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1. Introduction

1.1. General setting

The literature on complete metric spaces contains remarkable results such as
the Theorem of Caristi and Kirk ([2] and [7]), Ekeland’s principle ([4]), Taka-
hashi’s theorem ([17]) and the flower petal theorem ([16]). These theorems
are known to be equivalent (see, e.g., [15,16] and Remark 3 below). Their
statements can be found in Sect. 4.

In [15], Oettli and Théra introduced an alternative approach to the
Caristi–Kirk Theorem and showed it to be equivalent to what was later (in
publications such as [14]) called Oettli–Théra Theorem (Theorem 29 below).
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The concept of a ball space was first introduced by F.-V. and K. Kuhl-
mann in [10,11]. In [12], taking balls to be sets previously used by J.-P. Penot
in [16], they provided a way to prove the Caristi–Kirk Fixed Point Theorem
(FPT) using ball space techniques.

In this paper, the authors aim to further develop the language of ball
spaces and describe new applications of their theory. Translating known re-
sults equivalent to the Caristi–Kirk FPT in the language of ball spaces opens
up the possibility to employ the developed theory to prove them in a simple
manner (see, Sects. 3 and 4). While Propositions 16 and 20 below also pro-
vide new statements equivalent to the Caristi–Kirk FPT, it is worth pointing
out that the main idea of this paper is not simply to add another theorem to
the set of equivalent results. Instead, the authors focus on employing the ball
space framework to express a common principle which connects the already
known equivalent theorems. This principle, whose core can be found in The-
orem 2 below, sheds new light on the existing theory and helps to acquire
a better understanding thereof. Finally, the authors wish to encourage the
reader to discover and further explore the theory of ball spaces and to look
for new possibilities to broaden the range of its applications.

1.2. Ball spaces

As in [12], by a ball space we mean a pair (X,B), where X is a nonempty set
and B ⊆ P(X) is a nonempty family of nonempty subsets of X. An element
B ∈ B is called a ball. If no confusion arises, we will write B in place of (X,B)
when speaking of a ball space.

A nest of balls in a ball space B is a nonempty family N of balls from B
which is totally ordered by inclusion. We say that a ball space B is spherically
complete if for every nest of balls N ⊆ B we have

⋂ N �= ∅. Further details
about ball spaces can be found in [3].

Definition 1. A ball space (X,B) is strongly contractive if there is a function
that associates with every x ∈ X some ball Bx ∈ B such that, for every
x, y ∈ X, the following conditions hold:
(1) x ∈ Bx;
(2) if y ∈ Bx, then By ⊆ Bx;
(3) if y ∈ Bx\{x}, then By � Bx.

This particular type of ball spaces has a remarkable property stated in
the following theorem.

Theorem 2. In every spherically complete, strongly contractive ball space ev-
ery ball Bx contains a singleton ball. In other words, there exists a ∈ Bx such
that Ba = {a}.
Proof. Let B be a strongly contractive, spherically complete ball space and
Bx ∈ B any ball. Consider the family

A = {N ⊆ P(Bx) | N is a nest of balls in B}.
This family is partially ordered by inclusion and nonempty since {Bx} ∈ A.
If we have a chain of nests in A, the union of that chain is again a nest of balls
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in A, hence an upper bound of the chain. By Zorn’s Lemma, we obtain the
existence of a maximal nest M ∈ A. Since the space is spherically complete,
there exists an element a ∈ ⋂M. Since a ∈ B for every B ∈ M, by condition
(2) of Definition 1 also Ba ⊆ B for every B ∈ M and so Ba ⊆ ⋂ M. This
means that M∪{Ba} is a nest of balls in A which contains M. By maximality
of M we obtain M ∪ {Ba} = M, i.e., Ba ∈ M. Now we wish to show that
Ba is a singleton. Suppose that there exists an element b ∈ Ba\{a}. Then
Bb � Ba (in particular, Ba �⊆ Bb) and so Bb /∈ M. But this means that
M ∪ {Bb} is a nest of balls that properly contains M, which contradicts the
maximality of M. Therefore, Ba = {a}. �

Remark 3. In the proof of Theorem 2, we have used Zorn’s Lemma. Our the-
orem will play a crucial role in the proofs of the results mentioned at the
beginning of the introduction. Nevertheless, it is known that some of these
theorems (e.g., Caristi–Kirk FPT and basic Ekeland’s variational principle)
can be proved without employing the full axiom of choice AC (see [5,9] and
also Remark 17 below). In fact, their proofs can be carried out within the
Zermelo–Fraenkel axiom system ZF plus the axiom of dependent choice DC.
The latter is a weaker form of AC which covers the usual mathematical in-
duction but not transfinite induction. It is worth noting that some authors
(e.g., [6,13]) claim that the Caristi–Kirk FPT can be proved within ZF only.
This implies that the equivalence between basic Ekeland’s variational princi-
ple and the Caristi–Kirk FPT, which holds in ZF+DC, does not hold in ZF,
as the former implies DC in ZF [8]. However, in view of the number of possi-
ble applications in settings other than metric spaces (see [3]), it is reasonable
to expect that several of them will require AC.

2. Caristi–Kirk and Oettli–Théra ball spaces

In this section, we will be working with a nonempty metric space (X, d).

2.1. Caristi–Kirk ball spaces

Consider a function ϕ : X → R, a point x ∈ X and the following set:

Bϕ
x = {y ∈ X | d(x, y) ≤ ϕ(x) − ϕ(y)}.

Since Bϕ
x �= ∅ (see (1) of Lemma 4 below), we may think of this set as a ball

and consider the ball space (X,Bϕ), where

Bϕ := {Bϕ
x | x ∈ X} .

We will call the function ϕ a Caristi–Kirk function on X if it is lower semi-
continuous, that is,

∀
y∈X

lim inf
x→y

ϕ(x) ≥ ϕ(y),

and bounded from below, that is,

inf
x∈X

ϕ(x) > −∞.
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The corresponding balls Bϕ
x had appeared in [16] and were later given the

name Caristi–Kirk balls in [12]. The collection Bϕ is the induced Caristi–Kirk
ball space. For brevity, we will write “CK” in place of “Caristi–Kirk”.

A number of remarkable properties of the balls defined above, given in
the following lemma, can be found in [12, Lemma 5].

Lemma 4. Take a metric space (X, d) and any function ϕ : X → R. Then
the following assertions hold.
(1) For every x ∈ X, x ∈ Bϕ

x .
(2) If y ∈ Bϕ

x , then Bϕ
y ⊆ Bϕ

x ; if in addition x �= y, then Bϕ
y � Bϕ

x and
ϕ(y) < ϕ(x).

(3) If ϕ is lower semicontinuous, then all CK balls Bx are closed in the
topology induced by the metric.

Lemma 4 immediately yields the following result.

Corollary 5. The CK ball space Bϕ is strongly contractive.

Another important fact about CK ball spaces can also be found in [12,
Proposition 3]:

Proposition 6. Let (X, d) be a metric space. Then the following statements
are equivalent:

(i) The metric space (X, d) is complete.
(ii) Every CK ball space (X,Bϕ) is spherically complete.
(iii) For every continuous function ϕ : X → R bounded from below, the CK

ball space (X,Bϕ) is spherically complete.

2.2. Oettli–Théra ball spaces

The following notions can be found in [15].

Definition 7. We say that a function φ : X × X → (−∞,+∞] is an Oettli–
Théra function on X if the following properties hold:

(a) φ(x, ·) : X → (−∞,+∞] is lower semicontinuous for all x ∈ X;

(b) φ(x, x) = 0 for all x ∈ X;

(c) φ(x, y) ≤ φ(x, z) + φ(z, y) for all x, y, z ∈ X;

(d) there exists x0 ∈ X s.t. infx∈X φ(x0, x) > −∞.

If an element x0 ∈ X satisfies property (d), we will call it an Oettli–Théra
element for φ in X. For brevity, we will write “OT” in place of “Oettli–
Théra”.

Definition 8. Let φ be an OT function on X.
(i) For x ∈ X, we will call the following set an OT ball :

Bφ
x := {y ∈ X | d(x, y) ≤ −φ(x, y)}.

(ii) By (1) of Lemma 10 below each OT ball is nonempty, so this gives rise
to a ball space (X,Bφ), where

Bφ := {Bx | x ∈ X}.



Vol. 21 (2019) Caristi–Kirk and Oettli–Théra ball spaces Page 5 of 17 98

(iii) Fix any OT element x0 ∈ X and set

Bφ
x0

:= {Bx | x ∈ Bx0}.

We will refer to the ball space (Bx0 ,Bφ
x0

) as the OT ball space generated
by x0.
If no confusion arises as to which OT function is considered, we will

write Bx in place of Bφ
x .

In this subsection, if an OT element x0 ∈ X has been fixed, we will
write for brevity B0 in place of Bx0 .

It is worth noting that if we are given a CK function ϕ, we may define
φ by

φ(x, y) := ϕ(y) − ϕ(x). (1)

The following fact is straightforward to prove.

Fact 9. If ϕ is a CK function, then the function φ : X × X → R defined in
(1) is an OT function. Moreover, every x ∈ X is an OT element for φ.

As we know from Corollary 5, any CK ball space is strongly contractive.
A similar result can be shown for OT ball spaces.

Lemma 10. Take a metric space (X, d) and φ : X × X → R a function
satisfying (b) and (c) in Definition 7. Then the following assertions hold, for
every x ∈ X.
(1) x ∈ Bx.
(2) If y ∈ Bx, then By ⊆ Bx.
(3) If y ∈ Bx\{x}, then By � Bx and φ(x, y) < φ(y, x).

Proof. (1): Indeed, d(x, x) = −φ(x, x) = 0.
(2): Take y ∈ Bx, i.e.,

d(x, y) ≤ −φ(x, y).

Take any z ∈ By, then

d(y, z) ≤ −φ(y, z).

By condition (c) for an OT function, we have

d(x, z) ≤ d(x, y) + d(y, z) ≤ −φ(x, y) − φ(y, z) ≤ −φ(x, z),

so z ∈ Bx and, as a result, By ⊆ Bx.
(3): Let y ∈ Bx and y �= x. We wish to show that x /∈ By. Suppose that

x ∈ By. Then d(y, x) ≤ −φ(y, x) and by conditions (b) and (c) for an
OT function we obtain

0 < d(y, x) + d(x, y) ≤ −φ(y, x) − φ(x, y) ≤ −φ(y, y) = 0,

contradiction. Thus, x /∈ By and so By � Bx. Clearly, this also implies

−φ(y, x) < d(x, y) ≤ −φ(x, y).

�

Lemma 10 instantly yields the following corollary.
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Corollary 11. For an OT function φ on X, the ball space Bφ is strongly con-
tractive. Furthermore, for a fixed OT element x0 for φ in X, the OT ball
space (B0,Bφ

x0
) is also strongly contractive and consists exactly of the OT

balls which are contained in B0.

As stated in Fact 9, for the OT function φ defined in (1) every x ∈ X
is an OT element. While this does not have to be true in general for any OT
function φ, this property turns out to be ‘hereditary’ in the following sense.

Lemma 12. Let φ be an OT function. If x0 ∈ X is an OT element for φ in
X and x ∈ B0, then also x is an OT element for φ in X.

Proof. Let r ∈ R be such that

inf
y∈X

φ(x0, y) ≥ r.

Take any x ∈ B0. Note that 0 ≤ d(x0, x) ≤ −φ(x0, x). For every y ∈ X, we
have

r ≤ φ(x0, y) ≤ φ(x0, x) + φ(x, y),

so

φ(x, y) ≥ r − φ(x0, x).

In particular,

inf
y∈X

φ(x, y) ≥ r − φ(x0, x) ≥ r.

�

As stated in Proposition 6, there is an equivalence between completeness
of a metric space and spherical completeness of the respective CK ball spaces.
A similar result can be shown for the OT ball spaces. For that we will need
to state an auxiliary lemma first.

Lemma 13. Let (X, d) be a metric space, φ an OT function on X and x0 an
OT element for φ in X. Moreover, let N ⊆ Bφ

x0
be a nest of balls and write

N = {Bx | x ∈ A} for some set A ⊆ B0. Then for every x, y ∈ A, we have

d(x, y) ≤ |φ(x0, x) − φ(x0, y)|. (2)

Moreover, the following statements are equivalent for every x, y ∈ A:
(i) y ∈ Bx,
(ii) φ(x, y) ≤ φ(y, x),
(iii) φ(x0, y) ≤ φ(x0, x).

Proof. For every x, y ∈ A either x ∈ By or y ∈ Bx since N is a nest, so

d(x, y) ≤ max{−φ(x, y),−φ(y, x)}. (3)

If the above maximum is equal to −φ(x, y), we have

d(x, y) ≤ −φ(x, y) ≤ φ(x0, x) − φ(x0, y) ≤ |φ(x0, x) − φ(x0, y)|.
Similarly, if the maximum is equal to −φ(y, x), we have

d(x, y) ≤ −φ(y, x) ≤ φ(x0, y) − φ(x0, x) ≤ |φ(x0, x) − φ(x0, y)|.
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Either way, we deduce (2).
To prove (i) ⇔ (ii) assume that y ∈ Bx. If y = x, then (ii) is trivial. If

y �= x, then by assertion (3) of Lemma 10, we have

−φ(y, x) < −φ(x, y).

Hence, (ii) follows. Conversely, if y /∈ Bx (in particular, y �= x), then x ∈
By\{y}. As a result, again by assertion (3) of Lemma 10, −φ(x, y) < −φ(y, x).

To prove (i) ⇔ (iii) we proceed as follows. If y ∈ Bx, then

0 ≤ d(x, y) ≤ −φ(x, y) ≤ −φ(x0, y) + φ(x0, x),

thus φ(x0, x) ≥ φ(x0, y). For the converse, if y /∈ Bx, then x ∈ By and so

0 < d(x, y) ≤ −φ(y, x) ≤ −φ(x0, x) + φ(x0, y),

hence φ(x0, x) < φ(x0, y). �

Proposition 14. Let (X, d) be a metric space. Then the following statements
are equivalent:

(i) The metric space (X, d) is complete.
(ii) The OT ball space (Bφ

x0
,Bφ

x0
) is spherically complete for every OT func-

tion φ on X and every OT element x0 for φ in X.

Proof. Suppose that for every OT function φ and every OT element x0 for φ
in X the ball space (B0,Bφ

x0
) is spherically complete. We wish to show that

the ball space (X,Bϕ) is spherically complete for every CK function ϕ on X,
which by Proposition 6 will yield the completeness of the space X.

Take any CK function ϕ on X, consider the ball space (X,Bϕ) and fix
any nest of balls N in Bϕ. Pick some Bϕ

x0
∈ N and consider the nest

N0 = {B ∈ N | B ⊆ Bϕ
x0

}.

By Fact 9, x0 is an OT element for the OT function φ defined as in (1). Any
ball in N0 is of the form Bϕ

x ⊆ Bϕ
x0

for some x ∈ X. Therefore, since Bϕ
x = Bφ

x

for all x ∈ X, by Corollary 11, N0 is a nest in the ball space (Bx0 ,Bφ
x0

). By
assumption, we then obtain that ∅ �= ⋂ N0 =

⋂ N .
For the converse, assume that X is complete. Fix any OT function φ

on X and any OT element x0 for φ in X. Take a nest of balls N in the ball
space Bφ

x0
and write N = {Bx | x ∈ A} for some set A ⊆ B0. By assumption

on x0 there exists

r := inf
x∈A

φ(x0, x) ∈ R.

Let (xn)n∈N be a sequence of elements in A such that

lim
n→∞ φ(x0, xn) = r.

Then (φ(x0, xn))n∈N is a Cauchy sequence because it converges to r. By (2)
of Lemma 13 the sequence (xn)n∈N is also Cauchy. Since X is complete,
(xn)n∈N converges to an element z ∈ X. We want to show that z ∈ ⋂ N or,
equivalently, that z ∈ Bx for every x ∈ A. Fix an arbitrary element x ∈ A.



98 Page 8 of 17 P. B�laszkiewicz et al. JFPTA

If φ(x0, x) = r (in particular, the infimum is achieved), then applying (2) of
Lemma 13 yields x = z, because

d(xn, x) ≤ |φ(x0, xn) − φ(x0, x)| = |φ(x0, xn) − r| → 0,

showing that x is a limit of (xn)n∈N. Hence, in this case, we obtain that
z ∈ Bx trivially. Therefore, we may assume that φ(x0, x) > r. Then from the
definition of (xn)n∈N we obtain the existence of N ∈ N such that, for every
n ≥ N , we have φ(x0, xn) ≤ φ(x0, x). This, by Lemma 13, is equivalent to
φ(x, xn) ≤ φ(xn, x). Therefore, for every n ≥ N ,

d(x, xn) ≤ max{−φ(x, xn),−φ(xn, x)} = −φ(x, xn),

where the first inequality is deduced similar to (3). Taking the limes superior
on both sides and using that φ(x, ·) is lower semicontinuous, we obtain

d(x, z) ≤ lim sup
n→∞

−φ(x, xn) ≤ −φ(x, z),

so that z ∈ Bx. Since x ∈ A was an arbitrary element, we conclude that
z ∈ ⋂ N as claimed. �

Remark 15. Proposition 14 does in general not hold for the ball space Bφ in
place of Bφ

x0
. Denote by (N0, | · |) the metric space of nonnegative integers

with the standard metric. Define

φ : N0 × N0 → (−∞,+∞]

as

φ(n,m) =

{
n − m if n > 0 or n = m = 0,

+∞ if 0 = n < m.

To show that φ is an OT function as in Definition 7 proceed as follows.
Condition (b) is asked in the definition of φ and 0 ∈ N0 is an OT element

for φ. Condition (a) follows from the fact that if k → m in N0, then k = m
ultimately. Thus, it suffices to show (c), that is,

φ(n,m) ≤ φ(n, k) + φ(k,m) (4)

for all n,m, k ∈ N0. We will proceed by case distinction.
(1) Assume first that n > 0. If k = 0 and m > 0, then φ(k,m) = +∞. If

k = m = 0, then φ(n,m) = φ(n, k) + φ(0, 0). If k > 0, then

φ(n, k) + φ(k,m) = n − k + k − m = n − m = φ(n,m).

For all m ∈ N0. Thus, (4) holds in all cases.
(2) Assume now that n = m = 0. If k = n = m = 0, there is nothing to

show. If k > 0, then φ(n, k) = +∞ and (4) holds.
(3) Finally, assume that 0 = n < m. If k = 0, then φ(k,m) = +∞ and (4)

follows. If k > 0, then φ(n, k) = +∞ and this implies (4).
Although φ is an OT function on the complete space N0, the ball space
(N0,Bφ) is not spherically complete. To see this, fix n > 0.

If m < n, then

|n − m| > 0 > m − n = −φ(n,m),



Vol. 21 (2019) Caristi–Kirk and Oettli–Théra ball spaces Page 9 of 17 98

which implies m /∈ Bφ
n . On the other hand, if m ≥ n, then

|n − m| = m − n = −φ(n,m),

so that m ∈ Bφ
n . Therefore,

Bφ
n = {m ∈ N0 : |n − m| ≤ −φ(n,m)} = {m ∈ N0 : m ≥ n};

hence, the nest

N = {Bφ
n | n > 0}

has empty intersection.
Let us finally observe that the OT ball space (Bφ

x0
,Bφ

x0
) induced by the

OT element x0 = 0 is trivially spherically complete since it consists of only
one singleton ball, that is, {x0}.

The example above can be generalized to the metric space (R, | · |) as
well. One may consider the following OT function:

φ(x, y) =

{
x − y if x > 0 and y ≥ 0 or if x = y,

+∞ otherwise.

This yields Bφ
x = [x,+∞) for x > 0 and Bφ

x = {x} for x ≤ 0. We leave it to
the interested reader to work out the details.

Armed with the theory introduced so far, we can prove an important
property of OT and CK ball spaces in a complete metric space.

Proposition 16. Let (X, d) be a complete metric space.

(1) If φ is an OT function on X, then for every OT element x0 for φ in X,
there exists an element a ∈ B0 such that Bφ

a = {a}.
(2) If ϕ is a CK function on X, then for every x ∈ X, there exists a ∈ Bϕ

x

such that Bϕ
a = {a}.

Proof. Assertion (2) follows from assertion (1) by Fact 9. To prove assertion
(1) let φ, x0 and B0 be as in the assumption of the Proposition. By Proposi-
tion 14, the OT ball space Bφ

x0
is spherically complete, and by Corollary 11

it is strongly contractive. Theorem 2 yields the result. �

Remark 17. In what follows, we present a proof of the previous result without
employing the full AC. This approach is analogous to the one given in [15],
and it is purely metric in the sense of [9]. Nevertheless, DC is needed. Note
that when proving (i) ⇒ (ii) in Proposition 14, the reasoning was purely
metric as well. Thus, we will apply this fact.

Assertion (2) follows from assertion (1) by Fact 9. Let x0 ∈ X be an
OT element for φ and set

γ0 := inf
x∈B0

φ(x0, x) ∈ R.

Inductively define a sequence (xn)n∈N of points of X and a sequence (γn)n∈N

of nonpositive reals in the following way. For any n ∈ N, denote by Bn the
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ball Bφ
xn

. Assume that xn−1 ∈ X and γn−1 have been constructed. Choose
xn ∈ Bn−1 such that

φ(xn−1, xn) ≤ γn−1 +
1
n

. (5)

Recall that elements of B0 are OT elements by Lemma 12, so we can put

γn := inf
x∈Bn

φ(xn, x) ≥ inf
x∈X

φ(xn, x) ∈ R.

Since xn ∈ Bn and φ(xn, xn) = 0, we find that γn ≤ 0. Corollary 11 yields
Bn ⊆ Bn−1 for every n ∈ N. Since X is complete, by Proposition 14 there
exists z ∈ ⋂

n∈N
Bn. We are going to show that this intersection is a singleton.

We have

0 ≥ γn = inf
x∈Bn

φ(xn, x)

≥ inf
x∈Bn

(
φ(xn−1, x) − φ(xn−1, xn)

)

=
(

inf
x∈Bn

φ(xn−1, x)
) − φ(xn−1, xn)

≥ (
inf

x∈Bn−1
φ(xn−1, x)

) − φ(xn−1, xn)

= γn−1 − φ(xn−1, xn) ≥ − 1
n

.

For any n ∈ N and any x ∈ Bn we have that

d(x, xn) ≤ −φ(xn, x) ≤ −γn ≤ 1
n

,

so the radii of the sets Bn approach 0 as n → ∞. This shows that
⋂

n∈N

Bn = {z}.

From part (2) of Lemma 10, it follows that Bz ⊆ Bn for every n ∈ N, so Bz

is a singleton ball.

2.3. Generalized Caristi–Kirk ball spaces

Consider a function ϕ̃ : X → (−∞,+∞] which is lower semicontinuous,
bounded from below and not constantly equal to +∞. We will call such ϕ̃
a CK∞ function on X. In this setting, we may define the CK∞ balls as
follows:

Bϕ̃
x := {x ∈ X | ϕ̃(y) + d(x, y) ≤ ϕ̃(x)}.

If an element x0 ∈ X satisfies ϕ̃(x) < +∞, we will call it a CK element for
ϕ̃ in X (or simply a CK element).

An easy observation is that every CK function is a CK∞ function. How-
ever, for a CK∞ function ϕ̃, setting

φ(x, y) := ϕ̃(y) − ϕ̃(x) (6)

as we did in the CK case (1), may not make sense. Indeed, in the case ϕ̃(x) =
+∞ = ϕ̃(y) there is no natural choice for the value of φ(x, y).

In this subsection, if a CK element x0 is fixed, we will write B0 in place
of Bϕ̃

x0
.
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For a CK element x0, we define the CK∞ ball space generated by x0 as
the ball space (B0,Bϕ̃

x0
), where

Bϕ̃
x0

:= {Bϕ̃
x | x ∈ B0}.

Note that in general the ball space {Bϕ̃
x | x ∈ X} is not strongly contractive.

Indeed, if x, y ∈ X, x �= y, satisfy ϕ̃(x) = ϕ̃(y) = +∞, then Bϕ̃
x = X = Bϕ̃

y .
However, if we work inside a CK∞ ball space, strong contractiveness holds,
as stated in the following lemma.

Lemma 18. Take a metric space (X, d) and any function ϕ̃ : X → (−∞,+∞].
The following assertions hold for every x ∈ X.
(1) x ∈ Bϕ̃

x .
(2) If y ∈ Bϕ̃

x , then Bϕ̃
y ⊆ Bϕ̃

x and ϕ̃(y) ≤ ϕ̃(x).
(3) Let x ∈ X be such that ϕ̃(x) < +∞ and let y ∈ Bϕ̃

x \{x}. Then Bϕ̃
y � Bϕ̃

x

and ϕ̃(y) < +∞.
In particular, if x0 is a CK element for ϕ̃, then for every y ∈ B0, y is

also a CK element for ϕ̃. Further, ϕ̃|B0 is a CK function and (B0,Bϕ̃
x0

) is a
CK ball space in the sense of Sect. 2.1.

Proof. (1): Indeed, ϕ̃(x) + d(x, x) = ϕ̃(x).
(2): If ϕ(x) = +∞, then Bϕ̃

x = X and Bϕ̃
y ⊆ Bϕ̃

x as well as ϕ̃(y) ≤ ϕ̃(x)
trivially. Now assume that ϕ̃(x) < +∞ and y ∈ Bϕ̃

x . Then also ϕ̃(y) <
+∞ because

ϕ̃(y) ≤ ϕ̃(x) − d(x, y) ≤ ϕ̃(x) < +∞.

This implies the last assertions of the statement. Hence, (3), as well as
the rest of (2), follow from Lemma 4. �

Lemma 19. For every x ∈ X and every CK∞ function ϕ̃, the ball Bϕ̃
x is closed

in the topology induced by the metric.

Proof. The complement {y ∈ X | d(x, y)+ϕ̃(y) > ϕ̃(x)} of Bϕ̃
x is the preimage

of the final segment (ϕ̃(x),+∞] of (−∞,+∞], which is open in the Scott
topology, under the function

X � y
ψ�−→ d(x, y) + ϕ̃(y).

Whenever ϕ̃ is lower semicontinuous, then so is ψ and this preimage is open
in X. �

We are now ready to prove a result analogous to Propositions 6 and 16.

Proposition 20. Let (X, d) be a complete metric space and ϕ̃ be a CK∞ func-
tion on X. If x0 ∈ X, then there exists a ∈ Bϕ̃

x0
such that Bϕ̃

a = {a}.
Proof. Consider a complete metric space (X, d), fix any element x0 ∈ X and
consider the ball B0 := Bϕ̃

x0
.

Assume first that x0 is a CK element for ϕ̃ in X. As we know from
Lemma 19, B0 is closed; hence, complete. Moreover, the function ϕ := ϕ̃|B0

is a CK function. Note that for every x ∈ B0 we have
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Bϕ
x = {y ∈ B0 | d(x, y) ≤ ϕ(x) − ϕ(y)}

⊆ Bϕ̃
x = {y ∈ X | ϕ̃(y) + d(x, y) ≤ ϕ̃(x)}.

We wish to show that the above sets are equal. By assertion (2) of Lemma 18
we know that Bϕ̃

x ⊆ B0. On B0 we have ϕ = ϕ̃ so that the values of ϕ̃ are
finite and ϕ̃(y) + d(x, y) ≤ ϕ̃(x) is equivalent to d(x, y) ≤ ϕ(x) − ϕ(y). This
yields Bϕ̃

x ⊆ Bϕ
x .

Since ϕ is a CK function on a complete metric space B0, we may apply
assertion (2) of Proposition 16 to the CK ball space (B0,Bϕ

x0
), to acquire

a ∈ B0 such that

{a} = Bϕ
a = Bϕ̃

a .

Assume now that x0 ∈ X is not a CK element for ϕ̃. Then we obtain that
B0 = X. Inside the ball B0 we may thus find a CK element x1 for ϕ̃ since
by definition ϕ̃ is not constantly ∞. From what we have proved above, there
exists a ∈ Bϕ̃

x1
⊆ X = B0 such that Bϕ̃

a = {a}. �

3. Applications of Proposition 16

In this section, we give simple proofs for a number of known theorems, in
versions that involve OT functions, by applying Proposition 16. Note that the
multivalued Caristi–Kirk FPT, Ekeland’s principle and Takahashi’s theorem
have already been proved in the OT form in [15] using the Oettli–Théra
theorem. The original versions of these theorems are listed in Sect. 4.

Theorem 21 (Caristi–Kirk FPT, OT form). Let (X, d) be a complete metric
space and φ an OT function on X. If a function f : X → X satisfies

∀
x∈X

d(x, f(x)) ≤ −φ(x, f(x)), (7)

then f has a fixed point on X, i.e., there exists an element a ∈ X such that
f(a) = a.

Proof. Condition (7) implies that for every x ∈ X we have

f(x) ∈ Bx.

Proposition 16 gives us the existence of a ∈ X such that Ba = {a}. In
particular, since f(a) ∈ Ba, we have f(a) = a. �
Theorem 22 (Caristi–Kirk FPT, multivalued version, OT form). Let (X, d)
be a complete metric space and φ an OT function on X.

If a function F : X → P(X) satisfies:

∀
x∈X

∃
y∈F (x)

d(x, y) ≤ −φ(x, y), (8)

then F has a fixed point on X, i.e., there exists a ∈ X such that a ∈ F (a).

Proof. Condition (8) means that for every x ∈ X there exists y ∈ F (x)∩Bx.
In particular, for x = a with a ∈ X given by Proposition 16 we obtain

y ∈ F (a) ∩ Ba ⊆ {a},

whence a = y ∈ F (a). �
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Theorem 23 (Basic Ekeland’s principle, OT form). Let (X, d) be a complete
metric space and φ an OT function on X. There exists a ∈ X such that

∀
x∈X\{a}

− φ(a, x) < d(a, x). (9)

Proof. Property (9) is equivalent to Ba = {a} and the existence of such a ∈ X
follows from Proposition 16. �
Theorem 24 (Altered Ekeland’s principle, OT form). Let (X, d) be a complete
metric space and φ an OT function on X. For any γ > 0 and any OT element
x0 for φ in X there exists a ∈ X such that

∀
x∈X\{a}

− φ(a, x) < γd(a, x) (10)

and

− φ(x0, a) ≥ γd(x0, a). (11)

Proof. Since γ > 0, the function ψ := γ−1φ is an OT function on X, so we
can work with ψ and the respective ball space Bψ.

We apply Proposition 16 to the given complete metric space X, the
function ψ and the ball B0 := Bψ

x0
. This gives us the existence of an element

a ∈ B0 such that Bψ
a = {a}. Now, the assertion a ∈ B0 means that

d(x0, a) ≤ −ψ(x0, a) = −γ−1φ(x0, a),

which is equivalent to property (11). Similarly, Bψ
a = {a} implies

∀
x∈X\{a}

d(a, x) > −ψ(a, x) = −γ−1φ(a, x),

which is equivalent to property (10). �
Theorem 25 (Ekeland’s usual variational theorem, OT form). Let (X, d) be
a complete metric space and φ an OT function on X. Fix ε ≥ 0 and x0 ∈ X
such that −ε ≤ infx∈X φ(x0, x). Then for any γ > 0 and δ ≥ 0 with γδ ≥ ε
there exists a ∈ X such that d(a, x0) ≤ δ and a is the strict minimum point
of the function φγ : X → (−∞,+∞] defined as

φγ(x) = φ(a, x) + γd(x, a).

Proof. Take ε ≥ 0 and x0 as in the assumptions of the theorem, and fix
arbitrary real numbers γ > 0 and δ ≥ 0 such that γδ ≥ ε. The function
ψ := γ−1φ : X × X → (−∞,+∞] is an OT function on X, so we can apply
Proposition 16 with the function ψ and B0 := Bψ

x0
(note that x0 is an OT

element for ψ in X). We deduce the existence of a ∈ B0 such that Bψ
a = {a}.

Now, the property a ∈ B0 means that

d(x0, a) ≤ −ψ(x0, a),

or in other words,

γd(x0, a) ≤ −φ(x0, a) ≤ − inf
x∈X

φ(x0, x) ≤ ε ≤ γδ.

Thus,

d(a, x0) = d(x0, a) ≤ δ.
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The property Ba = {a} means that for every x ∈ X\{a} we have that

d(x, a) > −ψ(a, x) = −γ−1φ(a, x).

From this, we obtain that

φγ(x) = φ(a, x) + γd(x, a) > 0 = φγ(a),

which means that a is the strict minimum point of the function φγ . �
Definition 26. Let (X, d) be a metric space. Take γ ∈ (0,∞) and a, b ∈ X.
The petal associated with γ and a, b is the subset Pγ(a, b) of X defined as
follows:

Pγ(a, b) = {y ∈ X | γd(y, a) + d(y, b) ≤ d(a, b)}.

Theorem 27 (Flower petal theorem). Let M be a complete subset of a metric
space (X, d). Take x0 ∈ M and b ∈ X\M . Then for each γ > 0 there exists
a ∈ Pγ(x0, b) ∩ M such that

Pγ(a, b) ∩ M = {a}.

Proof. We use the notation from the assertion of the theorem. As γ > 0, the
function ϕ : M → R given by

ϕ(x) := γ−1d(x, b)

is a CK function on M . In this setting we have, for every x ∈ M ,

Pγ(x, b) ∩ M = {y ∈ M | d(x, y) ≤ ϕ(x) − ϕ(y)} = Bϕ
x .

To conclude we use assertion (2) of Proposition 16 with M in place of X and
x := x0, which yields the existence of a ∈ Bϕ

x0
= Pγ(x0, b) ∩ M such that

{a} = Bϕ
a = Pγ(a, b) ∩ M.

�
Theorem 28 (Takahashi, OT form). Let (X, d) be a complete metric space, φ
an OT function on X and x0 ∈ X an OT element for φ in X. Assume that for
every u ∈ Bx0 with infx∈X φ(u, x) < 0 there exists v ∈ X such that v �= u and
d(u, v) ≤ −φ(u, v). Then there exists a ∈ Bx0 such that infx∈X φ(a, x) = 0.

Proof. Proposition 16 gives us the existence of a ∈ Bx0 such that Ba = {a}.
If infx∈X φ(a, x) < 0, then by assumption there would exist v ∈ X\{a}
such that d(a, v) ≤ −φ(a, v), which would mean that Ba is not a single-
ton, contradiction. So infx∈X φ(a, x) ≥ 0, but φ(a, a) = 0, which proves the
claim. �
Theorem 29 (Oettli–Théra). Let (X, d) be a complete metric space, φ an OT
function on X and x0 ∈ X an OT element for φ in X. Let Ψ ⊆ X have the
property that

∀
x∈Bx0\Ψ

∃
y∈X\{x}

d(x, y) ≤ −φ(x, y). (12)

Then there exists a ∈ Bx0 ∩ Ψ.

Proof. From Proposition 16 there exists a ∈ Bx0 such that Ba = {a}. If
a /∈ Ψ, then by assumption Ba would contain another element y �= a, which
would mean that Ba is not a singleton, contradiction. �
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4. Applications of Proposition 20

Many of the theorems mentioned in the previous section have been originally
stated and proved using the CK function ϕ. By Fact 9, proving the version
involving φ, through (1), will also automatically prove the version involving
ϕ. However, many sources (e.g., [1,16]) cite the theorems in a CK∞ form.
As already remarked, we cannot directly define an OT function from a CK∞

function. Nevertheless, we can use Proposition 20 to prove these versions in
the same way we did in the previous section using Proposition 16. Therefore,
we leave the proofs to the reader.

Here we do not include the Oettli–Théra Theorem (since it has originally
been stated only in the OT form) nor the Flower Petal Theorem (since it does
not include any CK∞ function in its statement and proof).

For the following theorems, fix a complete metric space (X, d) and a
CK∞ function ϕ̃ on X.

Theorem 30 (Caristi–Kirk FPT, CK∞ form). If a function f : X → X sat-
isfies

∀
x∈X

ϕ̃(f(x)) + d(x, f(x)) ≤ ϕ̃(x),

then f has a fixed point on X, i.e., there exists an element a ∈ X such that
f(a) = a.

Theorem 31 (Caristi–Kirk FPT, multivalued version, CK∞ form). If a func-
tion F : X → P(X) satisfies

∀
x∈X

∃
y∈F (x)

ϕ̃(y) + d(x, y) ≤ ϕ̃(x), (13)

then F has a fixed point on X, i.e., there exists a ∈ X such that a ∈ F (a).

Theorem 32 (Basic Ekeland’s principle, CK∞ form). There exists a ∈ X such
that

∀
x∈X\{a}

ϕ̃(a) < ϕ̃(x) + d(a, x).

Theorem 33 (Altered Ekeland’s principle, CK∞ form). For all γ > 0 and
any x0 ∈ X there exists a ∈ X such that

∀
x∈X\{a}

ϕ̃(a) < ϕ̃(x) + γd(a, x)

and

ϕ̃(a) ≤ ϕ̃(x0) − γd(a, x0).

Theorem 34 (Ekeland’s usual variational theorem, CK∞ form). Let ε ≥ 0
and x0 ∈ X be such that ϕ̃(x0) ≤ inf ϕ̃(X) + ε. Then for any γ > 0 and
δ ≥ 0 with γδ ≥ ε there exists a ∈ X such that d(a, x0) ≤ δ and a is the strict
minimum point of the function

ϕ̃γ(x) = ϕ̃(x) + γd(x, a).
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Theorem 35 (Takahashi, CK∞ form). Suppose that for each u ∈ X with
infx∈X ϕ̃(x) < ϕ̃(u) there exists v ∈ X such that v �= u and ϕ̃(v) + d(u, v) ≤
ϕ̃(u). Then there exists a ∈ X such that infx∈X ϕ̃(x) = ϕ̃(a).
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[3] Ćmiel, H., Kuhlmann, F.-V., Kuhlmann, K.: A generic approach to measur-
ing the strength of completeness/compactness of various types of spaces and
ordered structures, submitted

[4] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353
(1974)

[5] Jachymski, J.: Order-Theoretic Aspects of Metric Fixed Point Theory. In Hand-
book of Metric Fixed Point Theory, pp. 613–641. Kluwer Acad. Publ, Dordrecht
(2001)

[6] Jachymski, J.R.: Caristi’s fixed point theorem and selections of set-valued con-
tractions. J. Math. Anal. Appl. 227(1), 55–67 (1998)

[7] Kirk, W.A.: Caristi’s fixed point theorem and metric convexity. Colloq. Math.
36(1), 81–86 (1976)

[8] Kirk, W.A.: Metric fixed point theory: a brief retrospective. Fixed Point Theory
Appl. 2015, 215 (2015)

[9] Kozlowski, W.M.: A purely metric proof of the Caristi fixed point theorem.
Bull. Aust. Math. Soc. 95(2), 333–337 (2017)

[10] Kuhlmann, F.-V., Kuhlmann, K.: A common generalization of metric and ul-
trametric fixed point theorems. Forum Math. 27, 303–327 (2015)

[11] Kuhlmann, F.-V., Kuhlmann, K.: Correction to “a common generalization of
metric, ultrametric and topological fixed point theorems”. Forum Math. 27,
329–330 (2015)

[12] Kuhlmann, F.-V., Kuhlmann, K., Paulsen, M.: The Caristi-Kirk fixed point
theorem from the point of view of ball spaces. J. Fixed Point Theory Appl.
20(3), 9 (2018). (Art. 107)
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