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Abstract. We are concerned with the problem of solving variational in-
equalities which are defined on the set of fixed points of a multivalued
nonexpansive mapping in a reflexive Banach space. Both implicit and ex-
plicit approaches are studied. Strong convergence of the implicit method
is proved if the space satisfies Opial’s condition and has a duality map
weakly continuous at zero, and the strong convergence of the explicit
method is proved if the space has a weakly continuous duality map. An
essential assumption on the multivalued nonexpansive mapping is that
the mapping be single valued on its nonempty set of fixed points.
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1. Introduction

In this paper, we are concerned with the problem of solving variational in-
equalities in Banach spaces. More precisely, let X be a Banach space, let C
be a nonempty closed convex subset of X, and let A :⊂ D(A) ⊂ X → X be
an operator, such that C ⊂ D(A). The variational inequality (VI), associated
with A and C, is the problem of finding a point x∗ ∈ C with the property:

〈Ax∗, j(x − x∗)〉 ≥ 0 for all x ∈ C, (1.1)

where j(x − x∗) ∈ J(x − x∗) and J is the normalized duality map on X
defined by:

J(x) := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖}, x ∈ X. (1.2)

It is easily understood that the existence and uniqueness of solutions of VI
(1.1) require the operator A to satisfy certain conditions. For instance, if A
is η-strongly accretive for some η > 0 (i.e., 〈Ax − Ay, j(x − y)〉 ≥ η‖x − y‖2
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for all x, y ∈ C), then VI (1.1) has at most one solution. Indeed, if w and z
are solutions of VI (1.1), then adding up the inequalities

〈Aw, j(z − w)〉 ≥ 0 and 〈Az, j(w − z)〉 ≥ 0

yields −η‖z − w‖2 ≥ −〈Az − Aw, j(z − w)〉 ≥ 0; hence, z = w.
Observe that in a Hilbert space H, we may rewrite VI (1.1) as a vari-

ational inequality that is defined on the fixed point set Fix(T ) of a nonex-
pansive mapping T : C → C (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖ for x, y ∈ C):

〈Ax∗, x − x∗〉 ≥ 0 x ∈ Fix(T ). (1.3)

As a matter of fact, we may take T = PC to be the metric projection onto
C. This shows an equivalence of VIs defined on an arbitrary closed convex
subset C and VIs defined on the fixed point set of an arbitrary nonexpansive
mapping on C.

This is, however, no longer true in the setting of Banach spaces, due
to the fact that there exist closed convex sets of a Banach space X which
are not fixed point sets of nonexpansive mappings T : X → X. Such an
example can be found in [1, p. 25]. However, if X is strictly convex, then
every nonexpansive mapping T : C → C has a closed convex fixed point set
Fix(T ).

In this paper, we will study VI (1.3) in the case where the feasible
set C is the set of fixed points of a multivalued nonexpansive mapping in
a Banach space. In what follows, we will denote by CB(X) the collection
of nonempty closed bounded subsets of X and by K(X) the collection of
nonempty compact subsets of X, respectively. Moreover, we will use H(·, ·)
to stand for the Hausdorff metric on CB(X) (see definition in Section 2).

Now, recall that a multivalued mapping T : C → CB(C) is said to be
an η-contraction if there exists η ∈ [0, 1), such that:

H(Tx, Ty) ≤ η‖x − y‖, x, y ∈ C.

In the case of η = 1, that is:

H(Tx, Ty) ≤ ‖x − y‖, x, y ∈ C,

T is said to be a (multivalued) nonexpansive mapping. Recall that a point
x ∈ C is said to be a fixed point of a multivalued mapping T : C → CB(C) if
x ∈ Tx. The set of fixed points of T is denoted as Fix(T ). That is, Fix(T ) =
{x ∈ C : x ∈ Tx}.

Existence of fixed points of multivalued mappings is, in general, intricate
and, sometimes, surprising. For instance, Nadler [2] proved the existence of a
fixed point of a multivalued contraction on a complete metric space, but not
uniqueness, as opposed to the single-valued contraction which has a unique
fixed point.

Fundamental results about the existence of fixed points for multivalued
nonexpansive mappings can be found in Lami Dozo [3] in the setting of
Banach spaces satisfying the Opial condition and in Lim [4] in the setting of
uniformly convex Banach spaces. Let us remark that the set of fixed points
of a multivalued nonexpansive mapping T : C → K(C) on a strictly convex
Banach spaces is, in general, not a convex set (see [5, Section 3]). More
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existence results on fixed points of multivalued mappings may be found in
the survey article [6]. In this connection, see also the paper by Reich [7].

Observe that approximation methods for fixed points of multivalued
mappings seem to be much less developed than those for single-valued map-
pings. As a matter of fact, some well-known method for approximating fixed
points of single-valued nonexpansive mappings may fail to work for multival-
ued nonexpansive mappings. For instance, a counterexample, due to Pietra-
mala [8], shows that the famous Browder’s approximation result [9, Theorem
1] for a single-valued nonexpansive mapping cannot be extended to the gen-
uine multivalued case even in the Euclidean space R

2.
On the other hand, Lopez and Xu [10] verified the convergence of Brow-

der’s approximation for multivalued nonexpansive-type mappings upon sup-
posing that Fix(T ) = {z} is singleton. Sahu [11] and later Jung [12] extended
Lopez-Xu’s result to the setting of a uniformly convex Banach space and the
setting of reflexive spaces with a uniformly Gateaux differentiable norm, re-
spectively. Moreover, they relaxed the condition of [10] by supposing that T
is single valued on the set of fixed points, i.e., Tw = {w} if w ∈ Fix(T ).

Nevertheless, Jung [12] declares that, in his opinion, this last hypoth-
esis seems to be restrictive; therefore, he asked the question if it could be
dropped. In 2007, Shahzad and Zegeye [13] gave a partial answer to Jung’s
question: noting that, in view of the example shown by Pietramala, it was
not completely possible to omit it. They proposed an alternative approach by
introducing in their iterative sequence the metric projection PT as follows:

PT (x) := {u ∈ Tx : ‖x − u‖ = d(x, Tx)}.

where T : C → K(C) is given and d(x, Tx) := infy∈Tx ‖x−y‖ is the distance
to Tx from x. Instead of studying the asymptotic behavior of the implicitly
defined curve xt:

xt = tT (xt) + (1 − t)u, as t → 1;

Shahzad and Zegeye [13] studied the asymptotic behavior of the implicitly
defined net (xt):

xt = tPT (xt) + (1 − t)u, as t → 1.

The following result was proved in [14] (also in [15]).

Theorem 1.1. Let X be a uniformly convex Banach space with a uniformly
Gateaux differentiable norm, C be a nonempty closed convex subset of X,
and T : C → K(E) be such that PT is nonexpansive. Suppose that C is a
nonexpansive retract of X, and that for each t ∈ (0, 1), the contraction St

defined by:
Stx = tPT x + (1 − t)f(x) (1.4)

has a fixed point xt ∈ C, where f : C → C is a contraction with constant
β ∈ [0, 1). Then, T has fixed points if and only if (xt) remains bounded as
t → 1−; in this case, (xt) strongly converges, as t → 1−, to a fixed point of
T .
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Remark 1.2. In Theorem 1.1, the authors supposed that C is a nonexpansive
retract of the space X. The existence of such a nonexpansive retract for C
remains an unsolved problem in general (the answer is, however, affirmative
[16] if C is the set of fixed points of a nonexpansive mapping in a uniformly
smooth Banach space). Recall that the classical metric projection onto a
closed convex C in Banach spaces is a continuous mapping but not necessarily
nonexpansive (though true in Hilbert spaces). Moreover, it is proved in [1]
that if X is not a Hilbert space with dimX ≥ 3, then not every closed convex
subset of X is a nonexpansive retract of the space. In this connection, see
also Reich [17] and Kopecká-Reich [18].

Note that for f(x) = u, the main theorem in [13] can be recovered from
Theorem 1.1.

Iteration methods based on (1.4), which use contractions as a regular-
izer of nonexpansive mappings, are known as viscosity approximations, which
amount to selecting a particular fixed point of a given nonexpansive mapping.
This notion was first introduced to optimization by Attouch [19] and then ex-
tended to nonexpansive mappings by Moudafi [20] in the Hilbert space setting
(see [21] for an extension to the setting of uniformly smooth Banach spaces).
A novel element of this kind of iteration methods is the strong convergence
to the unique solution of the variational inequality (VI):

〈(I − f)x∗, j(y − x∗)〉 ≥ 0 for all y ∈ Fix(T ), (1.5)

where (I−f) is a strongly monotone operator. In the particular case f(x) = u
and X = H, VI (1.5) becomes:

〈x∗ − u, y − x∗〉 ≥ 0 for all y ∈ Fix(T ). (1.6)

This is equivalent to the minimum problem min
x∈Fix(T )

‖x − u‖2.
The multivalued case of viscosity approximations has been studied by

Cui et al. [22] in the setting of a reflexive space with a weakly sequentially
continuous normalized duality mapping. Let us note that, in their paper, the
authors assumed that T is single valued on Fix(T ). Wu and Zhao [23] studied
a viscosity method in the setting of uniformly convex and smooth Banach
spaces; Panyanak and Suantai [24] considered the viscosity approximation
method in geodesic spaces.

In 2017, Xu et al. [25] published a note to give the convergence analysis
of the implicit Mann iteration process:

xn+1 = (1 − τn)xn + τnyn+1,

where yn+1 ∈ Txn+1 and, in particular, weak convergence is proved in a
uniformly convex Banach space that satisfies Opial’s property.

In the paper [25], besides the main interesting results, we find other
interesting elements:

– the authors showed examples of implicit and explicit Mann iterations
that fail to converge if the condition Tw = {w} for w ∈ Fix(T ) is
dropped.
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– The authors pointed out two gaps in the proof of the main result in [26].

Let us spend a few words about one of the gaps, because it connects to
a very useful tool.

In many papers on iterative methods (see, e.g., [12,13,15,26]), Banach
limits (see [27, p. 26]) are used to define a function φ by:

φ(x) := LIMn→∞‖xn − x‖2, x ∈ X,

where (xn) is a bounded sequence in X (which is generated by an iterative
method). It is easily found that φ is continuous, convex, and coercive (i.e.,
φ(x) → ∞ as ‖x‖ → ∞). Then, the reflexivity of the space X ensures that φ
attains its minimum on a closed convex set C. Let p ∈ C be a minimizer of φ
over C. If C is a nonexpansive retract of X, this minimum is a global minimum
on X. The key is to prove that p is a fixed point of T . Using compactness
arguments, they proved that, given (wn)n∈N ⊂ Tp, there exists a subsequence
strongly convergent to w ∈ Tp (wrongfully indicated by the same sequence
(wn)n∈N). Therefore, using the formula that defines the iteration, they proved
that:

φ(w) = LIMn→∞‖xn − w‖2 ≤ . . . ≤ LIMn→∞‖xn − p‖2 = φ(p) = min
X

φ,

(1.7)
and then drew the conclusion that w = p and thus p ∈ Tp.

Unfortunately, the above argument holds for a subsequence (wnk
)k∈N of

(wn)n∈N only, and so (1.7) holds for a subsequence (xnk
) only; that is, the

correct statement of (1.7) should be:

LIMk→∞‖xnk
− w‖2 ≤ . . . ≤ LIMk→∞‖xnk

− p‖2. (1.8)

Consequently, the conclusion w = p cannot be drawn from (1.8). Notice that
Banach limits are sensitive to subsequences, as the following simple example
shows: consider the real sequence an = 1 + (−1)n; then, we have:

LIMn→∞an = 1, LIMn→∞a2n+1 = 0, LIMn→∞a2n = 2.

Therefore, the claim w = p in the above proof is not convinced.
In this paper, taking into account the above background, we study the

VI (1.3) in the case where the feasible set C is the set of fixed points of a
multivalued nonexpansive mapping and the controlling operator A is strongly
accretive, which will be relabeled as D. Namely, our VI is restated as finding
a point x∗ ∈ Fix(T ) satisfying the property:

〈Dx∗, j(x − x∗)〉 ≥ 0 for all x ∈ Fix(T ), (1.9)

where T is a multivalued nonexpansive mapping on a Banach space X having
a nonempty set of fixed points. The VI (1.9) encompasses, as a particular case,
viscosity problems (1.5) if D = I−f and minimum problems on Hilbert spaces
(1.6) if D = I − u.

We will introduce implicit and explicit iterative approaches that gener-
ate a sequence converging strongly to a solution of VI (1.9). In our argument,
we do not use Banach limit.
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The rest of the paper is organized as follows. Section 2 includes defi-
nitions of multivalued nonexpansive mappings and some Banach space con-
cepts. We also present some basic tools which are used in the proof of the
main results of the paper.

In Section 3, we state and prove the main results of this paper on implicit
and explicit methods for solving a variational inequality which is defined on
the set of fixed points of a multivalued nonexpansive mapping in a reflexive
Banach space that satisfies Opial’s condition and has a duality map Jϕ weakly
continuous at zero. In addition, we will raise some open problems.

2. Preliminaries

Let (X, ‖ · ‖) be a Banach space and let C be a nonempty closed convex
subset of X. Denote by CB(C) the collection of all nonempty closed bounded
subsets of C and by K(C) the collection of nonempty compact subsets of C,
respectively.

Recall that the Hausdorff distance between A,B ∈ CB(C) is defined
as:

H(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

,

where d(x,E) := infe∈E ‖e − x‖ for x ∈ X and subset E ⊂ X.
The lemma below will be used to verify that our approaches are well

defined; here, we include the proof for the sake of completeness.

Lemma 2.1. Let A,B ⊂ X and x, y ∈ X. For any given λ ∈ (0, 1), let Aλ :=
λx + (1 − λ)A and Bλ := λy + (1 − λ)B. Then:

H(Aλ, Bλ) ≤ λ‖x − y‖ + (1 − λ)H(A,B).

Proof. Let aλ := λx+(1−λ)a and bλ := λy+(1−λ)b with a ∈ A and b ∈ B,
respectively. Then:

d(aλ, Bλ) = inf
bλ∈Bλ

{‖aλ − bλ‖}
≤ inf

b∈B
{λ‖x − y‖ + (1 − λ)‖a − b‖}

= λ‖x − y‖ + (1 − λ)d(a,B).

In a similar way, d(bλ, Aλ) ≤ λ‖x − y‖ + (1 − λ)d(b, A); therefore:

H(Aλ, Bλ) = max
{

sup
aλ∈Aλ

d(aλ, Bλ), sup
bλ∈Bλ

d(Aλ, bλ)
}

≤ λ‖x − y| + (1 − λ)max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

= λ‖x − y‖ + (1 − λ)H(A,B).

�
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Recall that the norm ‖ · ‖ of a Banach space X is said to be Gateaux
differentiable (and X is said to be smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y in the unit sphere of X.
It is known (cf. [27]) that X is smooth if and only if the normalized

duality map JX defined by (1.2) is single valued. Another notion is the Opial’s
condition [28]: a Banach space X is said to satisfy Opial’s condition if

lim inf
n→∞ ‖wn − w‖ < lim inf

n→∞ ‖wn − p‖ (2.1)

whenever (wn) is a sequence in X weakly convergent to w and p �= w. Opial’s
condition plays an important role in the fixed point theory (see [3,29–31]).

The notion of the normalized duality map can be extended to more
general case. Recall that a function ϕ : R

+ → R
+ is said to be a gauge

if it satisfies the properties: (i) ϕ(0) = 0, (ii) ϕ is continuous and strictly
increasing, and (iii) ϕ(t) → +∞ as t → +∞. Associated to a gauge ϕ is the
duality map Jϕ defined by [32]:

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ϕ(‖x‖) = ‖x∗‖}.
When ϕ(t) = tp−1 for some p ∈ (1,+∞), the duality map is referred to as
the generalized duality map of order p. In particular, when p = 2, we recover
the normalized duality map J . It is a well-known result due to Asplund (see,
for instance, [33,34]) that Jϕ(x) is the subdifferential ∂Φ(‖x‖) of the convex

functional Φ(t) defined by Φ(t) =
∫ t

0

ϕ(s)ds. The relationship between Jϕ

and J is given by the equation:

J(x)ϕ(‖x‖) = ‖x‖2Jϕ(x), x ∈ X. (2.2)

Following Browder [32], we say that a Banach space X has a weakly sequen-
tially continuous duality map Jϕ for some gauge ϕ if Jϕxn → Jϕx in the
weak∗ topology of X∗ whenever xn → x in the weak topology of X. The fol-
lowing result is useful in fixed point theory and geometry of Banach spaces
[35,36].

Lemma 2.2. Let X be a Banach space with a weakly sequentially continuous
duality map Jϕ for some gauge ϕ. Assume that (xn) is a sequence in X weakly
converging to x∗. Then:

lim sup
n→∞

Φ(‖xn − x‖) = lim sup
n→∞

Φ(‖xn − x∗‖) + Φ(‖x − x∗‖) (2.3)

for all x ∈ X. In particular, X satisfies Opial’s condition (but not vice versa
[31,38]).

Lemma 2.3. [31, Theorem 2] Let X be a Banach space with the properties:

(i) X satisfies the weak Opial condition: lim infn→∞ ‖xn−x‖ ≤ lim infn→∞
‖xn − y‖ whenever xn ⇀ x and y ∈ X.

(ii) The norm of X is uniformly Gateaux differentiable.
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Then, the duality map Jφ associated with any gauge φ is weakly sequentially
continuous at zero (but not necessarily weakly sequentially continuous at other
nonzero points [38]).

Definition 2.4. (cf. [37]) Let X be a Banach space and let D : X → X be an
operator.

(i) We say that D is η-strongly accretive for some η ∈ (0, 1) if, for every
x, y ∈ X, there exists j(x − y) ∈ J(x − y), such that:

〈Dx − Dy, j(x − y)〉 ≥ η‖x − y‖2.
(ii) We say that D is τ -strict pseudocontractive for some τ ∈ (0, 1) if, for

every x, y ∈ X, there exists j(x − y) ∈ J(x − y), such that:

〈Dx − Dy, j(x − y)〉 ≤ ‖x − y‖2 − τ‖(I − D)x − (I − D)y‖2.
The next proposition, proved in [37], will be used in what follows to

define our iterative approach.

Proposition 2.5. [37] Let X be a smooth Banach space and let D : X → X
be an operator. Given η, τ ∈ (0, 1).

(i) If D is τ -strictly pseudocontractive, then D is L-Lipschitzian with L =
1 + τ−1.

(ii) If D is η-strongly accretive and τ -strictly pseudocontractive with η+τ >
1, then (I − λD) is a (1 − λρ)-contraction for all λ ∈ (0, 1), where
ρ = (1 − √

(1 − η)/τ).

Remark 2.6. The statement (i) of Proposition 2.5 is not vice versa; for in-
stance, the mapping Dx := 3

2x in the one-dim case is not a strict pseudocon-
tractive mapping.

If X = H is a Hilbert space, it is well known (see [38]) that if D is
an η-strongly monotone and L-Lipschitzian operator, then (I − λD) is a
contraction if 0 < λ < 2η

L2 .

3. Convergence results

We begin with a simple example which shows that iterative methods for
multivalued mappings are quite uncertain in terms of convergence.

Example 3.1. Define T : R → 2R by Tx = {x, x + 1} and let f be a ρ-
contraction for some ρ ∈ [0, 1). It is easily seen that T is nonexpansive. Notice
that every point x is a fixed point of T ; however, T is not single valued on
Fix(T ). Let us consider the implicit iteration:

xn = αnf(xn) + (1 − αn)xT
n ,

where αn ∈ (0, 1) and xT
n ∈ Txn. Notice that we have two options for xT

n ,
namely, either xT

n = xn or xT
n = xn + 1. Consider the particular case where

f(x) ≡ u is constant. In addition, consider the choice xT
n = xn for odd n and

xT
n = xn+1 for even n. It turns out that xn = u for odd n and xn = u−1+α−1

n

for even n. Therefore, the sequence (xn) diverges unless α2n → 1.
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If we consider the explicit method that defines a sequence (xn) by the
iteration process:

xn+1 = αnf(xn) + (1 − αn)xT
n ,

where the initial guess x0 ∈ R is arbitrary, (αn) ⊂ (0, 1) and xT
n ∈ Txn.

Again, if we take f(x) ≡ u �= x0 and xT
n = xn, then we have xn+1 =

αnu + (1 − αn)xn. It turns out that:

xn+1 − u = (1 − αn)(xn − u) = · · · =

(
n∏

i=0

(1 − αi)

)
(x0 − u).

Consequently, if we take (αn),such that
∑∞

n=0 αn = ∞ (e.g., αn = 1
(n+1)α

with 0 < α ≤ 1), then the sequence (xn) diverges.

This simple example shows that iterative methods for a multivalued
nonexpansive mapping T may diverge if T is not single valued on its set of
fixed points. We will study convergence of implicit and explicit methods for
VI (3.2) under the condition that the multivalued nonexpansive mapping is
single valued on its set of fixed points.

We begin with the demiclosedness principle for multivalued nonexpan-
sive mappings in a Banach space with Opial’s condition.

Lemma 3.2. [3, Theorem 3.1] Let C be a nonempty closed convex subset of a
Banach space X which satisfies the Opial condition (2.1). Let T : C → K(C)
be a multivalued nonexpansive mapping with fixed points. Let (yn)n∈N be a
bounded sequence, such that:

d(yn, T yn) → 0 as n → ∞.

Then, the weak cluster points of (yn)n∈N belong to Fix(T ) (i.e., ωw(yn) ⊂
Fix(T )).

3.1. Implicit method

In this subsection, we consider an implicit method for solving the VI (3.2) in
a Banach space satisfying Opial’s condition.

Theorem 3.3. Let X be a reflexive Banach space satisfying Opial’s condi-
tion and having a duality map Jϕ (for some gauge ϕ) weakly continuous at
zero. Let T : X → K(X) be a multivalued nonexpansive mappings, such that
Fix(T ) �= ∅ and Tx = {x} for all x ∈ Fix(T ). Let D : X → X be an
η-strongly accretive and κ-strictly pseudocontractive for some η, κ ∈ (0, 1),
such that η + κ > 1. Let (μn)n∈N ⊂ (0, 1] and let (αn)n∈N ⊂ (0, 1] satisfy the
condition: αn → 0 as n → ∞. Then, the implicit iteration

xn = αn(I − μnD)xn + (1 − αn)xT
n , (3.1)

where xT
n ∈ Txn, is well defined and strongly converges, as n → ∞, to the

unique solution of the variational inequality:

〈Dx∗, J(x − x∗)〉 ≥ 0 for all x ∈ Fix(T ). (3.2)
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Proof. For any n ∈ N, let us consider the multivalued mappings:

Γn := αn(I − μnD) + (1 − αn)T.

It is easy to verify that Γn is a contraction. Indeed, setting w := (I − μnD)x
and v := (I − μnD)y for x, y ∈ X, and applying Lemma 2.1 to Γnx and Γny,
we obtain that:

H(Γnx, Γny) ≤ αn‖w − v‖ + (1 − αn)H(Tx, Ty)
≤ αn‖(I − μnD)x − (I − μnD)y‖ + (1 − αn)H(Tx, Ty)
≤ αn(1 − μnρ)‖x − y‖ + (1 − αn)‖x − y‖ (by Proposition 2.5(ii))
= (1 − αnμnρ)‖x − y‖.

Then, by Nadler’s multivalued contraction fixed point theorem [2], Γn has a
fixed point; hence, the implicit scheme (3.1) is well defined. Let p ∈ Fix(T ).
Since Tp = {p} by assumption, we have:

‖xT
n − p‖ = d(xT

n , Tp) ≤ H(Txn, Tp) ≤ ‖xn − p‖. (3.3)

It follows that:

‖xn − p‖ = ‖αn(I − μnD)xn + (1 − αn)xT
n − p‖

≤ αn‖(I − μnD)xn − (I − μnD)p‖ + αnμn‖Dp‖ + (1 − αn)‖xn − p‖
≤ αn(1 − μnρ)‖xn − p‖ + αnμn‖Dp‖ + (1 − αn)‖xn − p‖
= (1 − μnαnρ)‖xn − p‖ + αnμn‖Dp‖.

It turns out that:

‖xn − p‖ ≤ ‖Dp‖
ρ

.

In particular, the sequence (xn) is bounded. Moreover, for w ∈ Fix(T ), we
have:

‖xn − w‖2 = 〈xn − w, J(xn − w)〉
= αn〈xn − μnDxn − w, J(xn − w)〉 + (1 − αn)〈xT

n − w, J(xn − w)〉
≤ αn〈xn − w − μnDxn, J(xn − w)〉 + (1 − αn)‖xT

n − w‖ · ‖xn − w‖
≤ ‖xn − w‖2 − αnμn〈Dxn, J(xn − w)〉. (3.4)

It turns out that:

〈Dxn, J(xn − w)〉 ≤ 0, w ∈ Fix(T ). (3.5)

Now, since D is η-strongly accretive, it follows from (3.5) that:

0 ≥ 〈Dxn − Dw, J(xn − w)〉 + 〈Dw, J(xn − w)〉
≥ η‖xn − w‖2 + 〈Dw, J(xn − w)〉.

This implies that:

‖xn − w‖2 ≤ −1
η
〈Dw, J(xn − w)〉. (3.6)

Since (xn) is bounded and αn → 0 and using (3.3) and (3.1), we see that
(xT

n ) is bounded, and

‖xn − xT
n‖ = αn‖(I − μnD)xn − xT

n‖ → 0 as n → ∞.
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Consequently, d(xn, Txn) → 0 as n → ∞. By Lemma 3.2, every weak limit
point z of (xn)n∈N is a fixed point of T . We claim that z also solves VI (3.2).
To verify this, take a subsequence (xnk

) of (xn), such that xnk
⇀ z, which

implies that Jϕ(xnk
−z) ∗

⇀ 0 by the assumption that Jϕ is weakly continuous
at zero. Using (2.2), we can equivalently rewrite (3.5) and (3.6) as:

〈Dxn, Jϕ(xn − w)〉 ≤ 0, w ∈ Fix(T ) (3.7)

and respectively:

ϕ(‖xn − w‖) ≤ −1
η
〈Dw, Jϕ(xn − w)〉, w ∈ Fix(T ). (3.8)

Passing to the subsequence (xnk
), we get:

〈Dxnk
, Jϕ(xnk

− w)〉 ≤ 0, w ∈ Fix(T ) (3.9)

and
ϕ(‖xnk

− z‖) ≤ −1
η
〈Dw, Jϕ(xnk

− z)〉. (3.10)

We then obtain xnk
→ z in norm from (3.10) and furthermore from (3.9):

〈Dz, Jϕ(z − w)〉 ≤ 0, w ∈ Fix(T ). (3.11)

This proves that z solves VI (3.2); hence, z = x∗ by the uniqueness of solu-
tions of VI (3.2). Therefore, we have proved that xn → x∗ in norm. �
Corollary 3.4. Suppose X is a reflexive Banach space. Suppose, in addition,
X either satisfies Opial’s condition and has a uniformly Gateaux differen-
tiable norm or has a weakly continuous duality map Jϕ for some gauge ϕ.
Then, the conclusion of Theorem 3.3 holds.

Proof. In either case, we see that X satisfies the assumptions in Theorem
3.3, i.e., Opial’s condition and a duality map Jϕ weakly continuous at zero.
Indeed, this follows from Lemma 2.3 in the first case and trivially in the
second case. �
3.2. Explicit method

To define an explicit algorithm, let us recall a relevant property regarding
the Hausdorff metric.

Lemma 3.5. [2, p. 480] Let (M,d) be a complete metric space and A,B com-
pact subset of M . Then, for any a ∈ A, there exists b ∈ B, such that:

d(a, b) ≤ H(A,B).

Now, consider VI (3.2) where we assume T : X → K(X) has a nonempty
set of fixed points. Take an arbitrary starting point x0 ∈ X to define explicitly
a sequence (xn) by the procedure:

xn+1 = λnxn + (1 − λn)xT
n − (1 − λn)μnDxT

n , (3.12)

where xT
n ∈ Txn is chosen in such a way (guaranteed by Lemma 3.5) that:

‖xT
n − xT

n−1‖ ≤ H(Txn, Txn−1) (3.13)

for n ≥ 1.
The next Lemma, proved in [40], will be used in our proof.
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Lemma 3.6. Assume (bn)n∈N is a sequence of nonnegative numbers for which:

bn+1 ≤ (1 − an)bn + δn, n ≥ 0,

where (an)n∈N is a sequence in (0, 1) and (δn)n∈N is a sequence in R, such
that:

1.
∑∞

n=1 an = ∞;
2. lim supn→∞

δn

an
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then, limn→∞ bn = 0.

Theorem 3.7. Let X be a reflexive space with a weakly sequentially continuous
duality mapping Jϕ. Let T : X → K(X) a nonexpansive multivalued mapping,
such that Fix(T ) is nonempty and Tx = {x} for all x ∈ Fix(T ). Let D :
X → X an η-strongly accretive and κ-strictly pseudocontractive, such that
η +κ > 1. Let (μn)n∈N ⊂ (0, 1] and (λn)n∈N ⊂ [0, a] for some a ∈ (0, 1), such
that:

(i) limn→∞ μn = 0 and
∑∞

n=0 μn = ∞.
(ii) limn→∞

|λn−λn−1|
μn

= 0.

(iii) limn→∞
|μn−μn−1|

μn
= 0.

Then, the sequence (xn) defined by the explicit iteration (3.12) strongly con-
verges, as n → ∞, to the unique solution of the VI (3.2).

Proof. At first, defining Bn := (I − μnD) rewrites our iteration (3.12) as:

xn+1 = λnxn + (1 − λn)BnxT
n . (3.14)

Notice that each Bn is a contraction by Proposition 2.5 (ii).
Take p ∈ Fix(T ) to derive that (noting Tp = {p} by assumption which

implies that ‖xT
n − p‖ ≤ ‖xn − p‖):

‖xn+1 − p‖ ≤ λn‖xn − p‖ + (1 − λn)‖BnxT
n − Bnp‖ + (1 − λn)μn‖Dp‖

≤ λn‖xn − p‖ + (1 − λn)(1 − μnρ)‖xn − p‖ + (1 − λn)μn‖Dp‖
= (1 − (1 − λn)μnρ) ‖xn − p‖ + (1 − λn)μnρ(‖Dp‖/ρ)
≤ max {‖xn − p‖, ‖Dp‖/ρ}
≤ . . . ≤ max {‖x1 − p‖, ‖Dp‖/ρ} .

It turns out that (xn) is bounded.
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The next step is to claim that ωw(xn) ⊂ Fix(T ), for which we use (3.14)
to estimate ‖xn+1 − xn‖ as follows:

‖xn+1 − xn‖ = ‖λnxn + (1 − λn)BnxT
n − (λn−1xn−1 + (1 − λn−1)Bn−1x

T
n−1)‖

= ‖λn(xn − xn−1) + (1 − λn)(BnxT
n − Bn−1xn−1)

+ (λn − λn−1)(xn−1 − Bn−1x
T
n−1)‖

≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
T
n−1‖

+ (1 − λn)‖BnxT
n − Bn−1x

T
n−1‖

≤ λn‖xn − xn−1‖ + |λn − λn−1|‖xn−1 − Bn−1x
T
n−1‖

+ (1 − λn)(‖BnxT
n − BnxT

n−1‖ + ‖BnxT
n−1 − Bn−1x

T
n−1‖).

(3.15)

Now, since (xn) is bounded, we have a constant M > 0, such that:

max{‖xn − BnxT
n‖, ‖DxT

n‖ : n ≥ 0} ≤ M.

It follows from Proposition 2.5(ii):

‖BnxT
n − BnxT

n−1‖ ≤ (1 − μnρ)‖xT
n − xT

n−1‖ ≤ ρ‖xn − xn−1‖ (3.16)

‖BnxT
n−1 − Bn−1x

T
n−1‖ = |μn − μn−1|‖DxT

n−1‖ ≤ M |μn − μn−1|. (3.17)

Substituting (3.16–3.17) into (3.15) yields:

‖xn+1−xn‖ ≤ [1− (1−λn)μnρ)]‖xn −xn−1‖+M(|λn −λn−1|+ |μn −μn−1|).
Setting

bn = ‖xn − xn−1‖, an = ρμn(1 − λn), δn = M(|λn − λn−1| + |μn − μn−1|),
we can rewrite the last relation as:

bn+1 ≤ (1 − an)bn + δn. (3.18)

It is easily seen from conditions (i)–(iii) that (an) and (δn) satisfy the con-
ditions

∑∞
n=0 an = ∞ and limn→∞ δn/an = 0. Consequently, we can apply

Lemma 3.6 to obtain that limn→∞ bn = 0; namely, limn→∞ ‖xn+1 −xn‖ = 0.
Now, we have:

‖xn − xT
n‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − xT

n‖
≤ ‖xn − xn+1‖ + ‖λn(xn − xT

n ) + (1 − λn)μnDxT
n‖

≤ ‖xn − xn+1‖ + λn‖xn − xT
n‖ + (1 − λn)μn‖DxT

n‖.

It follows that:

‖xn − xT
n‖ ≤ 1

1 − λn
‖xn − xn+1‖ + μn‖DxT

n‖ → 0,

since μn → 0 and 0 ≤ λn ≤ a for some 0 < a < 1. This implies that:

d(xn, Txn) ≤ ‖xn − xT
n‖ → 0.
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Consequently, Lemma 3.2 ensures that every weak limit of (xn) is a fixed
point of T . To prove the strong convergence of (xn), let x∗ ∈ Fix(T ) denote
the unique solution of VI (3.2). Since Jϕ is the subdifferential of Φ, we have:

Φ(‖xn+1 − x∗‖) = Φ(‖λn(xn − x∗) + (1 − λn)(BnxT
n − x∗)‖)

= Φ(‖λn(xn − x∗) + (1 − λn)(BnxT
n − Bnx∗) − (1 − λn)μnDx∗)‖)

≤ Φ(‖λn(xn − x∗) + (1 − λn)(BnxT
n − Bnx∗)‖)

−(1 − λn)μn〈Dx∗, Jϕ(xn+1 − x∗)〉
≤ λnΦ(‖xn − x∗‖) + (1 − λn)(1 − μnρ)Φ(‖xT

n − x∗‖)
−(1 − λn)μn〈Dx∗, Jϕ(xn+1 − x∗)〉

≤ [1 − (1 − λn)μnρ]Φ(‖xn − x∗‖)
−(1 − λn)μn〈Dx∗, Jϕ(xn+1 − x∗)〉

= (1 − an)Φ(‖xn − x∗‖) + anγn, (3.19)

where

an = ρμn(1 − λn), γn =
〈−Dx∗, Jϕ(xn+1 − x∗)〉

ρ
.

Now, take a subsequence (xnk
) of (xn), such that:

lim sup
n→∞

〈−Dw, Jϕ(xn − x∗)〉 = lim
k→∞

〈−Dx∗, Jϕ(xnk
− x∗)〉.

We may further assume xnk
→ x̂ weakly. As a result, the last relation is

reduced to:

lim sup
n→∞

〈−Dw, Jϕ(xn − x∗)〉 = 〈−Dx∗, Jϕ(x̂ − x∗)〉 ≤ 0,

since x∗ is the solution of the VI (3.2) and x̂ ∈ Fix(T ). In other words, we
have lim supn→∞ γn ≤ 0. Consequently, Lemma 3.6 is applicable to (3.19) to
get Φ(‖xn − x∗‖) → 0, or xn → x∗ in norm. This finishes the proof. �

Remark 3.8. The choices of (μn) and (λn) given by μn = (n + 1)−μ and
λn = (n + 1)−λ with 0 < μ ≤ 1 and λ + 1 − μ > 0 satisfy the conditions
(i)–(iii) in Theorem 3.7.

3.3. Open questions

We conclude the paper by raising some open problems which we think are of
interest.

(i) Does the conclusion of Theorem 3.3 hold under weaker conditions on
the underlying Banach space X? In particular, X is assumed to satisfy
Opial’s condition only.

(ii) Does the conclusion of Theorem 3.7 hold under conditions weaker than
the condition of a duality map Jϕ being weakly continuous? In partic-
ular, X is assumed to satisfy Opial’s condition only.
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