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Abstract. Using the fixed point method, we prove the Ulam stability of
two general functional equations in several variables in 2-Banach spaces.
As corollaries from our main results, some outcomes on the stability of
a few known equations being special cases of the considered ones will be
presented. In particular, we extend several recent results on the Ulam
stability of functional equations in 2-Banach spaces.
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1. Background and motivation

The question about an error one commits replacing an object with some
properties by an object satisfying them only approximately is natural and
interesting both in mathematics and in many other scientific investigations.
To deal with it the notion of the Ulam stability can be used.

Let us recall that in 1940 Ulam, during his talk at the University of
Wisconsin, posed the problem of the stability of group homomorphisms, i.e.
the Cauchy functional equation

f(x + y) = f(x) + f(y), (1)

and Hyers in [32] gave its solution in the case of Banach spaces. Hyers’ result
was extended by Aoki in [4] and Rassias in [44] (see also a remark of Bourgin
in [8]) in the following way.

Let E1 and E2 be Banach spaces, ε ≥ 0, p ∈ [0, 1) and f : E1 → E2 be a
mapping with

‖f(x + y) − f(x) − f(y)‖ ≤ ε(‖x‖p + ‖y‖p), x, y ∈ E1.
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Then there is a unique additive mapping, i.e. a solution of Eq. (1), a : E1 →
E2 such that

‖f(x) − a(x)‖ ≤ 2ε

2 − 2p
‖x‖p, x ∈ E1.

Next, Rassias noticed that a similar result is also valid for p < 0, and
Gajda in [29] proved it for p > 1 and provided an example showing that for
p = 1 such an outcome is not possible.

In recent years, the Ulam stability of various (among others functional,
difference, differential and integral) equations and other objects (for example
groups, C*-algebras and flows) has been intensively studied (see for instance
[6,7,11,12,25,27,30,33,35,38,39] and references therein).

In this paper, we prove the Ulam stability of two general functional
equations in several variables in 2-Banach spaces. We also get, as corollaries
from the main results, some outcomes on the stability of a few known equa-
tions being special cases of the considered ones. In particular, we thus extend
several recent results on the stability of functional equations in 2-Banach
spaces which were published in [3,10,14,15,18,21,22,45].

Let us yet mention that in the proofs of our main results a variant of the
fixed point method is applied. More precisely, we use a fixed point theorem of
Diaz and Margolis from [24]. More information about the fixed point method
one can find in [9,17].

Throughout the paper N stands for the set of all positive integers and
we put N0 := N ∪ {0}. Moreover, we assume that n ∈ N, X is a linear space
over the field F, and Y is a linear space over the field K.

2. Introduction

Let a11, a12, . . . , an1, an2 ∈ F, a1,j1,...,jn , . . . , an,j1,...,jn ∈ F for j1, . . . , jn ∈
{−1, 1} and Ai1,...,in ∈ K for i1, . . . , in ∈ {1, 2} be given scalars. Put, more-
over,

A :=
∑

i1,...,in∈{1,2}
Ai1,...,in

and assume that A �= 0.
We deal with the following functional equations:

f(a11x11 + a12x12, . . . , an1xn1 + an2xn2)

=
∑

i1,...,in∈{1,2} Ai1,...,inf(x1i1 , . . . , xnin) (2)

and
∑

j1,...,jn∈{−1,1} f(a1,j1,...,jn(x11 + j1x12), . . . , an,j1,...,jn(xn1 + jnxn2))

=
∑

i1,...,in∈{1,2} Ai1,...,inf(x1i1 , . . . , xnin). (3)
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Equation (2) was very recently introduced in [20], and it generalizes
among others the known functional equations

f(x11 + x12, . . . , xn1 + xn2) =
∑

i1,...,in∈{1,2}
f(x1i1 , . . . , xnin), (4)

f

(
1
2
x11 +

1
2
x12, . . . ,

1
2
xn1 +

1
2
xn2

)
=

∑

i1,...,in∈{1,2}

1
2n

f(x1i1 , . . . , xnin)

and, for n ≥ 2 and 1 ≤ k < n,

f(x11 + x12, . . . , xk1 + xk2,
1
2
xk+11 +

1
2
xk+12, . . . ,

1
2
xn1 +

1
2
xn2)

=
∑

i1,...,in∈{1,2}
1

2n−k
f(x1i1 , . . . , xnin) (5)

(see [5,16,43], and [20] for more details).
Let us also mention that the case n = 2 was studied in [19], and for

n = 1, we get the linear functional equation

f(a1x1 + a2x2) = A1f(x1) + A2f(x2), (6)

which includes, among others, the Cauchy equation and the famous Jensen
functional equation

f
(x + y

2

)
=

f(x) + f(y)
2

.

A lot of information about the Cauchy and Jensen equations as well as their
applications and stability can be found in [1,35–37], whereas some very recent
stability outcomes on Eq. (6) were published for instance in [2,42] (see also
[3], where the stability of yet another special case of (6) was considered in
2-Banach spaces).

A particular case of Eq. (2) is the functional equation
∑

j1,...,jn∈{−1,1} f(x11 + j1x12, . . . , xn1 + jnxn2)

=
∑

i1,...,in∈{1,2} 2nf(x1i1 , . . . , xnin), (7)

which (see [34,47], where its Ulam stability is also studied) characterizes
the so-called n-quadratic mappings. For n = 1 it leads to the well-known
Jordan–von Neumann equation

q(x + y) + q(x − y) = 2q(x) + 2q(y).

A lot of information about solutions of the Jordan–von Neumann equation
(i.e. quadratic mappings), its applications and Ulam stability can be found in
[35,36] (see also [23,46] for some classical stability results on this equation).
On the other hand, the case n = 2 was considered in [40].

Another particular case of Eq. (3), i.e. the functional equation

f(x11 + x12, x21 + x22) + f(x11 + x12, x21 − x22)
+f(x11 − x12, x21 + x22) + f(x11 − x12, x21 − x22)

= A1,1f(x11, x21) + A1,2f(x11, x22)
+A2,1f(x12, x21) + A2,2f(x12, x22), (8)
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with A1,1, A1,2, A2,1, A2,2 ≥ 0, was very recently investigated in [26], where
its characterizations and representations of set-valued solutions are obtained.

3. Preliminaries

Let us recall that a 2-normed space was defined by Gähler in [28] as a pair
(X, ‖·, ·‖), where X is an at least two-dimensional real linear space and ‖·, ·‖ :
X × X → [0,∞) is a mapping such that for any α ∈ R, x, y, z ∈ X, we have

‖x, y‖ = 0 ⇐⇒ x and y are linearly dependent,
‖x, y‖ = ‖y, x‖,

‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖,

‖αx, y‖ = |α|‖x, y‖.

The following known definitions and facts will be used in the sequel.
Let (xk)k∈N be a sequence of elements of a 2-normed space (X, ‖·, ·‖).

This sequence is called Cauchy if there exist linearly independent y, z ∈ X
for which

lim
n,m→∞ ‖xn − xm, y‖ = 0 = lim

n,m→∞ ‖xn − xm, z‖,

while (xn)n∈N is said to be convergent provided there is an x ∈ X with

lim
k→∞

‖xk − x, y‖ = 0, y ∈ X.

In the latter case, the element x is called the limit of the sequence (xk)k∈N

and we denote it by limk→∞ xk. Clearly, every convergent sequence possesses
a unique limit. Moreover, the standard properties of the limit of a sum and
a scalar product hold.

By a 2-Banach space we mean a 2-normed space such that each its
Cauchy sequence is convergent.

Remark 1. Assume that (X, ‖·, ·‖) is a 2-normed space and (xk)k∈N is a se-
quence of elements of X. Then

(i) if x ∈ X and ‖x, y‖ = 0 for any y ∈ X, then x = 0;
(ii) if the sequence (xk)k∈N is convergent, then

lim
k→∞

‖xk, y‖ =
∥∥ lim

k→∞
xk, y

∥∥, y ∈ X.

Let us also recall that a pair (G, d) is said to be a generalized metric
space provided G is a nonempty set and d : G × G → [0, ∞] is a function
satisfying the standard metric axioms.

The following result from [24] plays a crucial role in the proof of the
main results of this paper.

Proposition 2. Assume that (G, d) is a complete generalized metric space and
T : G → G is a strictly contractive operator with the Lipschitz constant L < 1.
If there are n0 ∈ N0 and x ∈ G such that d(Tn0+1x, Tn0x) < ∞, then:

(i) the sequence (T jx)j∈N is convergent, and its limit x∗ is a fixed point of
the operator T ;
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(ii) x∗ is the unique fixed point of T in the set

G∗ := {y ∈ G : d(Tn0x, y) < ∞};

(iii) if y ∈ G∗, then

d(y, x∗) ≤ 1
1 − L

d(Ty, y).

4. Main results

In this section, we prove the Ulam stability of functional equations (2) and
(3). We start with the first of them.

Theorem 3. Assume that Y is a 2-Banach space, |A| > 1 and ε > 0. If
f : Xn → Y is a function satisfying

∥∥∥∥f(a11x11 + a12x12, . . . , an1xn1 + an2xn2)

−
∑

i1,...,in∈{1,2} Ai1,...,inf(x1i1 , . . . , xnin), y
∥∥∥∥ ≤ ε (9)

for (x11, x12, . . . , xn1, xn2) ∈ X2n and y ∈ Y , then there exists a unique
solution F : Xn → Y of Eq. (2) for which

‖f(x1, . . . , xn) − F (x1, . . . , xn), y‖ ≤ ε

|A| − 1
,

(x1, . . . , xn) ∈ Xn, y ∈ Y. (10)

The mapping F is given by

F (x1, . . . , xn) := lim
j→∞

f(aj
1x1, . . . , a

j
nxn)

Aj
, (x1, . . . , xn) ∈ Xn. (11)

Proof. Let us consider a complete generalized metric space (G, d), where

G := Y Xn

and

d(g, h) := inf{C ∈ [0,∞] : ‖g(x1, . . . , xn) − h(x1, . . . , xn), y‖
≤ Cε, (x1, . . . , xn) ∈ Xn, y ∈ Y }, g, h ∈ G.

Put also

ai := ai1 + ai2, i ∈ {1, . . . , n}
and

Tg(x1, . . . , xn) :=
1
A

g(a1x1, . . . , anxn), g ∈ G, (x1, . . . , xn) ∈ Xn.
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We show that T : G → G is a strictly contractive operator with the Lipschitz
constant 1

|A| . To do this, fix g, h ∈ G, (x1, . . . , xn) ∈ Xn, y ∈ Y and Cg,h ∈
[0,∞] with d(g, h) ≤ Cg,h. Then

‖g(x1, . . . , xn) − h(x1, . . . , xn), y‖ ≤ Cg,hε, (12)

and consequently

‖Tg(x1, . . . , xn) − Th(x1, . . . , xn), y‖
=

1
|A| ‖g(a1x1, . . . , anxn) − h(a1x1, . . . , anxn), y‖ ≤ 1

|A|Cg,hε.

Therefore, d(Tg, Th) ≤ 1
|A|Cg,h and d(Tg, Th) ≤ 1

|A|d(g, h), as claimed.
Let us next observe that from (9) it follows that

‖Tf(x1, . . . , xn) − f(x1, . . . , xn), y‖
=

∥∥∥∥
1
A

f(a1x1, . . . , anxn) − f(x1, . . . , xn), y
∥∥∥∥ ≤ 1

|A|ε,

and thus

d(Tf, f) ≤ 1
|A| < ∞. (13)

We can now apply Proposition 2 for the space (G, d), the operator T , L = 1
|A| ,

n0 = 0 and x = f to deduce that the sequence (T jf)j∈N is convergent in (G, d)
and its limit F is a fixed point of T .

Thus,
F (x1, . . . , xn) = lim

j→∞
T jf(x1, . . . , xn) (14)

and
1
A

F (a1x1, . . . , anxn) = F (x1, . . . , xn). (15)

Since, by induction, we also have

T jf(x1, . . . , xn) =
1

Aj
f(aj

1x1, . . . , a
j
nxn), j ∈ N

(11) follows.
Next, note that obviously f ∈ G∗, and therefore, Proposition 2(iii) and

(13) imply

d(f, F ) ≤ 1
1 − 1

|A|
d(Tf, f) ≤ 1

|A| − 1
,

which proves (10).
Let us now observe that from (9) we get

∥∥∥∥∥
f(aj

1(a11x11 + a12x12), . . . , aj
n(an1xn1 + an2xn2))

Aj

−
∑

i1,...,in∈{1,2} Ai1,...,in

f(aj
1x1i1 , . . . , a

j
nxnin)

Aj
, y

∥∥∥∥∥ ≤ ε

|A|j
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for (x11, x12, . . . , xn1, xn2) ∈ X2n, y ∈ Y and j ∈ N0. Letting j → ∞, and
applying (11) and Remark 1(ii) we deduce hence that

∥∥∥∥F (a11x11 + a12x12, . . . , an1xn1 + an2xn2)

−
∑

i1,...,in∈{1,2} Ai1,...,inF (x1i1 , . . . , xnin), y
∥∥∥∥ ≤ 0

for (x11, x12, . . . , xn1, xn2) ∈ X2n and y ∈ Y , and thus by Remark 1(i) we see
that the mapping F : Xn → Y is a solution of functional equation (2).

Let us finally suppose that F ′ : Xn → Y is a solution of Eq. (2) fulfilling
inequality (10). Then F ′ satisfies (15), and therefore, it is a fixed point of the
operator T . Furthermore, by (10), we obtain

d(f, F ′) ≤ 1
|A| − 1

< ∞,

and consequently F ′ ∈ G∗. Proposition 2(ii) now shows that F ′ = F . �

Next, we show the stability of Eq. (3).

Theorem 4. Assume that Y is a 2-Banach space, |A| > 1 and ε > 0. If f :
Xn → Y is a function such that f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn

with at least one component which is equal to zero and
∥∥∥∥∥∥

∑

j1,...,jn∈{−1,1}
f(a1,j1,...,jn(x11 + j1x12), . . . , an,j1,...,jn(xn1 + jnxn2))

−
∑

i1,...,in∈{1,2}
Ai1,...,inf(x1i1 , . . . , xnin), y

∥∥∥∥∥∥
≤ ε (16)

for (x11, x12, . . . , xn1, xn2) ∈ X2n and y ∈ Y , then there exists a unique solu-
tion F : Xn → Y of Eq. (3) such that inequality (10) holds and F (x1, . . . , xn) =
0 for any (x1, . . . , xn) ∈ Xn with at least one component which is equal to
zero. The mapping F is given by

F (x1, . . . , xn) = limj→∞
1

Aj
f
(
(2a1,1,...,1)jx1, . . . , (2an,1,...,1)jxn

)
,

(x1, . . . , xn) ∈ Xn. (17)

Proof. Let us consider a complete generalized metric space (G, d), where

G := {f : Xn → Y : f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn

with at least one component which is equal to zero}
and d is as in the proof of Theorem 3. Put also

Tg(x1, . . . , xn) : =
1
A

g(2a1,1,...,1x1, . . . , 2an,1,...,1xn),

g ∈ G, (x1, . . . , xn) ∈ Xn.



33 Page 8 of 14 K. Ciepliński JFPTA

We show that T : G → G is a strictly contractive operator with the Lipschitz
constant 1

|A| . To do this, fix g, h ∈ G, (x1, . . . , xn) ∈ Xn, y ∈ Y and Cg,h ∈
[0,∞] with d(g, h) ≤ Cg,h. Then (12) holds, whence

‖Tg(x1, . . . , xn) − Th(x1, . . . , xn), y‖
=

1
|A| ‖g(2a1,1,...,1x1, . . . , 2an,1,...,1xn) − h(2a1,1,...,1x1, . . . , 2an,1,...,1xn), y‖

≤ 1
|A|Cg,hε,

and thus T is strictly contractive with the constant 1
|A| .

Let us next observe that from (16) and the fact that f(x1, . . . , xn) = 0
for any (x1, . . . , xn) ∈ Xn with at least one component which is equal to zero
it follows that

‖Tf(x1, . . . , xn) − f(x1, . . . , xn), y‖
=

∥∥∥∥
1
A

f(2a1,1,...,1x1, . . . , 2an,1,...,1xn) − f(x1, . . . , xn), y
∥∥∥∥ ≤ ε

|A| ,

and thus (13) holds true. From Proposition 2, we see that the sequence
(T jf)j∈N is convergent in (G, d) and its limit F is a fixed point of T .

Therefore, we get (14) and
1
A

F (2a1,1,...,1x1, . . . , 2an,1,...,1xn) = F (x1, . . . , xn). (18)

Since, by induction, we also have

T jf(x1, . . . , xn) =
1

Aj
f((2a1,1,...,1)jx1, . . . , (2an,1,...,1)jxn), j ∈ N,

(17) follows.
Let us now observe that inequality (10) can be shown as in the proof of

Theorem 3.
Next, from (16) we get

∥∥∥∥
∑

j1,...,jn∈{−1,1}
1

Aj
f
(
(2a1,1,...,1)ja1,j1,...,jn(x11 + j1x12), . . . ,

(2an,1,...,1)jan,j1,...,jn(xn1 + jnxn2)
)

−
∑

i1,...,in∈{1,2} Ai1,...,in

1
Aj

f
(
(2a1,1,...,1)jx1i1 , . . . , (2an,1,...,1)jxnin

)
, y

∥∥∥∥

≤ ε

|A|j
for (x11, x12, . . . , xn1, xn2) ∈ X2n, y ∈ Y and j ∈ N0. Letting j → ∞, and
applying (17) and Remark 1 we deduce hence that the mapping F : Xn → Y
is a solution of functional Eq. (3).

Let us finally suppose that F ′ : Xn → Y is a solution of Eq. (3) such
that inequality (10) holds and F ′(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn

with at least one component which is equal to zero. Then F ′ satisfies (18),
and therefore it is a fixed point of the operator T . As in the proof of Theorem
3 we now conclude that F ′ = F . �
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5. Some consequences

Now, we present some consequences of Theorems 3 and 4. First, we deduce
from them a few outcomes on the stability of the functional equations men-
tioned in Sect. 2.

Let us start with the case a11 = a12 = . . . = an1 = an2 = 1 and
Ai1,...,in = 1 for i1, . . . , in ∈ {1, 2}. Then from Theorem 3 we get the following
outcome on the Ulam stability of functional equation (4) (see [18] and note
that for n = 1 it clearly means the stability of the Cauchy equation, which
was investigated, among others, in [10,14,15]).

Corollary 5. Assume that Y is a 2-Banach space and ε > 0. If f : Xn → Y
is a function satisfying

∥∥∥∥∥∥
f(x11 + x12, . . . , xn1 + xn2) −

∑

i1,...,in∈{1,2}
f(x1i1 , . . . , xnin), y

∥∥∥∥∥∥
≤ ε

for (x11, x12, . . . , xn1, xn2) ∈ X2n and y ∈ Y , then there is a unique solution
F : Xn → Y of Eq. (4) such that

‖f(x1, . . . , xn) − F (x1, . . . , xn), y‖ ≤ ε

2n − 1
,

(x1, . . . , xn) ∈ Xn, y ∈ Y.

The mapping F is given by

F (x1, . . . , xn) := lim
j→∞

f(2jx1, . . . , 2jxn)
2jn

, (x1, . . . , xn) ∈ Xn.

Let us next note that Theorem 3 is a generalization of Theorem 3.3 in
[19], and thus its consequences are also some further results on the Ulam
stability of a few known functional equations (see [19] for the details).

Theorem 3 with n = 1 gives also obviously some stability outcomes on
Eq. (6), and thus on its particular case a1 = A1, a2 = A2 ∈ N which was
studied in [3].

Now, we present some consequences of Theorem 4.
Let us first consider the case a1,j1,...,jn = . . . = an,j1,...,jn = 1 for

j1, . . . , jn ∈ {−1, 1} and Ai1,...,in = 2n for i1, . . . , in ∈ {1, 2}. Then from
Theorem 4 we get the following outcome on the Ulam stability of functional
equation (7) (see [22] and note that for n = 1 it clearly means the stability of
the Jordan–von Neumann equation, which was investigated, among others,
in [14,15,45]).

Corollary 6. Assume that Y is a 2-Banach space and ε > 0. If f : Xn → Y
is a function such that f(x1, . . . , xn) = 0 for any (x1, . . . , xn) ∈ Xn with at
least one component which is equal to zero and

∥∥∥∥
∑

j1,...,jn∈{−1,1} f(x11 + j1x12, . . . , xn1 + jnxn2)

−
∑

i1,...,in∈{1,2} 2nf(x1i1 , . . . , xnin), y
∥∥∥∥ ≤ ε
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for (x11, x12, . . . , xn1, xn2) ∈ X2n and y ∈ Y , then there exists a unique
solution F : Xn → Y of Eq. (7) such that F (x1, . . . , xn) = 0 for any
(x1, . . . , xn) ∈ Xn with at least one component which is equal to zero and

‖f(x1, . . . , xn) − F (x1, . . . , xn), y‖ ≤ ε

4n − 1
,

(x1, . . . , xn) ∈ Xn, y ∈ Y.

The mapping F is given by

F (x1, . . . , xn) := lim
j→∞

f(2jx1, . . . , 2jxn)
4jn

, (x1, . . . , xn) ∈ Xn.

Let us next note that Theorem 4 is a generalization of Theorem 2 in
[21].

As for the Ulam stability of Eq. (8), Theorem 4 with n = 2, a1,1,1 =
a2,1,1 = a1,1,−1 = a2,1,−1 = a1,−1,1 = a2,−1,1 = a1,−1,−1 = a2,−1,−1 = 1
yields the following.

Corollary 7. Assume that Y is a 2-Banach space, |A| > 1 and ε > 0. If
f : X2 → Y is a function such that

f(x1, 0) = 0 = f(0, x2), (x1, x2) ∈ X2 (19)

holds and
∥∥f(x11 + x12, x21 + x22) + f(x11 + x12, x21 − x22)

+f(x11 − x12, x21 + x22) + f(x11 − x12, x21 − x22)
−A1,1f(x11, x21) − A1,2f(x11, x22)

−A2,1f(x12, x21) − A2,2f(x12, x22), y
∥∥ ≤ ε

for (x11, x12, x21, x22) ∈ X4 and y ∈ Y , then there exists a unique solution
F : X2 → Y of Eq. (8) fulfilling condition (19) and

‖f(x1, x2) − F (x1, x2)‖ ≤ ε

|A| − 1
, (x1, x2) ∈ X2, y ∈ Y.

The mapping F is given by

F (x1, x2) = lim
j→∞

1
Aj

f
(
2jx1, 2jx2

)
, (x1, x2) ∈ X2.

Finally, we derive from Theorem 4 the Ulam stability of the functional
equations

f(x11 + x12, x21 + x22) + f(x11 − x12, x21 − x22)
= 2f(x11, x21) + 2f(x11, x22) (20)

and

f(x11 + x12, x21 + x22) + f(x11 + x12, x21 − x22)
= 2f(x11, x21) + 2f(x11, x22) + 2f(x12, x21) + 2f(x12, x22) (21)
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(let us mention that the stability of Eq. (20) in Banach spaces was very
recently studied in [31], whereas Eq. (21) was introduced and studied in
[41]).

Theorem 4 with n = 2, a1,1,1 = a2,1,1 = a1,−1,−1 = a2,−1,−1 = 1,
a1,1,−1 = a2,1,−1 = a1,−1,1 = a2,−1,1 = 0, A1,1 = A1,2 = 2 and A2,1 = A2,2 =
0 gives the following outcome on the stability of Eq. (20).

Corollary 8. Assume that Y is a 2-Banach space and ε > 0. If f : X2 → Y
is a function such that condition (19) holds and

∥∥∥f(x11 + x12, x21 + x22) + f(x11 − x12, x21 − x22)

−2f(x11, x21) − 2f(x11, x22), y
∥∥∥ ≤ ε

for (x11, x12, x21, x22) ∈ X4 and y ∈ Y , then there exists a unique solution
F : X2 → Y of Eq. (20) fulfilling (19) and

‖f(x1, x2) − F (x1, x2), y‖ ≤ ε

3
, (x1, x2) ∈ X2, y ∈ Y.

The mapping F is given by

F (x1, x2) = limj→∞ 1
4j f

(
2jx1, 2jx2

)
, (x1, x2) ∈ X2.

On the other hand, applying Theorem 4 with n = 2, a1,1,1 = a2,1,1 =
a1,1,−1 = a2,1,−1 = 1, a1,−1,1 = a2,−1,1 = a1,−1,−1 = a2,−1,−1 = 0, A1,1 =
A1,2 = A2,1 = A2,2 = 2 we obtain the following.

Corollary 9. Assume that Y is a 2-Banach space and ε > 0. If f : X2 → Y
is a function such that (19) holds and

∥∥f(x11 + x12, x21 + x22) + f(x11 + x12, x21 − x22)

−2f(x11, x21) − 2f(x11, x22) − 2f(x12, x21) − 2f(x12, x22), y
∥∥ ≤ ε

for (x11, x12, x21, x22) ∈ X4 and y ∈ Y , then there exists a unique solution
F : X2 → Y of Eq. (21) fullfiling (19) and

‖f(x1, x2) − F (x1, x2), y‖ ≤ ε

7
, (x1, x2) ∈ X2, y ∈ Y.

The mapping F is given by

F (x1, x2) = lim
j→∞

1
8j

f
(
2jx1, 2jx2

)
, (x1, x2) ∈ X2.
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in 2-Banach spaces. Acta Math. Sci. 40, 824–834 (2020)

[4] Aoki, T.: On the stability of the linear transformation in Banach spaces. J.
Math. Soc. Jpn. 2, 64–66 (1950)
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[9] Brzdȩk, J., Cǎdariu, L., Ciepliński, K.: Fixed point theory and the Ulam sta-
bility. J. Funct. Spaces 2014, Art. ID 829419 (2014)
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[11] Brzdȩk, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic
Press, London (2018)

[12] Castro, L.P., Simões, A.M.: Hyers–Ulam–Rassias stability of nonlinear integral
equations through the Bielecki metric. Math. Methods Appl. Sci. 41, 7367–7383
(2018)

[13] Cheng, L., Dong, Y.: A note on the stability of nonsurjective ε-isometries of
Banach spaces. Proc. Am. Math. Soc. 148, 4837–4844 (2020)

[14] Cho, Y.J., Park, C., Eshaghi Gordji, M.: Approximate additive and quadratic
mappings in 2-Banach spaces and related topics. Int. J. Nonlinear Anal. Appl.
3, 75–81 (2012)

[15] Chung, S.-C., Park, W.-G.: Hyers–Ulam stability of functional equations in
2-Banach spaces. Int. J. Math. Anal. (Ruse) 6, 951–961 (2012)
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[34] Ji, P., Qi, W., Zhan, X.: Generalized stability of multi-quadratic mappings. J
Math. Res. Appl. 34, 209–215 (2014)

[35] Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlin-
ear Analysis. Springer, New York (2011)

[36] Kannappan, Pl: Functional Equations and Inequalities with Applications.
Springer, New York (2009)

[37] Kuczma, M.: An Introduction to the Theory of Functional Equations and In-
equalities. Cauchy’s Equation and Jensen’s Inequality. Birkhäuser, Basel (2009)
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