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Abstract. We consider the nonlinear fractional problem

(−Δ)su + V (x)u = f(x, u) in R
N

We show that ground state solutions converge (along a subsequence)
in L2

loc(R
N ), under suitable conditions on f and V , to a ground state

solution of the local problem as s → 1−.
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1. Introduction

The aim of this paper is to analyse the asymptotic behavior of least-energy
solutions to the fractional Schrödinger problem:{

(−Δ)su + V (x)u = f(x, u) in R
N

u ∈ Hs(RN ),
(1.1)

under suitable assumptions on the scalar potential V : RN → R and on the
nonlinearity f : RN ×R → R. We recall that the fractional laplacian is defined
as the principal value of a singular integral via the formula:

(−Δ)su(x) = C(N, s) lim
ε→0

∫
RN \Bε(x)

u(x) − u(y)
|x − y|N+2s

dy

with
1

C(N, s)
=

∫
RN

1 − cos ζ1

|ζ|N+2s
dζ1 · · · dζN .

This formal definition needs of course a function space in which problem (1.1)
becomes meaningful: we will come to this issue in Sect. 2.

Several models have appeared in recent years that involve the use of the
fractional laplacian. We only mention elasticity, turbulence, porous media
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flow, image processing, wave propagation in heterogeneous high contrast
media, and stochastic models: see [1,11,13,19].

Instead of fixing the value of the parameter s ∈ (0, 1), we will start from
the well-known identity (see [10, Proposition 4.4]):

lim
s→1−

(−Δ)su = −Δu (1.2)

valid for any u ∈ C∞
0 (RN ), and investigate the convergence properties of

solutions to (1.1) as s → 1−.
In view of (1.2), it is somehow natural to conjecture that solutions to

(1.1) converge to solutions of the problem:{
−Δu + V (x)u = f(x, u) in R

N ,

u ∈ H1(RN ).
(1.3)

We do not know if this conjecture is indeed correct with this degree of gen-
erality.

In this paper, we will always assume that both V and f are Z
N -periodic

in the space variables. Hence equations (1.1) and (1.3) are invariant under
Z

N -translations, and their solutions are not unique. We will prove that—up
to Z

N -translations and along a subsequence—least-energy solutions of (1.1)
converge to a ground state solution to the local problem (1.3). Our result is
a continuation of the previous paper [5], in which we consider the equation
on a bounded domain and extend the very recent analysis of Biccari et al.
(see [2]) in the linear case for the Poisson problem to the semilinear case. See
also [6].

We collect our assumptions.

(N) N ≥ 3, 1/2 < s < 1;
(V) V ∈ L∞(RN ) is Z

N -periodic and infRN V > 0;
(F1) f : RN × R → R is a Carathéodory function, namely f(·, u) is measur-

able for any u ∈ R and f(x, ·) is continuous for a.e. x ∈ R
N . More-

over f is Z
N -periodic in x ∈ R

N and there are numbers C > 0 and
p ∈

(
2, 2N

N−1

)
such that

|f(x, u)| ≤ C(1 + |u|p−1)

for u ∈ R and a.e. x ∈ R
N .

(F2) f(x, u) = o(u) as u → 0, uniformly with respect to x ∈ R
N .

(F3) lim|u|→+∞
F (x,u)

u2 = +∞ uniformly with respect to x ∈ R
N , where

F (x, u) =
∫ u

0
f(x, s) ds.

(F4) The function R\{0} � u �→ f(x, u)/u is strictly increasing on (−∞, 0)
and on (0,∞), for a.e. x ∈ R

N .

Remark 1.1. It follows from (F1) and (F2) that for every ε > 0 there is Cε > 0
such that

|f(x, u)| ≤ ε|u| + Cε|u|p−1
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for every u ∈ R and a.e x ∈ R
N . Furthermore, assumption (F4) implies the

validity of the inequality:

0 ≤ 2F (u) ≤ f(x, u)u

for every u ∈ R and a.e. x ∈ R
N .

We can now state our main result.

Theorem 1.2. Suppose that assumptions (N), (V ), (F1)–(F4) hold. Let us ∈
Hs(RN ) be a ground state solution of problem (1.1). Then, there exists a
sequence {sn}n ⊂ (1/2, 1), such that sn → 1 as n → +∞ and there exists a
sequence of translations {zn}n, such that usn

(· − zn) converges in L2
loc(R

N )
to a ground state solution u0 ∈ H1(RN ) of the problem (1.3).

2. The variational setting

In this section we collect the basic tools from the theory of fractional Sobolev
spaces we will need to prove our results. For a thorough discussion, we refer
to [10,14] and to the references therein.

For 0 < s < 1, we define a Sobolev space on R
N as

Hs(RN ) =
{

u ∈ L2(RN ) |
∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy < +∞
}

,

endowed with the norm:

‖u‖2
Hs(RN ) = ‖u‖2

L2(RN ) +
∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

One can show that C∞
0 (RN ) is dense in Hs(RN ). For u ∈ Hs(RN ), an equiv-

alent norm of u is (see [14, Proposition 1.18])

u �→
(
‖u‖2

L2(RN ) +
∥∥(−Δ)

s
2 u

∥∥2

L2(RN )

)1/2

.

More explicitly, for every u ∈ Hs(RN )∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy =
2

C(N, s)

∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
,

where

C(N, s) =
s(1 − s)

A(N, s)B(s)
,

A(N, s) =
∫
RN−1

dη

(1 + |η|2)(N+2s)/2
,

B(s) = s(1 − s)
∫
R

1 − cos t

|t|1+2s
dt.

Lemma 2.1. For every u ∈ H1(RN ), there results

lim
s→1−

∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
= ‖∇u‖2

L2(RN ) .
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Proof. From [10, Proposition 3.6], we know that∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
=

C(N, s)
2

∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy.

From [10, Remark 4.3], we know that

lim
s→1−

(1 − s)
∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy =
ωN−1

2N
‖∇u‖2

L2(RN ) .

Therefore, recalling [10, Corollary 4.2],

lim
s→1−

∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
= lim

s→1−
C(N, s)

2(1 − s)

(
(1 − s)

∫
RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dx dy

)

=
1

2

4N

ωN−1

ωN−1

2N
‖∇u‖2L2(RN ) = ‖∇u‖2L2(RN ) .

�
On Hs(RN ) we introduce a new norm

‖u‖2
s :=

∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
+

∫
RN

V (x)u2 dx, u ∈ Hs(RN ), (2.1)

which is, under (V), equivalent to ‖ · ‖Hs(RN ). Similarly we introduce the
norm on H1(RN ) by putting

‖u‖2 :=
∫
RN

|∇u|2 + V (x)u2 dx, u ∈ H1(RN ). (2.2)

Corollary 2.2. For every u ∈ H1(RN ), we have

lim
s→1−

‖u‖s = ‖u‖.

The following convergence result will be used in the sequel.

Lemma 2.3. For every ϕ ∈ C∞
0 (RN ), there results

lim
s→1−

‖(−Δ)sϕ − (−Δ)ϕ‖L2(RN ) = 0.

Proof. We notice that

‖(−Δ)sϕ − (−Δ)ϕ‖L2(RN ) =
∥∥∥F−1

ξ

((|ξ|2s − |ξ|2) ϕ̂(ξ)
)∥∥∥

L2(RN )

≤ C
∥∥(| · |2s − | · |2) ϕ̂

∥∥
L2(RN )

where C > 0 is a constant, independent of s, that depends on the definition
of the Fourier transform F . It is now easy to conclude, since the Fourier
transform of a test function is a rapidly decreasing function. �

We will need some precise information on the embedding constant for
fractional Sobolev spaces.

Theorem 2.4. [9] Let N > 2s and 2∗
s = 2N/(N − 2s). Then

‖u‖2
L2∗

s (RN )
≤ Γ

(
N−2s

2

)
Γ

(
N+2s

2

) |S|− 2s
N ‖(−Δ)s/2u‖2

L2(RN )

for every u ∈ Hs(RN ), where S denotes the N -dimensional unit sphere and
|S| its surface area.
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The following inequality in an easy consequence of Theorem 2.4, see also
[5, Lemma 2.7].

Lemma 2.5. Let N ≥ 3 and q ∈ [2, 2N/(N −1)]. Then there exists a constant
C = C(N, q) > 0 such that, for every s ∈ [1/2, 1] and every u ∈ Hs(RN ), we
have

‖u‖Lq(RN ) ≤ C(N, q)‖u‖s.

Definition 2.6. A weak solution to problem (1.1) is a function u ∈ Hs(RN ),
such that

〈(−Δ)s/2u | (−Δ)s/2ϕ〉L2(RN ) +
∫
RN

V (x)uϕ dx =
∫
RN

f(x, u)ϕ dx

for every ϕ ∈ Hs(RN ).

Weak solutions are therefore critical points of the associated energy
functional Js : Hs(RN ) → R defined by

Js(u) =
1
2

∥∥∥(−Δ)s/2u
∥∥∥2

L2(RN )
+

1
2

∫
RN

V (x)u2 dx −
∫
RN

F (x, u) dx.

We recall also the definition of a weak solution in the local case.

Definition 2.7. A weak solution to problem (1.3) is a function u ∈ H1(RN )
such that ∫

RN

∇u · ∇ϕ dx +
∫
RN

V (x)uϕ dx =
∫
RN

f(x, u)ϕ dx

for every ϕ ∈ H1(RN ).

For the local problem (1.3), we put J : H1(RN ) → R

J (u) =
1
2

∫
RN

|∇u|2 + V (x)u2 dx −
∫
RN

F (x, u) dx. (2.3)

Recalling the notation (2.1) and (2.2), we can rewrite our functionals in
the form:

Js(u) =
1
2
‖u‖2

s −
∫
RN

F (x, u) dx, u ∈ Hs(RN ),

J (u) =
1
2
‖u‖2 −

∫
RN

F (x, u) dx, u ∈ H1(RN ).

3. Uniform Lions’ concentration-compactness principle

Since the summability exponent of our space is not fixed, we need a “uniform”
version of a celebrated result by Lions.

Theorem 3.1. Let r > 0, 2 ≤ q < 2N
N−1 and N ≥ 3. Suppose moreover that

{sn}n ⊂ (1/2, 1), un ∈ Hsn(RN ) and

‖un‖sn
≤ M,
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where M > 0 does not depend on sn. If

lim
n→+∞ sup

y∈RN

∫
B(y,r)

|un|q dx = 0

then un → 0 in Lp(RN ) for all p ∈
(
2, 2N

N−1

)
.

Proof. Let t ∈
(
q, 2N

N−1

)
. Then

‖un‖Lt(B(y,r)) ≤ ‖un‖1−λ
Lq(B(y,r))‖un‖λ

L
2N

N−1 (B(y,r))

≤ C‖un‖1−λ
Lq(B(y,r))‖un‖λ

sn
,

where C > 0 is independent of sn and λ = t−q
2N

N−1−q
2N

(N−1)t . Choose t such that

λ = 2
t . Then ∫

B(y,r)

|un|t dx ≤ Ct‖un‖(1−λ)t
Lq(B(y,r))‖un‖2

sn
.

Covering space R
N by balls of radius r, in a way that each point is contained

in at most N + 1 balls, we get

∫
RN

|un|t dx ≤ (N + 1)Ct sup
y∈RN

(∫
B(y,r)

|un|q dx

) (1−λ)t
q

‖un‖2
sn

≤ (N + 1)M2Ct sup
y∈RN

(∫
B(y,r)

|un|q dx

) (1−λ)t
q

→ 0.

Hence un → 0 in Lt(RN ). Note that

‖un‖2
L2(RN ) ≤ D‖un‖2

sn
≤ DM2,

where D does not depend on sn and n. Similarly, from Lemma 2.5, there fol-
lows that {un}n is bounded in L

2N
N−1 (RN ). From the interpolation inequality,

since {un}n is bounded in L2(RN ) and in L
2N

N−1 (RN ), we obtain un → 0 in
Lp(RN ) for all p ∈

(
2, 2N

N−1

)
. �

Finally, we extend the locally compact embedding into Lebesgue spaces
in a uniform way.

Theorem 3.2. Let {sn}n be a sequence such that 1/2 < sn < 1 and sn → 1,
and let {vsn

}n ⊂ Hsn(RN ) be such that

M = sup
n

‖vsn
‖sn

< ∞.

Then, the sequence {vsn
}n converges, up to a subsequence, to some v ∈

H1(RN ) in Lq
loc(R

N ) for every q ∈ [2, 2N/(N − 1)), and pointwise almost
everywhere.
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Proof. Note that Hsn(RN ) ⊂ H1/2(RN ) and

‖ · ‖1/2 ≤ C‖ · ‖sn

where C > 0 does not depend on sn (and therefore also on n): see for instance
[14, Proposition 1.1]. In particular, for every n ∈ N, we have

‖vsn
‖1/2 ≤ C‖vsn

‖sn
≤ CM. (3.1)

Thus, {vsn
}n is bounded in H1/2(RN ). Hence, passing to a subsequence,

there exists a function v, such that vsn
⇀ v in H1/2(RN ), vsn

→ v pointwise
almost everywhere, and vsn

→ v in Lq
loc(R

N ) for every q ∈ [2, 2N/(N − 1)).
From [7, Corollary 7], it follows that v ∈ H1

loc(R
N ). To complete the proof,

we need to show that v ∈ H1(RN ).
Let v̂sn

denote the Fourier transform of vsn
, similarly for v̂. We may

assume, without loss of generality, that v̂sn
⇀ v̂ in L2(RN ). Note that (3.1)

implies that

sup
n

∫
RN

(1 + |ξ|2)sn |v̂sn
|2 dξ ≤ K

for some constant K > 0. For 1/2 < t ≤ 1, we define

Bt :=
{

w ∈ L2(RN ) |
∫
RN

(1 + |ξ|2)t|w(ξ)|2 dξ ≤ K

}
.

First of all, we observe that ⋂
1/2<t<1

Bt = B1. (3.2)

Indeed, for any 1/2 < t < 1 we have (1 + |ξ|2)t ≤ 1 + |ξ|2. Take w ∈ B1 and
note that ∫

RN

(1 + |ξ|2)t |w(ξ)|2dξ ≤
∫
RN

(1 + |ξ|2) |w(ξ)|2dξ ≤ K.

Hence w ∈ Bt for any t < 1. Thus⋂
1/2<t<1

Bt ⊃ B1.

On the other hand, fix w ∈ ⋂
1/2<t<1 Bt. Take any sequence tn → 1− with

tn > 1/2. Then, obviously

lim inf
n→+∞(1 + |ξ|2)tn |w(ξ)|2 = (1 + |ξ|2)|w(ξ)|2

and Fatou’s lemma yields∫
RN

(1 + |ξ|2) |w(ξ)|2dξ ≤ lim inf
n→+∞

∫
RN

(1 + |ξ|2)tn |w(ξ)|2dξ ≤ K.

Hence w ∈ B1, or ⋂
1/2<t<1

Bt ⊂ B1,
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and (3.2) is proved. Fix now any t ∈ (1/2, 1) and choose n0 such that sn > t
for all n ≥ n0. Then

(1 + |ξ|2)t ≤ (1 + |ξ|2)sn for every ξ ∈ R
N ,

and∫
RN

(1 + |ξ|2)t |v̂sn
|2 dξ ≤

∫
RN

(1 + |ξ|2)sn |v̂sn
|2 dξ ≤ K for n ≥ n0.

Hence, v̂sn
∈ Bt for n ≥ n0. Each Bt is a closed and convex subset in L2(RN ),

and from [8, Theorem 3.7] it is also weakly closed. Hence, v̂ ∈ Bt. Therefore,
recalling (3.2),

v̂ ∈
⋂

1
2<t<1

Bt =
{

w ∈ L2(RN ) |
∫
RN

(1 + |ξ|2)|w(ξ)|2 dξ ≤ K

}
.

This implies that ∫
RN

(1 + |ξ|2)|v̂(ξ)|2 dξ ≤ K < +∞

and v ∈ H1(RN ). �

4. Existence of ground states

It is easy to check that the energy functional J has the mountain-pass geom-
etry. In particular, there is radius r > 0, such that

inf
‖u‖=r

J (u) > 0.

The following existence result is well-known in the literature, and has been
shown in various ways, see e.g. [4,12,17,18].

Theorem 4.1. Suppose that assumptions (N), (V ), (F1)–(F4) hold. Then
there exists a ground state solution u0 ∈ H1(RN ) to (1.3), i.e., a critical
point of the functional J given by (2.3), such that

J (u0) = inf
N

J = inf
u∈H1(RN )\{0}

sup
t≥0

J (tu) = inf
γ∈Γ

sup
t∈[0,1]

J (γ(t)),

where N is the so-called Nehari manifold

N := {u ∈ H1(RN )\{0} | J ′(u)(u) = 0}
and

Γ := {γ ∈ C([0, 1],H1(RN )) | γ(0) = 0, ‖γ(1)‖ > r, J (γ(1)) < 0}.

The same methods can be applied also in the nonlocal case, and the
following existence result can be shown, see e.g. [3,15,16]. In what follows,
rs > 0 is the radius chosen so that

inf
‖u‖s=rs

Js(u) > 0.
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Theorem 4.2. Suppose that assumptions (N), (V), (F1)–(F4) hold and 1/2 <
s < 1. Then there exists a ground state solution us ∈ Hs(RN ) to (1.1), i.e. a
critical point of the functional Js given by (2.3), such that

Js(us) = inf
Ns

Js = inf
u∈Hs(RN )\{0}

sup
t≥0

Js(tu) = inf
γ∈Γs

sup
t∈[0,1]

Js(γ(t)), (4.1)

where Ns is the corresponding Nehari manifold

Ns := {u ∈ Hs(RN )\{0} | J ′
s(u)(u) = 0}

and

Γs := {γ ∈ C([0, 1],Hs(RN )) | γ(0) = 0, ‖γ(1)‖ > rs, Js(γ(1)) < 0}.

5. Non-local to local transition

For any s ∈ (1/2, 1) we define

cs := inf
Ns

Js > 0.

Similarly, we put also

c := inf
N

J > 0.

For any v ∈ Hs(RN )\{0} let ts(v) > 0 be the unique positive real number
such that ts(v) ∈ Ns. Then, we put ms(v) := ts(v)v .

Lemma 5.1. There results

lim sup
s→1−

cs ≤ c.

Proof. Take u ∈ H1(RN ) ⊂ Hs(RN ) as a ground state solution of (1.3), in
particular u ∈ N and J (u) = c, where J is given by (2.3). Consider the
function ms(u) ∈ Ns. Obviously

cs ≤ Js(ms(u)).

Hence

lim sup
s→1−

cs ≤ lim sup
s→1−

Js(ms(u))

= lim sup
s→1−

{
Js(ms(u)) − 1

2
J ′

s(ms(u))(ms(u))
}

= lim sup
s→1−

{
1
2

∫
RN

f(x,ms(u))ms(u) − 2F (x,ms(u)) dx

}
.

Recall that ms(u) = tsu for some real numbers ts > 0. Suppose by contra-
diction that ts → +∞ as s → 1−. Then, in view of the Nehari identity

‖u‖2
s =

∫
RN

f(x, tsu)
t2s

tsu dx ≥ 2
∫
RN

F (x, tsu)
t2su

2
u2 dx → +∞,

but the left-hand side stays bounded (see Corollary 2.2). Hence (ts)s is
bounded. Take any convergent subsequence (tsn

) of (ts), i.e. tsn
→ t0 as
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n → +∞. Obviously t0 ≥ 0. We will show that t0 �= 0. Indeed, suppose that
t0 = 0, i.e. tsn

→ 0. Then, in view of the Nehari identity

‖u‖2
sn

=
∫
RN

f(x, tsn
u)

tsn
u

u2 dx.

By Corollary 2.2, ‖u‖2
sn

→ ‖u‖2 > 0. Hence, in view of (F2),

‖u‖2 + o(1) =
∫
RN

f(x, tsn
u)

tsn
u

u2 dx → 0,

a contradiction. Hence t0 > 0. Again, by Corollary 2.2,

t2sn
‖u‖2

sn
→ t20‖u‖2 as n → +∞.

Moreover, in view of Remark 1.1,

|f(x, tsn
u)tsn

u| ≤ εt2sn
|u|2 + Cεt

p
sn

|u|p ≤ C(|u|2 + |u|p)
for some constant C > 0, independent of n. In view of the Lebesgue’s con-
vergence theorem,∫

RN

f(x, tsn
u)tsn

u dx →
∫
RN

f(x, t0u)t0u dx.

Thus, the limit t0 satisfies

t20‖u‖2 =
∫
RN

f(x, t0u)t0u dx.

Taking the Nehari identity into account we see that t0 = 1. Hence ts → 1 as
s → 1−. Repeating the same argument we see that

lim sup
s→1−

{
1
2

∫
RN

f(x,ms(u))ms(u) − 2F (x,ms(u)) dx

}

=
1
2

∫
RN

f(x, u)u − 2F (x, u) dx = J (u) = c

and the proof is completed. �

Lemma 5.2. There exists a constant M > 0, such that

‖us‖L2(RN ) + ‖us‖s + ‖us‖
L

2N
N−1 (RN )

≤ M

for every s ∈ (1/2, 1).

Proof. Note that ‖us‖L2(RN ) + ‖us‖
L

2N
N−1 (RN )

≤ C‖us‖s, for some C > 0

independent of s. So it is enough to show that ‖us‖s ≤ M . Suppose by
contradiction that

‖us‖s → +∞ as s → 1−.

Put vs := us

‖us‖s
. Then ‖vs‖s = 1. In particular, {vs} is bounded in L2(RN ).

Suppose that

sup
y∈RN

∫
B(y,1)

|vs|2 dx → 0 (5.1)
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Then vs → 0 in Lp(RN ). Fix any t > 0. By (4.1) we obtain

Jsn
(usn

) ≥ Jsn

(
t

‖usn
‖sn

usn

)
= Jsn

(tvsn
) =

t2

2
−

∫
RN

F (x, tvsn
) dx.

From Remark 1.1 we see that∫
RN

F (x, tvsn
) dx ≤ εt2‖vsn

‖2
L2(RN ) + Cεt

p‖vsn
‖p

Lp(RN )

→ εt2 lim sup
n→∞

‖vsn
‖2

L2(RN )

for every ε > 0. Thus
∫
RN F (x, tvsn

) dx → 0 and for any t > 0

Jsn
(usn

) ≥ t2

2
+ o(1),

which is a contradiction with the boundedness of {Jsn
(usn

)}n. Hence (5.1)
does not hold, i.e. there is a sequence {zn} ⊂ Z

N , such that

lim inf
n→∞

∫
B(zn,1+

√
N)

|vn|2 dx > 0.

or, equivalently

lim inf
n→∞

∫
B(0,1+

√
N)

|vn(x − zn)|2 dx > 0.

From Theorem 3.2, vn(·− zn) → v0 in L2
loc(R

N ) and pointwise a.e., moreover
v0 �= 0. See that, for a.e. x ∈ supp v0 we have

|usn
(x − zn)| = ‖usn

‖sn
|vsn

(x − zn)| → +∞.

Thus

o(1) =
Jsn

(usn
)

‖usn
‖2

sn

=
1
2

−
∫
RN

F (x, usn
)

u2
sn

v2
sn

dx

=
1
2

−
∫
RN

F (x, usn
(x − zn))

usn
(x − zn)2

vsn
(x − zn)2 dx

≤ 1
2

−
∫

supp v0

F (x, usn
(x − zn))

usn
(x − zn)2

vsn
(x − zn)2 dx → −∞,

a contradiction. �
Lemma 5.3. Since us ∈ Ns there is (independent of s) constant ρ, such that

‖us‖s ≥ ρ > 0.

Proof. Since us ∈ Ns, we can write by Remark 1.1

‖us‖2
s =

∫
RN

f(x, us)us dx ≤ ε‖us‖2
L2(RN ) + Cε‖us‖p

Lp(RN )

≤ C
(
ε‖us‖2

s + Cε‖us‖p
s

)
for a constant C > 0 independent of s. Choosing ε > 0 small enough, we
conclude that

‖us‖p−2
s ≥ 1 − Cε

C · Cε
= ρ > 0.

�
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Corollary 5.4. There exist u0 ∈ H1(RN ), a sequence {zn}n ⊂ Z
N and a

sequence {sn}n such that sn → 1− and

usn
(· − zn) → u0 �= 0 in Lν

loc(R
N ) as n → +∞

for all ν ∈ [2, 2N/(N − 1)).

Proof. From Lemma 5.2 and Theorem 3.2 we note that

usn
→ u0 in Lν

loc(R
N ) as n → +∞

for all ν ∈ [2, 2N/(N − 1)). If u0 �= 0, we can take zn = 0 and the proof is
completed. Otherwise usn

→ 0 in L2
loc(R

N ) and therefore, usn
(x) → 0 for

a.e. x ∈ R
N . Assume that

sup
y∈RN

∫
B(y,1)

|usn
|2 dx → 0.

Then from Theorem 3.1 we know that usn
→ 0 in Lν(RN ) for all ν ∈

[2, 2N/(N − 1)). Then ∫
RN

f(x, usn
)usn

dx → 0

and ‖usn
‖2

sn
=

∫
RN f(x, usn

)usn
dx → 0, which is a contradiction with Lemma

5.3. Hence there is a sequence {zn} ⊂ Z
N such that

lim inf
n→+∞

∫
B(0,1+

√
N)

|usn
(· − zn)|2 dx > 0. (5.2)

Moreover ‖usn
(· − zn)‖sn

= ‖usn
‖sn

, so that ‖usn
(· − zn)‖sn

is bounded (see
Lemma 5.2). Hence, in view of Theorem 3.2

usn(·−zn) → ũ0 in Lν
loc(R

N ) as n → +∞
for some ũ0. Moreover, in view of (5.2), ũ0 �= 0. �

Lemma 5.5. The limit u0 ∈ H1(RN )\{0} is a weak solution for (1.3).

Proof. Take any test function ϕ ∈ C∞
0 (RN ) and note that by [20, Section 6]

we have ∫
RN

(−Δ)s/2usn
(−Δ)sn/2ϕ dx =

∫
RN

usn
(−Δ)snϕ dx.

Moreover∣∣∣∣
∫
RN

usn
(−Δ)snϕ dx −

∫
RN

u0(−Δϕ) dx

∣∣∣∣
=

∣∣∣∣
∫
RN

usn
((−Δ)snϕ − (−Δϕ)) dx +

∫
supp ϕ

(usn
− u0)(−Δϕ) dx

∣∣∣∣
≤ ‖usn

‖L2(RN ) ‖(−Δ)snϕ − (−Δϕ)‖L2(RN )

+‖(−Δϕ)‖L2(RN )‖usn
− u0‖L2(supp ϕ) → 0.
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Hence

lim
n→+∞

∫
RN

(−Δ)sn/2usn
(−Δ)sn/2ϕ dx =

∫
RN

u0(−Δϕ) dx

=
∫
RN

∇u0 · ∇ϕ dx.

Obviously

lim
n→+∞

∫
RN

V (x)usn
ϕ dx = lim

n→+∞

∫
supp ϕ

V (x)usn
ϕ dx =

∫
RN

V (x)u0ϕ dx.

Take any measurable set E ⊂ suppϕ and note that, taking into account
Remark 1.1, ∫

E

|f(x, usn
)ϕ|dx ≤ ε‖usn

‖L2(RN )‖ϕχE‖L2(supp ϕ)

+Cε‖usn
‖p−1

Lp(RN )
‖ϕχE‖Lp(supp ϕ).

Hence, the family {f(·, usn
)ϕ}n is uniformly integrable on suppϕ and in view

of the Vitali convergence theorem

lim
n→+∞

∫
RN

f(x, usn
)ϕ dx =

∫
RN

f(x, u0)ϕ dx.

Therefore u0 satisfies∫
RN

∇u0 · ∇ϕ dx +
∫
RN

V (x)u0ϕ dx =
∫
RN

f(x, u0)ϕ dx,

i.e. u0 is a weak solution to (1.3). �

Proof of Theorem 1.2. Recalling Corollary 5.4 and Lemma 5.5, it is sufficient
to check that u0 is a ground state solution, i.e. J (u0) = c. From Lemma 5.5
it follows that u0 ∈ H1(RN )\{0} is a weak solution, so that u0 ∈ N . Note
that, from Corollary 5.4 and Fatou’s lemma,

lim inf
n→+∞ csn = lim inf

n→+∞ Jsn (usn ) = lim inf
n→+∞

{
Jsn (usn ) − 1

2
J ′
sn

(usn )(usn )

}

= lim inf
n→+∞

{
1

2

∫
RN

f(x, usn )usn − 2F (x, usn ) dx

}

= lim inf
n→+∞

{
1

2

∫
RN

f(x, usn (· − zn))usn (· − zn) − 2F (x, usn (· − zn)) dx

}

≥ 1

2

∫
RN

f(x, u0)u0 − 2F (x, u0) dx = J (u0) ≥ c.

Taking into account Lemma 5.1 we see that

c ≤ J (u0) ≤ lim inf
n→+∞ csn

≤ lim sup
n→+∞

csn
≤ c

Hence limn→+∞ csn
exists and limn→+∞ csn

= c = J (u0). �
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