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Abstract. The renorming technique allows one to apply the Banach Con-
traction Principle for maps which are not contractions with respect to
the original metric. This method was invented by Bielecki and mani-
fested in an extremely elegant proof of the Global Existence and Unique-
ness Theorem for ODEs. The present paper provides further extensions
and applications of Bielecki’s method to problems stemming from func-
tional analysis and from the theory of functional equations.
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1. Introduction

The Banach Contraction Principle [2] provides a sufficient condition for the
fixed point property of a self map of complete metric space in terms of con-
tractivity. However, important situations occur when contractivity cannot be
guaranteed whereas fixed point property is still expected. In such situations,
the following idea may help: Find a metric in which the original space remains
complete and in which the original map becomes a contraction. Then, the
Contraction Principle applies. On the other hand, the fixed point property is
a metric-independent, algebraic property. Thus our map must have a unique
fixed point.

Another standard trick is to verify that some iterate of the given map
is a contraction and then the unique fixed point property again follows from
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the Contraction Principle. In fact, this approach is less general than the
remetrization technique: If, for T: X — X there exists k € N such that 7%
is a g-contraction of the metric space (X,d), then 7' is a {/g-contraction of
the metric space (X, dy), where

di(w,y) == d(z,y) + ¢ Fd(Ta,Ty) +---+q & dT 2, T 'y) (2,9 € X).
Indeed, by the g-contractivity of T*, we have
de(Tz, Ty) = d(Tz, Ty) + ¢ Fd(T?2, T%y) + -+ ¢~ = d(T*z, T*y)
_1 2 2 1—k—1 1
<d(Tx,Ty) +q *d(T?z, Ty) +---+q 7 d(z,y) = ¢~ dp(z,y).

We note that if, in addition, 7" is continuous and (X,d) is complete, then
(X,dy) is also complete (for the details, see Jachymski [14,15]). Hence, in
this setting, the Contraction Principle can be applied.

The remetrization idea appears in the paper of Bielecki [6], and mani-
fests in an extremely elegant proof of the Global Existence and Uniqueness
Theorem for ODEs. In fact, this proof shows the unique solvability of an inte-
gral equation which is equivalent to the original Cauchy problem. Comparing
this integral equation to that of Volterra, one can immediately discover their
relationship. However, Volterra equations are handled quite differently: The
standard approach is to show that some iterate of the map determined by
the Volterra equation is a contraction in the original norm.

Therefore the question arises: Can we prove these results in the same
way? In this paper, we give a positive answer to this question by Bielecki’s
method. We are going to investigate the nonlinear integral equation:

x(t) = f(t) + /H(t) K(t,s,x(s)) du(s).

The unknown function x belongs to the space of continuous functions ¢ (X, B),
were B is a Banach space and X is a locally compact topological space with
Radon measure p. The integral is meant in the sense of Bochner. The domain
of integration is given by a relation H C X? whose properties will be clarified
later.

Our main results provide existence and uniqueness theorems for the
solvability of the equation above. The sufficient condition that we need, the
most important feature of the theorem, is the solvability of a homogeneous
linear integral inequality which is connected to the Lipschitz property of the
kernel function K. The advantage of this assumption is obvious: Finding a so-
lution to a homogeneous linear integral inequality is much easier then finding
the (unique) solution of an inhomogeneous nonlinear integral equation. Al-
though this is not the aim of the paper, let us point out that our assumption
can also be checked via standard numerical methods.

Let us point out, that several important particular cases of the above
equation have been studied intensively. The monographs of Corduneanu [g],
of Gripenberg, Londen, and Staffans [12], and of Guo, Lakshmikantham, and
Liu [13] give an excellent overview of the topic. Corduneanu [8] presents a nice
issue on the prehistory and the evolution of the seminal works of Fredholm
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[10] and Volterra [20]. For possible applications of the Bielecki renorming see
Garcia-Falser and Reich [11, Remark 3.4].

Recent developments about integral equations basically extend the range
of the functions beyond Banach spaces to fuzzy spaces [19] and so-called L-
spaces [1]. However, the unknown functions are defined only on intervals.
In our setup, the generalization concerns the domain, as well. This has an
immediate effect even to the classical cases: we can treat the Volterra- and
Fredholm-type equations with the Global Existence and Uniqueness Theorem
simultaneously.

The paper is organized as follows. As preliminaries, we collect the most
important tools from set theory, measure theory and functional analysis.
The most important results in this section are an extension lemma which
allows to change local fixed point properties to a global one, and a regularity
lemma, which corresponds to the continuity of the classical integral function.
An alternative approach to the Bochner integrability of continuous maps
on compact domains is also presented. Finally, we introduce the spectral
radius function and enlighten its connection to an integral equation. In the
next section, we present our main results with their proofs. Finally, in the
last three sections, we give several applications to Fredholm- and Volterra-
type integral equations and to Presié¢-type functional equations. Our method
allows us to present the Global Existence and Uniqueness Theorem of ODEs
and of a Wave-type Equation in a common, unique form.

2. Preliminaries

Throughout the paper, N and R stand for the set of positive integers and
the set of positive reals, respectively. The aim of this section is to give a
brief overview of the needed theoretical background. In the first well-known
statement let us recall the basic fixed point theorem which was established
by Banach [2] in 1922.

Contraction Principle. If 7" is a self-map of a nonempty set S such that .S can
be equipped with a complete metric in which T is a contraction, then T has
a unique fixed point in S. Furthermore, for all z; € S, the sequence (x,,)nen
defined by the Banach—Piccard iteration:

Tpt1 =Tz,

converges to the unique fixed point of T'.

In the sequel, some set-theoretical tools are presented. As usual, BX
stands for all maps acting on X and having values in B. The restriction of
2z € BX to aset HC X is denoted by z[g. Let % be a subset of BX and let
T be a self-map of Z. For a subset H of X, denote the set {xg: v € F}
by . We say that T is restrictable to g if

(Tz)lg= (Ty)lw  whenever  z[py=ylu .

In this case, Ty (xlgy) := (Tz)[g defines a function Ty : Fyg — Fp, which
we call the natural restriction of T to Fg. Our first extension result gives a
sufficient condition in order to local fixed point properties be a global one.
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Proposition 1. Let # C BX let T: F — F, and let 7 C P(X). Assume
that

(i
11 U{HE%|HCH1QH2} HlﬂHgforallHl,ngjf

)
(i)

(iil) if xlg€ Fpu for all H € S, then x € F;

(iv) T is restrictable to Fp for all H € J;

(v) for all H € A, the natural restriction Ty has a unique fixed point
T € Fp.

FC is a cover for X;

Then, T has a unique fixed point in F.

Proof. Assume that Hy, H € 5 and H C Hy. If v € Fp,, then there exists
u € % such that x = ulp,. Since T is restrictable both to #p, and Fy,

(Tayo) = ((Tw) mo) o= (Tw)a= Th(ulm) = Tu(la)

follows. In particular, if xz, is the unique fixed point of T, , we arrive at

iy la= T, () 5= T (THH)-

Thus zg,[H is a fixed point of Ty in .Fg. However, the fixed point of Ty is
unique, yielding g, [m= xm. This property enables us to define a function
in the following way. If t € X, then there exists Hy € 4, such that ¢t € Hy.
Then let x(t) := xp,(t). The definition is correct: If H; and Hs share these
properties, then there exists H € 7, such that H C Hi N Ho and t € H.
Hence, using the previous observation:

v, (t) =z ln () =2u(t) =zm,ln (t) =2, (1)

Obviously, ] g= xg holds for all H € 27, and hence x belongs to .#.
Moreover, we show that x is a fixed point of T'. Indeed, if t € X and H € 7
contains ¢, then

(Tz)(t) = (Tz)lu (t) = Tu(21u)(t) = Ta(z)(t) = 2u(t) = 2(1).
On the other hand, any fixed point z € .% of T possesses [ g= x . Therefore,

the uniqueness of xy provides the uniqueness of x, as well. (]

Using relations instead of covering families can be more convenient: It
turns out that some well-known properties of relations imply the first three
properties of Proposition 1. We summarize these in the next result. As usual,
any subset H of X? is termed a relation on X. Recall that any relation H
induces a set-valued map H(-) via the definition

H(t):={se X |(t,s) € H}.

A relation H on a topological space X is called strongly surjective, if the
induced set-valued map generates an open cover:

U H®)® =X

Proposition 2. Let H be a relation on a nonempty set X.
(i) If H is transitive, then H(s) C H(t) whenever s € H(t).
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(i) If H is reflexive and transitive, then, for all ti,ts € X,
U{H(t) | H(t) C H(t1) N H(ta)} = H(t1) N H(tz).

Assume that X,Y are topological spaces, and H is a strongly surjective rela-
tion on X. If a map x: X — Y satisfies x[ g€ C(H(L),Y) for allt € X,
then v € €(X,Y).

Proof. Assume that H is transitive. Fix s € H(t) and choose u € H(s). Then,
(t,s) € H and (s,u) € H. By transitivity, (t,u) € H. Thus v € H(t), and
hence H(s) C H(t) follows.

Assume that H is reflexive and transitive, and let ¢ € Hy(t)capHa(t)
be arbitrary. Reflexivity ensures that ¢ € H(t); transitivity implies H(t) C
H,y(t) N Ha(t). Therefore

H(t) N H(ts) C | J{H () | H(t) € H(t) N H(t2)}-

The reversed inclusion is trivial.

Assume that X,Y are topological spaces and H is strongly surjective
on X. Consider a function z: X — Y fulfilling our requirement. Fix ty € X
and let V' C Y be a neighborhood of x(t). Since H is strongly surjective,
to € H(t)° for some t € X. The restriction z[f ) is continuous, thus there
exists a neighborhood W' C H(t)° of t such that z(W) = x[gu) (W) C V.
On the other hand, W can be represented as W = UNH (t)°, where U is open
(in the original topology) and contains ty. Thus W C X is a neighborhood
of ¢y in the original topology, as well. Therefore, € €(X,Y). O

Consider the space Z(X, B) of all bounded maps from a nonempty set
X to a metric space (B,d). In what follows, we will equip this space by a
family of equivalent norms parametrized by admissible weight functions. A
function p: X —]0,+oo[ is termed an admissible weight function on X if
it satisfies 0 < infx p < supy p < +o0; the collection of such functions is
denoted by #(X). For an arbitrary p € #/(X) and z,y € #(X, B), define

dy(z,y) = tsg)gp(t)d(x(t), y(t)).

The following result summarizes the properties of the function d,, which will
play a key role in our renorming processes. Its proof is taking the standard
steps which are used when B is a normed space. However, for the sake of
completeness, we provide a short but detailed argument.

Proposition 3. Let X be a nonempty set and (B,d) be a metric space. Then
{d, | p € W(X)} is a family of pairwise equivalent metrics on the space
HB(X,B). In addition, if (B, d) is complete, then (#(X, B),dp) is also com-
plete for all p € W (X). Furthermore, the space € (X, B) of all continuous
maps from a compact topological space X to a complete metric space (B,d)
is a complete subspace of (#(X,B),d,) for allp € #(X).

Proof. It is elementary to see that d, is a metric on #(X,B) for all p €
# (X). For simplicity, the constant weight function p(t) = 1 on X will be
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denoted by 1. One can verify that
infp-dy <d, <supp-d,
X X

which proves that d,, is equivalent to dy for all p € #/(X). Hence, {d, | p €
# (X)} is a family of pairwise equivalent metrics.

Let (B, d) be a complete metric space. In view of the equivalence of the
metrics d,, it is sufficient to show that (#(X, B),d1) is a complete metric
space.

As previously, denote the set of all functions from X to B by BX. Then,
the Cauchy criterion of uniform convergence holds in BX: A sequence (z,,)
tends to € BX in the supremum distance dy if and only if, for all ¢ > 0
there exists § > 0, such that

d(zn(t), zp (1) <e
holds, whenever n,m > 6 and t € X.

Consider now a Cauchy sequence in (#(X, B), d1). This sequence fulfills
the Cauchy criterion and hence converges uniformly to some element of BX.
The triangle inequality guarantees that this element belongs to #A(X, B),
which then yields completeness.

If X is a compact topological space, then € (X, B) is a linear subspace
of #(X, B). Therefore, any Cauchy sequence (z,) of € (X, B) is a Cauchy
sequence also in Z(X, B). By the previous part, (x,) tends to some element
x € B(X,B) in the supremum distance. Now fix to € H arbitrarily. By the
triangle inequality,

d(z(t), z(to)) < 2dy(x,xn) + d(zn(t), zn(to))

holds for any t € X. This estimation gives the continuity of x at ty. Therefore
% (X, B) is complete. O

In a part of the investigations, we will use the Bochner integral [7]. For
convenience, we recall its definition and its most important properties based
on Yosida’s book [21]. Let (X, X, ) be a measure space and let (B, | -]|) be
a Banach space. Consider a simple function z: X — B of the form:

2(t) = X, ()b,
k=1

where E1,..., E, are pairwise disjoint members of the o-algebra X, the ele-
ments by, ...,b, belong to B, and xg is the characteristic function of E. If
#(Ey) is finite whenever by, # 0, then x is called Bochner integrable, and its
Bochner integral is defined by

/X xdy = Z,u(Ek)bk.

k=1
A measurable function z: X — B is Bochner integrable, if there exists
a sequence of integrable simple functions (z,,), such that

lim |z — x| dp =0,
X

n—oo
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where the integral on the left-hand side is the usual Lebesgue integral. In this
case, the Bochner integral of x is given by

/xdu = lim Tpdp.
X

n—oo X

It can be shown that the definitions of Bochner integrability and the
Bochner integral are independent on the choice of the approximating se-
quence. The Bochner integral shares many properties with the Lebesgue in-
tegral: It is linear, o-additive and fulfills the triangle inequality.

Bochner’s majorant condition for integrability plays a distinguished role.
A function f: X — B is called Bochner-measurable if it is equal p-almost
everywhere to a function g taking values in a separable subspace L of B,
such that the inverse image g~ (V) of every open set V in B belongs to .
Bochner’s criterion states that a Bochner-measurable function z: X — B is
Bochner integrable if and only if

/ el dp < oo.
X

The last proposition gives a sufficient condition under which continuous
functions are Bochner integrable. Its statement turns out to be crucial in our
investigations.

Proposition 4. If X is a compact topological space with a finite Borel measure
and B is a Banach space, then € (X, B) consists of Bochner integrable maps.

Proof. Let x € (X, B) be arbitrary. Since x is continuous and X is com-
pact, 2(X) is compact. In particular, 2(X) is completely bounded and thus
contains a countable dense subset D. The linear hull of D provides a separa-
ble subspace L: The rational linear combinations of D is a countable dense
subset in L. Hence the range of x is contained in a separable linear subspace
of B. By the continuity of x, the inverse image ~!(V') of any open set V in
B is open in X. That is, x71(V') belongs to the underlying Borel o-algebra.
Therefore x is Borel-measurable.

Using the compactness of X, the continuity of x, and the finiteness of
the Borel measure p, we arrive at

[ el < [ lallow = foloan(X) < o
b'e X
Thus the desired statement follows from Bochner’s majorant condition. [

Assume that X is a topological space with a Radon measure u. A rela-
tion H C X2 is called p-continuous at a point to € X if, for all € > 0, there
exists a neighborhood U of t(, such that

p((H(6)\H (to)) U (H(to)\H(1))) < e
whenever ¢t € U. If H is p-continuous at each point of X, then we say that
H is p-continuous.
As it is well-known, the integral of an integrable function is continuous
at its upper limit. The next proposition extends this fact and, what is more
important, will justify those integral equations which we are going to study.
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Proposition 5. Let X be a topological space with a Radon measure u, and let
H C X? be a transitive, compact valued, strongly surjective, and p-continuous
relation. If B is a Banach space and R: H — B is continuous, then

O(t) := /H(t) R(t,s)du(s)

defines a continuous map : X — R.

Proof. Note that the definition of ® makes sense in view of Proposition 4.
Fix ty € X. The triangle inequality for the Bochner integral guarantees that

| / R(t, s) du(s) - / R(to, s) du(s)
H(t) H(to)

<

/ R(t, s) du(s) — / R(t, s) du(s)
H()

H()NH (to)

/ Rits) duts) - [ Rlto, 5) dy(s)
H(H)NH (to) H(H)NH (to)
/ R(to, s) du(s) — / R(to, s) du(s)
H(t)NH (to) H(to)
<[ RE)] duts)
H(t)\H (to)

+ / IR(t,s) — Rlto, )| du(s)
H($)NH (to)

4 / | R(to, 5)I| dpu(s).
H(to)\H(t)

Here, the last term tends to zero as t — ty by the absolute continuity of
the integral and by the p-continuity of H at ty. Next, we prove the same
property of the first term by showing the boundedness of the integrand at a
neighborhood of 3. Since H generates a strongly surjective map, there exists
t* € X such that tg € H(t*)°. By transitivity, H(t) C H(t*) if ¢ € H(t*).
Thus

_|_

_|_

sup [|R(t,s)|| < sup{[|[R(¢,s)]: t,s € H(t")} < +oo,
SEH(t)
since the right-hand side is the continuous image of a compact set. Using the
p-continuity, we arrive at the desired statement.
Finally, we show that the middle term tends to zero as t — ty. Clearly,

it is sufficient to prove that

lim sup [|R(t,s) — R(to,s)| =0.

t—to SEH (to)
Let € > 0 be arbitrary. If s € H(tp), then H(s) C H(tp). On the other
hand, by the continuity of R, there exists a neighborhood U of t; and a
neighborhood V of s, such that

g
| R(t,0) — R(to, s)| < 5
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whenever (t,0) € (Us x Vi) N H. The family of s-neighborhoods {V; | s €
H(to)} is an open cover for the compact set H (to). Thus, H(ty) C Vi, U---U
V., holds with suitable s-neighborhoods. Define U := U,, N---NUs, . Then,
U is a neighborhood of ¢y. For (t,0) € (U x H(ty)) N H, there exists an index
je€{l,...,m}, such that o € V;,. Hence

[1R(t, o) = R(to, o)l| < [[R(t,0) = R(to, s;)|| + IR (to, s5) — R(to, o)

D
2 2
This completes the proof. O

Observe that the existence of a compact-valued strongly surjective re-
lation H C X2 has a serious consequence: the underlying topological space
X must be locally compact. Although this fact will not be stated explicitly,
our results remain true in such spaces.

Let X be a topological space with a Radon measure p and let H C X2 be
a reflexive, transitive, compact-valued, strongly surjective, and u-continuous
relation. Then, by Proposition 5, the map Ay ,, defined by

(Ap,u)(t) == /H(t) xdp

is a linear selfmap of the space € (X, R). This we will be called the core map
associated to the pair (H,p). In this context, it is also natural to introduce
the spectral radius function of A, by

(0 i= timsup (A5, 1)0)

k— o0

S ([ (L[ o) o) o)

The spectral radius function is monotonic in the following sense: If s € H (),
then the transitivity of H implies that H(s) C H(t), and hence, pg . (s) <

P ().
Proposition 6. Let X be a topological space with a Radon measure p, and let
H C X2 be a reflexive, transitive, compact valued, strongly surjective, and
w-continuous relation. Let Ly > 0 and tg € X be such that
LO . pH,,u(tO) < 1.

Then, the integral equation

(0 =1+ Lo [ ts)du(s) 1)

H(t)

has a positive solution £ € € (H (tp),R).

Proof. Define the sequence of real valued functions (£,,)°, on H(to) by

n

Go(t) =Y LE - (Afy 1) ().

k=0
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Then, (¢,,) is a nondecreasing sequence whose members belong to the space
¢ (H ( 0); R) by Proposition 5. Moreover ¢, = 1, which implies that 1 = ¢y <
¢,,. It is also easy to see that, for all t € H(tp) and n € N,

gn(t) =1+ LO . (AH,#ﬁn,l)(t) =1+ Lo/ fnfl(s) du(s), (2)
H(t)
which shows that (£,) is a Banach—Piccard iteration sequence.
The Cauchy-Hadamard Theorem and the assumption Lg - pg,,(to) < 1
guarantee that the series

E:Lo (A% 1) (to)

is convergent. On the other hand, for t € H(t(), the transitivity of H implies
that H(t) C H(tg), hence, for all k € N,

W) = [ @) < [ @)
H(t) H(to)

= (A’;—I,ul) (tO)

Therefore, the Weierstrass convergence theorem yields that

E:Lo (Af,1) ()

is uniformly convergent for ¢ € H(tg). The members of (¢,) are continuous;
therefore, the pointwise limit function ¢ := lim,, _,, £, is also continuous on
H(tp). The inequality 1 < ¢,, implies that ¢ is positive everywhere. Finally,
upon taking the limit n — oo in (2), it follows that ¢ satisfies the integral
equation of the theorem. O

If the spectral radius function of the core map associated to (H,p) is
equal to zero at some ty € X, then as an immediate consequence of Proposi-
tion 6, we get that the integral Eq. (1) has a positive continuous solution on
H(ty).

3. Nonlinear integral equations

Our main results are presented in three theorems. The first one concludes
the unique resolvability of nonlinear integral equations provided that there
exists a solution of the corresponding linear homogeneous integral inequality.
This assumption makes possible to apply the renorming technique of Bielecki.
Moreover, it can easily be checked in practice via numerical methods.

Theorem 1. Let X be a topological space with a Radon measure p, and let
H C X2 be a reflexive, transitive, compact valued, strongly surjective, and -
continuous relation. Let B be a Banach space, and assume that the continuous
kernel K: H x B — B fulfills the Lipschitz condition:
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for all (t,s) € H and x,y € B with a continuous function L: H — Ry. If
f €€ (X,B) and, for allty € X, the linear homogeneous integral inequality

| L) duts) < oo Q
H(t)
has a positive solution ¢ € €(H (ty),R), then the nonlinear integral equation
o= F0+ [ K (5 2(0) duts) (@)
H(t

has a unique solution x in € (X, B).

Proof. Note that the inequality (3) is correctly formulated by the transitivity
of H, and that (4) makes sense in view of Proposition 4. Now, consider the
map 7" defined by

(Tz)(t) :== f(t) + /H(t) K(t,s,x(s)) du(s).

By Proposition 5, the right-hand side above is a continuous function of ¢.
Thus, T is a self-map of the space €(X, B).

Fix now tg € X. If z,y € €(X, B) fulfill 2[g )= ylH(,), then by the
transitivity of H, for all ¢ € H(ty), we obtain

(Tx)m@,) () = f(8) + K(t, s, z(s))du(s)
H(t)

= f(t)+ K(t, 5,2 1ty (5)) du(s)
H(t)

=f(t)+ e K(t,s,ylr(t) (s)) du(s)

= f(t) + K(t,s,y(s)) du(s) = (Ty) m ) (1)
H(t)

This shows that T' is restrictable to € (H (ty), B). Next we prove that this
restriction, denoted by T as well, has a unique fixed point in € (H (o), B).
Let £: H(tg) — Ry be a positive and continuous solution of (3). By the
compactness of H(ty) and by Proposition 5 again,

1
‘= max —— L(t,s)l(s)du(s) < 1.
0= max s /H | HE96) )
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Forz,y € €(H(ty), B), we have Tz, Ty € ¢ (H (to), B). Applying the Lipschitz-
condition, with the notation p := 1/¢, we get that, for all t € H(¢o):

p@[[(Tx)(t) = (Ty))]| < p(t) /H(t) K (L, 5,2(s)) — K (L, 5,y(s))[ dp(s)

IN

0 /H EEIEOROIETE

IA

Lit.s)
(1) /H (t) p() lx(s) — w(s)llp(s) du(s)

(t,s) Mz —
< H(t) (8) du(s)) I yllp
_ (f(t) /H(t)L( $)0(s) dp(s )) lz = yllp
< qllz —yllp-

Taking supremum in ¢ € H(ty) in the initial term, we arrive at || Tz —Ty|, <
g||z — y||p- This means that the restriction of T to € (H (to), B) is a contrac-
tion in the p-norm. Thus T has a unique fixed point in € (H (to), B) by the
Contraction Principle. Finally, Proposition 1 and Proposition 2 complete the
proof. O

It is important to observe that, under these assumptions, our theorem
implies that the integral equation

)y =1+ /H(t) L(t,s)l(s) du(s) (5)

has a solution x € €(X,R). On the other hand, consider the sequence (¢,)
determined by the Banach—Piccard iteration

L(t) =1, L(t):=1+ /H(t) L(t, s)ln—1(s) du(s).

Then, (¢,) is nondecreasing with respect to the pontwise ordering, it con-
verges to ¢, and the convergence is uniform on H(tg) for all ¢y € X. There-
fore, 1 = £y < ¢ shows that ¢ is a positive continuous solution of (5) and thus
also of (3) over the entire set X.

The next result is a global existence and uniqueness theorem for the
solvability of nonlinear integral equations. The role of the inequality (3) is
hidden: Instead, we use the spectral radius function.

Theorem 2. Let X be a topological space with a Radon measure p, and let
H C X2 be a reflexive, transitive, compact valued, strongly surjective, and -
continuous relation. Let B be a Banach space, and assume that the continuous
kernel K: H x B — B fulfills the Lipschitz condition:

1K (t,s,2) = K (t,s,y)|| < L()l|lz — yl|

for all (t,s) € H and x,y € B with a continuous function L: X — Ry. If
f € €(X,B) and the spectral radius function pg,, s identically zero on X,
then the nonlinear integral equation (4) has a unique solution x in € (X, B).
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Proof. Obviously, the Lipschitz condition of this theorem implies the weaker
Lipschitz condition of Theorem 1. To draw the conclusion of this theorem,
it is enough to verify the existence of a positive continuous solution of the
integral inequality (3) for all ¢y € X. For this goal, it is sufficient to prove
the solvability of the integral inequality:

Lo /H , Ko)auts) < 1),

where Lo = supycpy,) L(t). This assertion, however, directly follows from
p,u(to) = 0 and Proposition 6 because any solution of (1) is also a solution
of the above inequality. O

Finally, we state a theorem which allows multivariable kernels. Let us
emphasize that, due to this property, it allows even retardations in the non-
linear integral equation.

Theorem 3. Let X be a topological space with a Radon measure p, and let
H C X? be a reflexive, transitive, compact valued, strongly surjective, and -
continuous relation. Let B be a Banach space, and assume that the continuous
kernel K: H x B™ — B fulfills the Lipschitz condition:

n
HK(t,S,ml,...,.’En) - K(t787y17"'7yn)” S ZLk(t,S)ka _yk?”
k=1

for all (t,s) € H and xy,yx € B with continuous functions Ly: H — R4.
If f € €(X,B), the functions p1,...,0n € €(X,X) satisfy pp o H C H
for all k € {1,...,n}, and, for all ty € X, the linear homogeneous integral
inequality

n

S Bt o) nts) < 1)

k=1

has a positive solution £ € € (H (tp),R), then the nonlinear retarded integral
equation

o) = £(t) + /H (5210, atents)) )

has a unique solution x in € (X, B).

Obviously, Theorem 3 implies Theorem 1. However, the proof of the
above result is completely similar to that of Theorem 1, therefore it is omitted.

4. Applications to Fredholm-type equations

If X is a compact topological space with a Radon measure p, then H = X2
is a reflexive, transitive, and p-continuous relation on X. Using this easy
observation, Theorem 1 reduces to the next Fredholm-type result:
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Theorem 4. Let X be a compact topological space with a Radon measure p,
and let B be a Banach space. Assume that the continuous kernel I : X?xB —
B fulfills the Lipschitz condition

1K (E,s,2) = K(t,5,y)|| < L(E, s) ]|z =yl

for allt,s € X and x,y € B with a continuous function L: X? — R,. If the
linear homogeneous integral inequality

/zmﬂw@dmg<aw
X

has a positive solution ¢ € € (X,R), then the nonlinear Fredholm-type equa-
tion

/Ktsx )dp(s) (6)

has a unique solution x in € (X, B).

Not claiming completeness, we sketch two consequences of this result.
The first corollary is a special case of Theorem 4 if £ = 1. In the second one,
we assume that the Lipschitz modulus has a product form.

Corollary 1. Let X be a compact topological space with a Radon measure p,
and let B be a Banach space. Assume that the continuous functions K: X2 x
B — B and L: X? — R, fulfill the conditions

[K(t,s,x) = K(t,s,y)] < L(t, s)[|z —y| and / L(t,s)dp(s) <1
b'e
forallt,s € X and x,y € B. Then the nonlinear integral Eq. (6) has a unique
continuous solution x: X — B.

Corollary 2. Let X be a compact topological space with a Radon measure p,
and let B be a Banach space. Assume that the continuous functions K: X? x
B — B and Ly, Lo X — Ry fulfill the conditions:

K (t,s,2) = K(t,s,y)l| < Li(t)La(s)llz —y[  and /X Li(s)La(s)dp(s) <1

for all t,s € X and z,y € B. Then, the nonlinear integral Eq. (6) has a
unique continuous solution x: X — B.

Proof. First choose ¢ > 0, so that

!LGMQ+QM@MM@<1

be valid. Then, all conditions of Theorem 4 are satisfied with L(¢,s) :=
(L1(t) + ¢)La(s) and £ := Ly + ¢. Indeed

/H L(t,3)6(s) dp(s) = /H (L1 () + €)La(s) (L1 (5) + ) dpu(s)
— (La(t) +0) / La(s)(La(s) + ¢) dp(s)

H
< Ly(t) +c= (1),

Thus, the statement follows from Theorem 4. O
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The particular cases of Corollarys 1 and 2, when the kernel is the linear
transform of the unknown function, may also be mentioned:

Corollary 3. Let X be a compact topological space with a Radon measure .
If f: X - R™ and A: X2 — R™ ™ are continuous and satisfy

/ 1At 3)]| dpu(s) < 1,
X

then the inhomogeneous linear integral equation

o) = £(0)+ [ A(t.5)a(s) ducs)
has a unique continuous solution r: X — R™.

Corollary 4. Let X be a compact topological space with a Radon measure .
If f: X = R™, further A;: X — R™¥F and Ay: X — RF*™ are continuous,
such that

/ [A1(s) [l A2(s) ] dp(s) <1,
X

then the inhomogeneous linear integral equation

£(t) = () + /X Ay () As(5)2(s) dpa(s)

has a unique continuous solution r: X — R™.

Observe that the original result of Fredholm follows from Corollary 3 in
the special setting when X is a compact interval, u is the Lebesgue measure,
and the kernel takes real values.

5. Applications to Volterra-type equations

The standard exposition of Volterra’s result proves that a suitable iterate of
the map defined via Volterra’s equation is a contraction. Instead of the stan-
dard approach, we use the renorming technique and obtain a more general
result. Now the solvability of the corresponding homogeneous linear inequal-
ity (3) remains hidden.

Consider the standard partial order < on R™ induced by the nonnegative
orthant [0, c0[™: For a,b € R™, the inequality a < b means that the coordi-
nates of b — a are nonnegative. In this case, we define the n-dimensional
interval (rectangle) [a,b] C R™ by

[a,b] :={u € R" | a <u < b}
We say that a set D C [0, 00[™ is rectangular (with respect to the origin) if,

for all w € D, the rectangle [0, u] is contained in D and the set [0, co["\D is
closed in R"™.

Theorem 5. Let D C [0,00[" be a rectangular set, let A(D) := {(t,s) | t €
D, s € [0,t]}, and let B be a Banach space. Assume that the continuous
kernel K: A(D) x B — B fulfills the Lipschitz condition

||K(t7 5733) - K(tv Svy) ” < L(t)”[‘C - y”
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for all (t,s) € A(D) and xz,y € B with a continuous function L: D —
R.. If f: D — B is a continuous function, then the nonlinear Volterra-type
equation

z(t) = f(t) +/ K (t,s,2(s))ds (7)
0,¢]
has a unique solution x in € (D, B).

Proof. Let X = D be equipped with the Euclidean subspace topology and
set H := A(D). Then H(t) = [0,t] for all ¢ € D, showing that the values of
H are compact. Furthermore, H is reflexive, transitive, strongly surjective,
and continuous with respect to the n-dimensional Lebesgue measure .

In what follows, we show that the spectral radius function pg » is iden-
tically zero on D. To accomplish this goal, first we prove by induction on k
that, for all t € D,

k
(@mma=ﬂ%?. ®)

For k = 1, we have
(m“nm:/ 1AA(5) = A([0, 1),
[0.1]

Now assume that (8) holds for some k, and let ¢ = (¢,...,t,). Then, by
Fubini’s theorem

s k
(A = /[ TN = [ A

04 (EH»
1

SR

k k
= — 81 8p) dA(S1y ..., 8p) = Il/ s; ds;
wwﬁJl JrdMen )= L]

Loyttt (o.M

w17 ((k+ 1

d\(s)

Finally, using the just have proved equality (8), for the spectral radius func-
tion pg x, we obtain

1 A([0,¢t
pu.A(t) = limsup ((Alﬁl A1)(t))* = limsup (k[ : ]2 =0
Thus, the assertion directly follows from Theorem 2. O

As the most important applications to Theorem 5, we present here two
Corollaries. The first one extends the classical result of Volterra. In this exten-
sion, the Lipschitz property of the kernel can be checked directly; therefore,
we omit the details of the proof.

Corollary 5. Let D C [0,00[" be a rectangular set and let A(D) := {(t,s) |
t € D,s e [0,t]}. If f: D — R™ and A: A(D) — R™ ™ qre continuous
functions, then the inhomogeneous linear Volterra equation

x(t) = f(t) + o A(t, s)x(s)ds
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has a unique continuous solution r: D — R™.

The second application of Theorem 5 is an existence and uniqueness
result for a boundary value problem for a special kind of partial differential
equation. In the particular case when n = 1, it reduces to the Global Existence
and Uniqueness Theorem, while for n = 2, it extends the one-dimensional
Wave Equation.

Corollary 6. Let D C [0,00[" be a rectangular set and denote
Doy :={(t1,...,t,) €D |t1...t, = 0}.
Let F: D x R™ — R™ be a continuous map which fulfills the Lipschitz con-
dition
[E(tz) = F(t,y)ll < L)z -yl

for allt € D and x,y € R™ with a continuous function L: D — Ry and
let ¢: Dg — R™ be a continuous function such that partial derivatives O, p,

On—10pp, -+ , 09 Opp exist on Dy. Then there exists precisely one contin-
wous solution x: D — R™ of the Cauchy problem
O+ Opa(t) = F(t,x(t)) onD, xz(t)=¢(t) onDy. (9)

Proof. Denote the set of singular and diagonal n x n matrices with entries in
{0,1} by II,. First, we show that (9) is equivalent to the integral equation:

(1) = f(t) +/ F(s,2(s)) ds, (10)
[0,¢]
where f: D — R™ is defined by
f(t) _ Z (_1)n—1—rank(P)(p(Pt).

Pell,
For a fixed 7 € [0,00[ and k € {1,...,n} such that DN (D — Tey) # 0,
introduce the difference operator Ay.,: €(D,R™) — € (D N (D — 1e), R™
by

(Apr2)(t) = x(t + Teg) — x(t),

where e, stands for the kth member of the standard base of R™.

Assume that z: D — R"™ is a continuous solution of the Cauchy problem
(9). Then z is partially differentiable with respect to its nth variable on D.
Similarly, 9, is partially differentiable with respect to its (n — 1)st variable
on D. Finally, 05 - -9, is partially differentiable with respect to its first
variable on D and (9) hold on the indicated domains. The first equality
shows that 0, - -- 9,z is continuous on D.

Let t = (t1,...,tn) € D be fixed. Integrating the first equality in (9)
side by side with respect to the first variable on the interval [0,¢1] and using
the Newton-Leibniz formula in the first variable, we obtain

t1
(Al;tlag . '8n$)(0,t2, e ,tn) = / F(Sl,tQ, e ,tn,$(81,t2, e ,tn)) dSl.
0
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Applying the same process on the forthcoming variables, finally we arrive at

(Avyy - Apyy,2)(0,...,0)

/ / (81, Sy (81, .-, 8p))dsy -+ dsy,

— [ Flsa()ine),
[0,¢]
On the other hand, using the boundary condition of (9), one can see that

(Arity A, 2)(0,...,0) = a(t) + Y (=) Pp(Pt) = a(t) — f(2).
Pell,

For the converse statement, observe that the partial derivatives 0, f,
On—10nf, ..., Oa---Opf exist on D by the similar properties of . Further-
more, each term in the definition of f is independent of one of the variables,
thus 0y -+ 9, f =0 on D. On the other hand, by Fubini Theorem

tn t1
+/ / F(s1y..y8n,x(81,...,8n))dsy -+ dsy,
0 0

holds for any continuous solution x: D — R™ of (10) and for all ¢t =
(t1,...,tn) € D. Differentiating both sides with respect to ¢,,...,t;, we ob-
tain the first equality in (9). For the second equality, let ¢t = (¢1,...,t,) € Dq
be fixed. Then there exists k € {1,...,n} such that ¢, = 0. In this case, the
above equation yields () = f(¢). Thus, it remains to show that f(t) = (¢)
holds.

Let E} € II,, be that matrix, whose entries are zero, except for the kth
member of its diagonal. Let Py := FE — E), where E is the n X n unit matrix.
Consider the transformation T: TI,, — II,, given by T(P) := P + Ej, where
+ stands for the addition in the set {0, 1} modulo 2. Clearly, T is a bijection
on IT,\{ Py}, and ¢ = 0 ensures T'(P)t = Pt. Furthermore, the parity of the
ranks of P and T'(P) are the opposite, and Pyt = ¢t. Thus

fy= Y =yt Plo(pr)

Pell,
1
G R E T DI (G U R G e R A D)
Peln\{Py}
1 g —1l—ran
— W(Pkt) 4= Z (_1)n717rdnk(P) + (_1)n 1 k(T<P>>)<p(Pt)
Pellp\{Py}

= @(Pt) = o(1).

Applying Theorem 5 to the equivalent integral form of our Cauchy problem,
we get the statement of the Corollary. O

As we have pointed out, the Global Existence and Uniqueness Theorem
of ODEs is a direct consequence of Corollary 6. However, it is also worth
mentioning that the original approach of Bielecki to this result manifests in
the proof of Theorem 1. Indeed, let H C R? be defined by H(t) := [r,t] for
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7 < t,and let f =& € R" be fixed initial value. Assume that the Lipschitz-
modulus depends only on the second variable of the kernel. If

0(t) = exp (/: L(s) ds) ,
then

/: L(s)0(s) ds — /: L(s) exp (/T L(u)du) ds = /: % exp (/T L(u)du) ds
— exp (/t L(u)du> =) — 1 < L),

Thus ¢ solves the corresponding inequality of (3) in this particular setting.
Observe also, that the formula (8) in Theorem 2 shows a tight analogue with
the standard approach to Volterra’s result. However, this standard approach
proves that a suitable iterate of the map defined by the original integral
equation is a contraction in the original supremum norm.

6. Applications to Presi¢-type equations

Finally we investigate a class of single valued functional equations introduced
by Presi¢ in [18] and [17]. An excellent English exposition of his results can
be found in [16]. The interaction of algebraic and analytic aspects of this
topic is elaborated in [3] and [4]. The pure algebraic feature of the linear
Presié-type equation is completely described in [5]. The next result is a suffi-
cient condition for the unique solvability of the Presi¢-type equation, with no
algebraic restrictions on the substituting functions. Let us emphasize, that
both its philosophy and idea of proof are the same as in Theorem 4.

Theorem 6. Let H be a reflexive, compact valued, strongly surjective relation
on a topological space X, and let (B,d) be a complete metric space. Assume
that ©1,...,0n € €(X,X) are such that o, o H C H for all k € {1,...,n},
and F € €(X x B™, B) satisfies the Lipschitz condition

d(F(taxh cee 7.’L'n)7 F(t7y17 e 7y’n)) S Z Lk(t)d(fkyyk)
k=1

for allt € X and xy,yr € B with continuous functions Ly: X —]0,+oo[. If
there exists a positive function € in €(X,R) satisfying

> Li(t)e(en(t) < £(t)

k=1

for allt € X, then there exists a unique solution f in € (X, B) of the Presié-
type functional equation

F&)y =F(t, fer(1)), -, f(en())). (11)
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Proof. For f € €(X, B), consider the map T defined by

(Th)(E) = F(t, f(er(t), -, Flen())-
Clearly, T: (X, B) — ¢ (X, B). Fix t € X and assume that two continuous
functions f,g fulfill f[g@= glm@). The inclusion ¢y, (H(t)) C H(t) then
implies
ffH(t) (er(s)) = glu) (pr(s))
for all s € H(t) and k = ,n. Therefore

Tfluw () =F(s, flaw (1(5), - flae (enls)))
= F(Sang(t) (@1(5))’ e 79fH(t) (@n(S))) = Tng(t) (5)
Thus T is restrictable to € (H (t), B). Now we prove that every natural re-

striction, denoted by T as well, has a unique fixed point. The compactness
of H(t), the continuity of Ly and ¢, furthermore our assumption imply

n

= max ! ZLk(s)E(wk(s)) <1

seH(t) 0(s) =

We claim that T is a g-contraction in the complete metric space (¢ (H (t), B), d,),
where the weight function is given by p :=1/¢. Let f,g € €(H(t), B) be ar-
bitrary. Applying the Lipschitz-condition and the definitions of ¢ and p

p(s)d((Tf)(s),(Tg)(s))
= Ld(F‘(Sv f(‘ﬂl (S))7 SRR f(@n(s)))vF(sag(@l(S))v s 79(9071(5))))

)
< Wi)zu@)d(ﬂm ). 9(p4(s)
k=1

LN ) d(f(er(s)), 9(r(s))
= g 2o PN =R

1 n
SW,; e($) (), (f.9)
< qdp(f.9).

Taking supremum for s € H(t) in the left-hand-side term, we arrive at
the desired contractivity property. Therefore, T' has a unique fixed point in
% (H(t), B) by the Contraction Principle. Finally, Proposition 2 and Propo-
sition 1 show that T has a unique fixed point in €' (X, B). This fixed point is
the unique continuous solution of the Presié¢-equation. O

The following result is an immediate consequence of the previous theo-
rem.

Corollary 7. Let H be a reflexive, compact valued, strongly surjective rela-
tion on a topological space X, and let B be a Banach space. Assume that
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©1,-. 0 € C(X,X) fulﬁll wr(H(t)) € H(t) for all k € {1,...,n} and
te X, and F € €(X x B", B) satisfies the Lipschitz condition:

”F(tvxla--'vx’ﬂ)_F(tayla---yyn H,ZLk |$k_ka with ZLk

k=1
for allt € H and xy,yr € B with continuous functions Ly: X —]0,+o0].
Then, there exists a unique continuous solution f: X — B of the Presié-type
Junctional equation (11).

The Presi¢ equation was thoroughly treated and discussed in the mono-
graph [9] by Czerwik. Our results are parallel to those in [9], however, our
assumptions are less technical and our theorems are more general in many
aspects, but these results are not comparable in general.
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