. We will state and prove a slightly stronger version
in the context of Novikov theory down below; see Lemma 3.2.

Lemma 3.1. (0-vertex trick) Let θ : A → Ω1(M) be a section, B ⊆ A a
subpolytope, and A0 the polytope spanned by the vertices of A and 0.21 Let
θ0 : A0 → Ω1(M) be a section extending θ. Then

Z[ΓA] = Z[ΓA0 ] and Nov(A|B) = Nov(A0|B).

In particular, there exists a perturbed section ϑ0 : A0 → Ω1(M), such that
CN•

(
ϑ0

a, A|B
)

= CN•
(
ϑ0

a, A0|B
) � CN•

(
ϑ0
0, A0|B

)
= CM• (h, Nov(A|B)) , ∀a ∈ A,

as chain complexes, where dh = ϑ0
0.

Proof. Since ker(0) = π1(M), adding 0 as vertex does not affect the under-
lying abelian cover, i.e., M̃A = M̃A0 , also see Example 2.3. Thus, the deck
transformation groups ΓA and ΓA0 are equal and so are the respective group
rings. The finiteness conditions for both Nov(A|B) and Nov(A0|B) are deter-
mined by the subpolytope B ⊆ A, and thus, by the group ring equality, we
also deduce

Nov(A|B) = Nov(A0|B).

The equality as local coefficient systems then also follows by observing that
the period homomorphism Φ0 is identically zero, and hence, tΦ0(A) = 1 for
all A ∈ ΓA0 . Pick ϑ0 as in Theorem 2.14 (or Corollary 2.17). The first chain
polytope equality follows from the Novikov rings being equal and the chain
homotopy equivalence stems from the Main Theorem 2.24. The last equality
follows from Example 2.33 and the equality of local coefficient systems above.

�

We conclude the subsection by stating and proving a chain-level Morse
variant of the Eilenberg Theorem [1, Theorem 2.21]

Lemma 3.2. (Morse–Eilenberg Theorem) Let h : M → R be Morse function,
A a polytope, and B ⊆ A a subpolytope. Then

CM•
(
h̃
)

⊗Z[ΓA] Nov(A|B) ∼= CM• (h,Nov(A|B))

as chain complexes over Nov(A|B), where h̃ = h ◦ π.

21Note that if 0 is already contained in A, then A0 = A.
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The proof of [1, Theorem 2.21] constructs a group chain isomorphism
Ψ and a careful inspection reveals that Ψ defines a Novikov-module chain iso-
morphism when working with the according local coefficient system Nov(A|B).
Nevertheless, we decided to give a full proof of Lemma 3.2 using the tools
developed in the previous sections.

Proof of Lemma 3.2. First of all, observe that CM•
(
h̃
)

is a finite Z[ΓA]-
module

CM•(h̃) =
⊕
m

Z[ΓA] 〈x̃m〉.

Here, {x̃m} denotes a finite set of preferred lifts as in the proof of Proposition
2.34. Define

Ψ: CM•
(
h̃
)

⊗Z[ΓA] Nov(A|B) −→ CM• (h,Nov(A|B)) , Ψ(x̃m ⊗ λ) = λ 〈xm〉.
By the above observation, Ψ is a well defined Z[ΓA]-linear map. It is clear
that Ψ is surjective. For injectivity, we observe that

Ψ(x̃m ⊗ λ) = Ψ(x̃n ⊗ μ) ⇐⇒ λ 〈xm〉 = μ 〈xn〉.
Therefore, we must have λ = μ and xm = xn, and hence, x̃m = x̃n—recall
that we are working with a preferred set of critical points in each fiber. This
proves injectivity.

Next, we show that Ψ is Nov(A|B)-linear.22 Pick λ, μ ∈ Nov(A|B) and
observe

Ψ(μ · (x̃m ⊗ λ)) = Ψ(x̃m ⊗ (μ · λ)) = (μ · λ) 〈xm〉 = μ · (λ 〈xm〉) = μ · Ψ(x̃m ⊗ λ).

Hence, Ψ is a Novikov-linear isomorphism. We are only left to show ∂◦Ψ = Ψ◦
(∂M ⊗ id). Recall that ∂M is defined by counting Novikov–Morse trajectories
of h̃ on M̃A. In particular, the boundary operator ∂ on CN• (dh,A|B) agrees
with ∂M on Crit(h̃). Let us adopt the notation of the proof of Proposition
2.34 and write

∂M x̃m = ∂x̃m =
∑

n

λm,n ỹn, λm,n ∈ Z[ΓA].23

23 Therefore

Ψ ◦ (∂M ⊗ id) x̃m ⊗ λ = Ψ
(∑

n

λm,n ỹn ⊗ λ

)
=

∑
n

λm,n · λ 〈yn〉,

by Novikov linearity of Ψ. On the other hand, Proposition 2.34 says that up
to identifying x̃m and xm, we have ∂x̃m = ∂ xm, and thus

∂ ◦ Ψ(x̃m ⊗ λ) = ∂(λ 〈xm〉) = λ∂ xm = λ ·
∑

n

λm,n 〈yn〉.

However, Nov(A|B) is a commutative ring, and hence, we conclude the chain
property of Ψ and thus that Ψ defines a Novikov-linear chain isomorphism.

�
22We are implicitly identifying ΛA|B = Nov(A|B), see Proposition 2.27.
23Sanity check: λm,n =

∑
A∈ΓA #alg M(x̃m, Aỹn; h̃) A, but

⋃
A∈ΓA M(x̃m, Aỹn; h̃) ∼=

M(xm, yn; h) and the latter is finite.
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3.2. The twisted Novikov Morse Homology Theorem

Using the results developed in Sect. 2 and the 0-vertex trick (cf. Lemma 3.1),
we are going to prove:

Theorem 3.3. Let f be a Morse function and a ∈ H1
dR(M) a cohomology

class. Then, for every Morse representative α ∈ a, there exists a chain ho-
motopy equivalence

CN•(α) � CM• (f,Nov(a))

of Novikov modules.

One can prove that the twisted Morse homology computes singular ho-
mology with coefficients Nov(a); see [1, Theorem 4.1].24 Combining this with
Theorem 3.3 and taking the homology then shows:

Corollary 3.4. (Twisted Novikov Homology Theorem) For any cohomology
class a ∈ H1

dR(M), there exists an isomorphism

HN•(a) ∼= H•(M,Nov(a))

of Novikov modules.

Remark 3.5. This is a slightly different incarnation of the classical Novikov
Morse Homology Theorem as Corollary 3.4 relates the Novikov homology to
twisted singular homology rather than equivariant singular homology. More-
over, as the proof will show, we do not invoke the Eilenberg Theorem (or its
Morse analogue from the previous subsection) and instead produce a direct
connection between the Novikov complex and the twisted Morse complex via
the 0-vertex trick—this chain of arguments appears to be novel.

Proof of Theorem 3.3. Pick 0, a in H1
dR(M), set A := 〈0, a〉, and consider

any section

θ : A → Ω1(M).

Up to perturbing θ, we may assume that θ is a section ϑ0 (note that here
A0 = A) as in Lemma 3.1. In particular, setting B = 〈a〉 and invoking Lemma
3.1, we get a Novikov chain homotopy equivalence

CN• (θa,A|a) � CM• (h,Nov(A|a)) .

From Example 2.33, we deduce that Nov (A|a) = Nov(a), and therefore, we
obtain

CN•(θa) � CM•(h,Nov(a))

as Novikov modules. Twisted Morse homology, just as ordinary Morse ho-
mology, does not depend on the choice of Morse function. Indeed, using con-
tinuation methods, one can prove

CN•(h,Nov(a)) � CM•(f,Nov(a))

24The authors mention in the proof of [1, Lemma 6.30] that the isomorphism in [1, Theorem

4.1] is an isomorphism in the category of the underlying local coefficient system, thus a

Novikov-module isomorphism in our case.
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as Novikov modules.25 This proves

CN•(θa) � CM•(f,Nov(a))

as Novikov modules. Observing θa ∈ a and taking the homology on both
sides complete the proof. �

3.3. A polytope Novikov principle

Combining the two lemmata from Sect. 3.1 and the Main Theorem 2.24, we
will prove a polytope Novikov Principle (see Theorem 3.6). As a corollary, we
recover the ordinary Novikov Principle (cf. Corollary 3.8). In fact, the results
here also cover those in Sect. 3.2. We opted to keep them apart to emphasize
the novelty of the “twisted” approach to the Novikov Homology Theorem
(see Remark 3.5).

The polytope Novikov Principle yields a new proof (in the abelian case)
to a recent result due to Pajitnov [17, Theorem 5.1].

Theorem 3.6. (Polytope Novikov Principle) Let θ : A → Ω1(M) be any sec-
tion and B ⊆ A a subpolytope. Then, there exists a perturbed section ϑ : A →
Ω1(M), such that

CN• (ϑa,A|B) � C•
(
M̃A

)
⊗Z[ΓA] Nov(A|B), ∀a ∈ A, (26)

as Novikov modules.

Here, C• denotes the singular chain complex with Z-coefficients.

Proof of Theorem 3.6. Let θ0 : A0 → Ω1(M) be a section that extends θ with
A0 the polytope generated by the vertices of A and 0. By the 0-vertex trick,
i.e., Lemma 3.1, there exists a perturbed section ϑ0 : A0 → Ω1(M), such that

CN•
(
ϑ0

a,A|B
) � CM• (h,Nov(A|B)) , ∀a ∈ A

as Novikov modules. Combining this with Lemma 3.2, we obtain

CN•
(
ϑ0

a,A|B
) � CM•

(
h̃
)

⊗Z[ΓA] Nov(A|B), ∀a ∈ A
as Novikov modules. From standard Morse theory, we know that the Morse
chain complex CM•

(
h̃
)

is chain homotopy equivalent over Z[ΓA] to the sin-

gular chain complex C•
(
M̃A

)
; see for instance [16, Page 415] and [15, Ap-

pendix]. Denote by

i : CM•
(
h̃
)

−→ C•
(
M̃A

)
, j : C•

(
M̃A

)
−→ CM•

(
h̃
)

such a chain homotopy equivalence. Then, one can easily check that i ⊗
idNov(A|B) and j ⊗ idNov(A|B) define a Novikov-linear chain homotopy equiv-
alence

CM•
(
h̃
)

⊗Z[ΓA] Nov(A|B) � C•
(
M̃A

)
⊗Z[ΓA] Nov(A|B).26

25See the proof of [1, Theorem 3.9] for more details.



Vol. 23 (2021) Polytope Novikov homology Page 31 of 36 62

26 Hence
CN•

(
ϑ0

a, A|B
) � CM•

(
h̃
)

⊗Z[ΓA] Nov(A|B) � C•
(
M̃A

)
⊗Z[ΓA] Nov(A|B), ∀a ∈ A.

Setting ϑ := ϑ0|A finishes the proof. �
Remark 3.7. If one is interested in a particular Morse form ω, then the fol-
lowing improvement can be made: let (ω, g) be Morse–Smale and assume that
A is a polytope around [ω] that admits a section θ : A → Ω1(M) sufficiently
close to (ω, g) in the sense of Corollary 2.17. Denote by ϑω : A → Ω1(M)
the associated perturbation with reference pair (ω, g). The section ϑ = ϑ0|A
in the proof above might come from an exact reference pair, since 0 could a
priori be far away from θ. However, Corollary 2.23 asserts

CN(ϑω
a ,A|B) � CN(ϑa,A|B), ∀a ∈ A.

Combining this with (26) for a = [ω] gives

CN•(ω,A|B) � C•
(
M̃A

)
⊗Z[ΓA] Nov(A|B),

since ϑω
[ω] = ω.

In the special case of ordinary Novikov theory, i.e., A = 〈a〉 and A0 =
〈0, a〉, Theorem 3.6 reduces to the ordinary Novikov Principle.

Corollary 3.8. (Ordinary Novikov Principle) Let (α, g) be Morse–Smale. Then

CN•(α) � C•
(
M̃a

)
⊗Z[Γa] Nov(a).

Proof. Set a = [α], pick A = 〈a〉, B = A and θ : A → Ω1(M) the smooth
section defined by θa = α. The section θ is obviously close to (α, g), and thus,
Theorem 3.6 and Remark 3.7 imply

CN•(α) � C•
(
M̃a

)
⊗Z[Γa] Nov(a)

as Novikov modules. �
Even though it is hidden in the proof above, the main idea is still to

use perturbations ϑ0 : A0 → Ω1(M) associated with an exact reference pair
(H, g). Recall that these sections ϑ0 are constructed by a “shift-and-scale”
procedure, so that each ϑ0

a is dominated by the exact term 1
εdH. This strategy

to recover the ordinary Novikov Principle has been known among experts for
quite awhile; see [14, Page 302] for a historical account, [13, Page 548] and
[9, Theorem 3.5.2]. However, our approach is slightly different as it does not
make use of gradient like vector fields.

We conclude the present subsection by explaining how to recover [17,
Theorem 5.1] from the polytope Novikov principle. For the reader’s conve-
nience, we briefly recall Pajitnov’s setting, keeping the notation as close as

26One can also deduce from category theory by observing that the functor F : modZ[A] →
modNov(A|B),

F (O) := O ⊗Z[ΓA] Nov(A|B), F (i) = i ⊗ id, O, P ∈ obj
(
modZ[ΓA]

)
, i ∈ hom(O, P )

is additive.
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possible to [17]. Fix a Morse–Smale pair (ω, g) on M and let p : M̂ → M be
a regular cover, such that p∗[ω] = 0. Denote by r the rank of ω27 and define
G = Deck(M̂). Viewing the period homomorphism Φω on H1(M ;Z), we get
a splitting

H1(M ;Z) ∼= Z
r ⊕ ker[ω].

Pajitnov calls a family of homomorphism

Ψ1, . . . ,Ψr : Zr → Z

a Φω-regular family if

• the Ψi span homZ(Zr,Z) and
• the coordinates of Φω : Zr → R in the basis Ψi are strictly positive.

We shall call Ψ = {Ψi} a Φω-semi-regular family whenever the first bullet
point above is satisfied. One should not be fooled by the length of name—
the existence of a semi-regular family is obvious and merely an algebraic
statement.

To every (semi)-regular family Ψ = {Ψ1, . . . ,Ψr}, we associate the con-
ical Novikov ring

Λ̂Ψ =
r⋂

i=1

Ẑ[G]Ψi .

The conical Novikov chain complex (N•(ω), ∂) is defined as

Ni(ω,Ψ) = Ni(ω) =
⊕

x∈Zi(ω)

Λ̂Ψ〈x〉,

where the boundary operator ∂ is defined as expected: fix preferred lifts x̂ of
each x ∈ Z(ω) and define the y-component of ∂x by the (signed) count of
f̂ω-Morse flow lines on the cover M̂ from x̂ to g ◦ ŷ for all g ∈ G.28 Pajitnov
proves that there always exists a Φω-regular family Ψ, so that (N•(ω), ∂) is
a well-defined Λ̂Ψ-module chain complex and shows:

Theorem 3.9. (Pajitnov 2019, [17]) For any Morse–Smale pair (ω, g), there
exists a Φω-regular family Ψ, such that N•(ω,Ψ) = N•(ω) is a well-defined
chain complex. Moreover, for any such Ψ, it holds

N•(ω) � C•
(
M̂

)
⊗Z[G] Λ̂Ψ

as Λ̂Ψ modules.

Using Theorem 3.6, we recover Theorem 3.9 in the abelian case.

Corollary 3.10. Let (ω, g) be a Morse–Smale pair, p : M̂ → M be an abelian
regular cover with p∗[ω] = 0.

27The rank of a cohomology class a ∈ H1
dR(M) is defined as rankZ (im Φa).

28The definition in [17] is slightly more general, as they define the count with respect to
any transverse ω-gradient.



Vol. 23 (2021) Polytope Novikov homology Page 33 of 36 62

Then, there exist a Φω-semi-regular family Ψ, a section θ : A → Ω1(M)
around [ω] with M̃A = M̂ , a subpolytope B ⊆ A, and a perturbation ϑ : A →
Ω1(M), such that

CN•(ϑa,A|B) � C•
(
M̂

)
⊗Z[G] Λ̂Ψ, ∀a ∈ A

as Novikov modules with ϑ[ω] = ω. In particular

CN•(ω,A|B) � C•
(
M̂

)
⊗Z[G] Λ̂Ψ.

Proof. First of all, we construct the polytope A and a small section θ : A →
Ω1(M) by adapting a rational approximation idea due to Pajitnov [15]; see
also [21, Section 4.2]. Consider the splitting from before

H1(M ;Z) ∼= Z
r ⊕ ker[ω],

where r is the rank of [ω]. Pick r-many generators γ1, . . . , γr of the first
summand above. By de Rham’s Theorem, there are r-many pairwise distinct
integral classes a1, . . . , ar dual to γ1, . . . , γr, such that

ker(al) ⊃ ker[ω], ∀l = 1, . . . , r.

In particular, we can write

Φω =
r∑

l=1

ul · Φal
,

for a unique vector u = (u1, . . . , ur) ∈ R
r, and hence, [ω] =

∑r
l=1 ul · al.

Thus, for our fixed Morse representative ω ∈ [ω], there exist αl ∈ al with

ω =
r∑

l=1

ul · αl and ker[ω] =
r⋂

l=1

ker(al). (27)

For fixed ε > 0, we construct r-many rational closed one-forms βl that are
ε-close to ω (in the operator norm induced by g). Pick a sufficiently small
vector v1 = v1(ε) ∈ R

r, such that for

β1 = ω +
r∑

l=1

v1
l · αl,

we have

‖ω − β1‖ ≤
r∑

l=1

|v1
l | · ‖αl‖ < ε and b1 := [β1] ∈ H1(M ;Q).

This is possible, since Q is dense in R. Define

β2 = ω +
r∑

l=1

v2
l · αl, v2 ∈ R

r,

satisfying the same properties with

v2 − v1 = (v2
1 − v1

1︸ ︷︷ ︸

=0

, 0, . . . , 0).
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In particular

β2 − β1 = (v2
1 − v1

1) · α1,

which implies b1 �= b2. Proceeding inductively (e.g. v3 agreeing with v2 ex-
cept for the second entry, etc.), we end up with r-many rational one-forms
β1, . . . , βr satisfying

• ‖ω − βj‖ ≤ ∑r
l=1 |vj

l | · ‖αl‖ < ε for all j = 1, . . . , r.
• bl �= bj for all l �= j.
• ker(bl) ⊃ ker[ω] for all l = 1, . . . , r, by (27).

Since all bl are rational, there exists a positive integer q ∈ N, so that every
cohomology class q · bl is integral. From the bullet points above, we thus
conclude that

Ψ := {Φq·bl
}

defines a Φω-semi-regular family. Next, set A− = 〈[ω], b1, . . . , br〉 and

ε =
Cω

D · 1000
,

cf. Corollary 2.17. It is clear that there exists a section θ− : A− → Ω1(M)
sending [ω] to ω and bl to βl. In particular

‖θ−
a − ω‖ < ε, ∀a ∈ A−.

Analogously to the construction of the βl’s, one can define rational one-forms
close to ω that do not vanish on ker[ω]. Including some of those cohomology
classes allows us to extend A− to A, so that M̃A = M̂ with a section θ : A →
Ω1(M) that extends θ− and is still ε-close to ω. By choice of ε, we can invoke
Corollary 2.17 and define a perturbed section

ϑω : A → Ω1(M)

with (ω, g) as the underlying reference pair. But now, we are in a position to
use Theorem 3.6 and Remark 3.7 with B := 〈b1, . . . , br〉 to obtain

CN•(ϑω
a ,A|B) � C•(M̂) ⊗Z[G] Nov(A|B) = C•(M̂) ⊗Z[G]

r⋂
l=1

Nov(A|bl
).

The last equality follows from Lemma 2.7. Note that Nov(A|bl
) = Ẑ[G]bl =

Ẑ[G]q·bl , and therefore, the Novikov ring on the RHS above does coincide
with Λ̂Ψ. By definition of the perturbation ϑω, we get ϑω

[ω] = ω, which finally
concludes the proof. �
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