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Abstract. In this paper, we introduce a mapping called a terminating
mapping. The existence of a unique, and globally stable fixed point of
terminating mappings were established in partial metric spaces. Also,
some application theorems in the space of probability density func-
tions and example on quantum operations were presented. The results
obtained in this paper, extend, and improve some existing results in the
literature.
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1. Introduction

The area of fixed point theory received much attention from mathemati-
cians due to its vast scope of applications, see [1,2]. More on applications
of fixed point theory can be found in [3–9]. Furthermore, spaces and map-
pings are very important when studying fixed points; metric spaces, partial
metric spaces, fuzzy spaces, smooth spaces, contractive mappings, monotone
mappings and so on, see [1,2,4,10–16].

In 1992, Matthews [17] introduced a concept, and basic properties of
partial metric (pmetric) functions. The failure of a metric function in com-
puter studies was the primary motivation behind the introductory of the
partial metrics[7]. After introducing the partial metric functions, Matthews
[7] also proved the partial metric version of the Banach fixed point theorem;
this makes the partial metric function relevant in fixed point theory. In 1999,
Heckmann [18] established some results using a generalization of the par-
tial metric function called a weak partial metric function. In 2004, Oltra and
Valero [19] also generalized the Matthews’s fixed point theorem in a complete
partial metric space, in the sense of O’Neill. In 2013, Shukla et al. [16] intro-
duced the notion of asymptotically regular mappings in a partial metric space,
and established some fixed point results. Recently, Onsod et al. [8] established
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some fixed point results in a complete partial metric space endowed with a
graph. Very recently, Batsari and Kumam [20] established the existence, and
uniqueness of globally stable fixed points of an asymptotically contractive
mappings, using some of the properties of a partial metric function.

Furthermore, another significant area of fixed point theory was brought
into light, by the advent of fixed point theorems in ordered spaces, espe-
cially the Knaster–Tarski fixed point theorem [9,21]. Later, many important
results were established as improvement or generalization of the Knaster–
Tarski fixed point theorem, see [3,5,6,22–24]. In this direction, Heikkila [4]
proved some fixed point results of increasing operators in a partially ordered
set, and presented some applications in partially ordered Polish spaces. In
2011, Hassen [25] established some fixed point results in ordered partial met-
ric spaces. Some of his results guarantees the existence of a fixed point for
non-decreasing mappings. In 2012, Kamihigashi and Stachurski [6,22] estab-
lished an important criterion for investigating stability of a chain (linear
order), in an order theoretic sense. In 2013, Kamihigashi and Stachurski [5]
established some fixed points existence, and uniqueness results by using an
order-preserving mapping. They complemented their results with some appli-
cations on probability distribution functions [5].

In this paper, solely motivated by Kamihigashi et al. [5] and Batsari et
al. [20], we extend the work of Kamihigashi et al. [5] from a metric space
to a partial metric space. Also, our uniqueness results were obtained with
the use of non-contractive mappings. Moreover, application theorems in the
space of probability density functions and application example on quantum
operations were presented.

2. Preliminaries

Let X and B be non empty sets. Let R+ denote the set of non-negative real
numbers, and R be the set of real numbers.

Let � be a binary relation on X. Then, the relation � is
1. reflexive, if ∀x ∈ X, x � x.
2. antisymmetric, if x � y, and y � x, imply x = y ∀x, y ∈ X.
3. transitive, if x � y, and y � z, imply x � z ∀x, y, z ∈ X.

The binary relation � is called a partial order, if it satisfies all the aforemen-
tioned conditions (1–3) [9]. We call the pair (X,�) a partially ordered set [9].

A partially ordered set (X,�) is called a lattice [9], if for any a, b ∈ X
there exist

1. a least upper bound called “join” or simply sup{a, b} and denoted by
a ∪ b [9].

2. a greatest lower bound called “meet” or simply inf{a, b} and denoted
by a ∩ b [9].
A lattice (X,�) is complete, if every non-empty subset A of X has a

least upper bound ∪A and the greatest lower bound ∩A [9].
In view of Kamihigashi et al. [5], a function Ψb : X × X −→ R+ for

b ∈ B ⊆ R is
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1. identifying, if for each x, y ∈ X, Ψb(y, y) = Ψb(y, x) = Ψb(x, x), ∀b ∈
B, then x = y.

2. one dimensional, if Ψb is independent of b ∈ B; Ψb = Ψb′ ∀b, b′ ∈ B.
3. regular, if for every x, y, z ∈ X with x � y � z, then max{Ψb(x, y),

Ψb(y, z)} ≤ Ψb(x, z).
A function f : X −→ R with X ⊆ R is increasing, if f(x) ≤ f(y) ∀x, y ∈

X whenever x ≤ y.
A sequence {xn} ⊆ X in the space (X,�) is increasing, if xn �

xn+1, ∀n ∈ N.
A partial metric or pmetric on X [7], is a function p : X × X −→ R+

such that,
(P1) ∀x, y ∈ X, x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y).
(P2) ∀x, y ∈ X, p(x, x) ≤ p(x, y).
(P3) ∀x, y ∈ X, p(x, y) = p(y, x).
(P4) ∀x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).
Every metric is a partial metric with p(x, x) = 0 ∀x ∈ X.

For any partial metric p on X, there exists an induced metric dp : X ×
X −→ R+ defined as dp(x, y) = 2p(x, y) − p(x, x) − p(y, y).

Note: If Ψb satisfy conditions (P1)–(P4), then it is a partial metric.

Definition 1. If Ψb is a partial metric, and one dimensional, then we call it a
one-dimensional partial metric. If the partial metric Ψb is not one dimensional
then, we call it a partial metric at b.

Example 1. Define a mapping p : X × X −→ R+ by p(x, y) = min{x, y}, for
X ⊂ R. Clearly, (P2) fails if x > y. Thus, p is not a partial metric.

Example 2. Define a mapping Ψb : R × R −→ R+ by Ψb(x, y) = |bx − by|,
b ∈ B ⊂ (0, 1]. So, Ψb is a metric, and a partial metric by implication. But,
not one dimensional.

Example 3. Let b ∈ B = [−15,∞), define a mapping Ψb : F ×F −→ [0, 1] by

Ψb(k, h) = max{γk(b), γh(b)}, (2.1)

where F is a family of continuous integrable real-valued functions from R to
[0, 1], γk(b) is the infimum of the function k ∈ F over the interval [−15, b] ⊂ B.
So, Ψb is not a metric. But, it is a partial metric, which is not one dimensional
(a partial metric at b, for each b).

Example 4. Let B ⊆ R, define a mapping Ψb : R × R −→ R+ by

Ψb(x1, x2) = max{x1, x2},

where x1, x2 ∈ R, and b ∈ [0, 1]. So, Ψb is not a metric, but it is a one-
dimensional partial metric.

An open ball of a partial metric p : X × X −→ R+, is a set of the form
Bp

ε (x) := {y ∈ X : p(x, y) < ε} for each ε > 0, and x ∈ X [7].
Separation axiom T0 [26]: The axiom states that, “for any two distinct points
x, y ∈ X, there is an open set V such that, either x ∈ V and y �∈ V or y ∈ V
and x �∈ V ”. A topological space fulfilling this axiom is called a T0-space.
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Matthews [7] established that every partial metric is a T0 topology (τp);
τp is the topology induced by open balls of the form Bp

ε (x) = {y ∈ X :
p(x, y) < ε} for some x ∈ X.

Every partial metric defines a partial order, using an induced order �p

defined as x �p y ⇐⇒ p(x, x) = p(x, y), ∀x, y ∈ X.
A sequence {xn} in (X, p) converges with respect to the topology τp to

a point x ∈ X, if and only if

lim
n−→∞ p(xn, x) = p(x, x) (see [19]). (2.2)

The sequence is Cauchy, if the below limit exists and is finite

lim
n,m−→∞ p(xn, xm) < ∞ (see [19]). (2.3)

A partial metric space (X, p) is complete, if every Cauchy sequence {xn}
in (X, p) converges to a point x ∈ X such that,

lim
n,m−→∞ p(xn, xm) = p(x, x) (see [19]).

Let (X, p) be a partial metric space, and (X, dp) be the induced metric
on X. Then,

1. {xn} is a Cauchy sequence in (X, p), if and only if {xn} is a Cauchy
sequence in (X, dp) (see [19]).

2. (X, p) is complete, if and only if (X, dp) is complete (see [19]).
3. limn−→∞ dp(xn, x) = 0 ⇐⇒ p(x, x) = limn−→∞ p(xn, x) = limn−→∞

p(xn, xm)(see [19]).

Definition 2 (see [20]). Let U : X −→ X be a mapping, and (X, p,�) an
ordered partial metric space.

1. Let x, y ∈ X. U is [x, y]-order preserving on X, whenever Unx � Umy
implies U(Unx) � U(Umy), ∀m,n ∈ {0, 1, 2 · · · }.

2. Let x ∈ X. U is x-order preserving on X, whenever Unx � Umx implies
U(Unx) � U(Umx), ∀m,n ∈ {0, 1, 2 · · · }.

Note that, x-order preserving is the same as [x, x]-order preserving.
3. U is self-order preserving or order preserving on X, if we have y-order

preserving, ∀y ∈ X.

Definition 3. Suppose X is a nonempty set. Suppose p is a real-valued func-
tion. Let � be an order define on X. A mapping U : X −→ X is called ter-
minating in an ordered partial metric space (X, p,�), if there exist t, s ∈ X
such that, U is t-order preserving, and the following conditions are satisfied:

U is � t, ∀ i ∈ N, (2.4)
t � Ut, (2.5)

p(Ut, Ut) ≤ p(t, t), (2.6)

p(U ix,U iy) −→ p(Ut, Ut), ∀x, y ∈ X. (2.7)

Definition 4. A mapping U : X −→ X is called semi-terminating in an
ordered partial metric space (X, p,�), if there exist t, s ∈ X such that, U is
t-order preserving, conditions (2.5) and (2.7) are satisfied.
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Definition 5. Let U : X −→ X be a terminating mapping in an ordered space
(X, p,�). Suppose t ∈ X is a fixed point of U . Then, t is said to be globally
stable, if p(t, U iy) −→ p(t, t) ∀y ∈ X, as i −→ ∞.

Example 5. Let F = {gi : [0, 10] −→ R+|gi(x) = x2 + 10i, i ∈ N}. Define a
mapping Ψ : F × F −→ R+ by

Ψ(gi, gj) = max{Ai, Aj}, (2.8)

where Ai is the area of the region bounded by both gi ∈ F and the horizontal
axis. Also, define a mapping U : F −→ F by

U(gi) = gi−1, (2.9)

where gi−1 is the nearest function (curve/graph) below gi ∈ F . Define the
order relation � on F by gi � gj =⇒ Aj ≤ Ai. Consider (2.8), (2.9), t =
g1, and s = g8. Conditions (2.4)–(2.7) are satisfied (see Graph of g1 − g8).
Thus, U is a terminating mapping.

Let PS be the space of all probability measures on (S,B), where S is
a topological space equipped with Borel sets B. A sequence {μn} ⊂ PS is
said to be tight, if for all ε > 0, there exists a compact set K ⊂ S such that,
μn(S\K) ≤ ε for all n [6].

Note that, we denote U0 to be the identity mapping throughout this
paper.

Let B(H) be the set of bounded linear operators on Hilbert space H

and A = {Ai, A
†
i : i = 1, 2, 3 · · · } be a set of operators where Ai ∈ B(H)

satisfy
∑

A†
iAi ≤ I, where A†

i is the conjugate transpose of Ai.
A map E : B(H) −→ B(H) of the form EA(B) =

∑
AiBA†

i is called a
quantum operation.

3. Main results

From what will follow in this section, we consider X to be nonempty, � as an
order defined on X, and p : X × X −→ R+ a well-defined function. Suppose
U be a self-mapping on X. We assume the followings:
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Assumption 3.1. � is transitive.

Assumption 3.2. p is identifying.

Assumption 3.3. p is regular.

Assumption 3.4. If x ∈ X is a fixed point of U , then p(y, x) = p(x, y) ∀y ∈ X.

Theorem 3.1. Suppose � is reflexive. U has a fixed point, iff there exist
s, t ∈ X such that, U is t-order preserving, and the following conditions
are satisfied:

p(U is, U it) −→ p(Ut, Ut), (3.1)

U is � t, ∀ i ∈ N, (3.2)
t � Ut, (3.3)

p(Ut, Ut) ≤ p(t, t). (3.4)

Proof. Let x ∈ X be a fixed point of U . Consider x = t = s, for � being
reflexive, then U is both x-order preserving, and [x, x]-order preserving. As
a consequence, we deduce

p(U ix,U ix) = p(x, x) = p(Ux,Ux). (3.5)

From (3.5), we have (3.4), and p(U ix,U ix) −→ p(Ux,Ux). Hence, (3.1) fol-
lows immediately. Since � is reflexive, and x is a fixed point, then x � Ux,
and U ix � x ∀i ∈ N. Therefore, (3.2) and (3.3) follow.

Conversely, suppose (3.1)–(3.4) hold. For � reflexive, and the mapping
U being t-order preserving on X, we have Ut � Ut � U it. Using Assumption
3.1, Assumption 3.3, (3.2), and (3.3), we deduce that,

U is � t � U it. (3.6)

By regularity of p, and (3.4), we proceed as

p(Ut, Ut) ≤ p(t, t)
≤ p(t, Ut)

≤ p(t, U it)

≤ p(U is, U it)
−→ p(Ut, Ut).

So, the above inequalities imply p(Ut, Ut) = p(t, Ut) = p(t, t). As a conse-
quence of the identifying property of p, we have t = Ut. Hence, t is a fixed
point of U . �

Example 6. Consider the collection M of 2 × 2 matrices with real entries.
Define a mapping U : M −→ M by

U(A) = MAM†, M =
[

0 1
1 0

]

. (3.7)

Define an order relation � on M by A � B iff aij ≥ bij for A,B ∈ M
and i, j ∈ {1, 2}. For a functional p : M × M −→ R+, define

p(A,B) = |a11 − b11 + a12 − b12 + a21 − b21 + a22 − b22|.
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So, it is easy to check that all conditions and Assumptions of the above
Theorem 3.1 are satisfied. Therefore, fixed points set of U denoted by F (U)
is

F (U) =
{[

a b
b a

]

, a, b ∈ R

}

.

Corollary 3.2. Suppose (X, p) is a partial metric space associated with a par-
tial order �. Let U be a self- and order-preserving mapping on X. Then, U
has a fixed point, iff there exist s, t ∈ X such that (3.1)–(3.4) are satisfied.

Lemma 3.3. Suppose � is reflexive. Let p be a partial metric on X. If U is a
terminating mapping on X, then U has a unique globally stable fixed point.

Proof. Assume there exist s, k ∈ X such that U is a terminating mapping,
and k-order preserving. Then, k and s satisfy (2.4)–(2.6). In view of Theo-
rem 3.1, k is a fixed point of U .

We next verify global stability of k as follows: Let y ∈ X then,

p(k, U iy) = p(U ik, U iy)
−→ p(Uk,Uk)
= p(k, k).

Therefore, k is a globally stable fixed point of U .
Moreover, suppose U have two fixed points say h and k. Then, we have

p(h, k) = p(h,U ik)
−→ p(h, h)
= p(h, h).

Hence, p(h, k) = p(h, h).
Similarly, we have p(h, k) = p(k, k). Thus, p(h, h) = p(h, k) = p(k, k).

Using identifying property of p, we have h = k. �

Theorem 3.4. Let � be reflexive. Suppose the function p satisfies conditions
(P2) and (P4). Then, U has a unique globally stable fixed point, iff U is a
terminating mapping.

Proof. In view of Theorem 3.1, and Lemma 3.3, it suffices only to show
that, if p satisfies (P4), and U has a globally stable fixed point, then U
is a terminating mapping. Let x, y, t ∈ X such that, t is a globally stable
fixed point of U . From Theorem 3.1, t satisfies (2.4)–(2.6) for some s ∈ X.
Furthermore

p(U ix,U iy) ≤ p(U ix, t) + p(t, U iy) − p(t, t)
−→ p(t, t) + p(t, t) − p(t, t)
= p(t, t)
= p(Ut, Ut).

Therefore, U is a terminating mapping. �
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4. Complete space case

In addition to Assumptions 3.1–3.4, we add the following assumptions:

Assumption 4.1. (X, p) is a complete partial metric space, and � is a reflexive
order defined on X.

Assumption 4.2. For any increasing sequence {xi}i∈N ⊂ X converging to
x ∈ X, we have xi � x ∀i ∈ N.

Assumption 4.3. Let {xi}i∈N ⊂ X be any increasing sequence that converges
to x ∈ X. If there exists y ∈ X such that, xi � y ∀i ∈ N, then x � y.

Assumption 4.4. Define {xi}, and {yi} on X by xi = U ix0, and yi = U iy0
respectively. Let {xi} be increasing and convergent. Let {yi} be convergent.
Suppose exist h ∈ X such that, xi � h � yi, and limi−→∞ p(xi, h) =
limi−→∞ p(yi, h) = p(h, h). Then, xi � h � Uh � yi ∀i ∈ N, and
p(h, h) ≥ p(Uh,Uh).

Theorem 4.1. Suppose there exists a positive natural number β such that, for
any x, y ∈ X, we have

x � y =⇒ p(U ix,U iy) −→ β. (4.1)

Suppose there exist t, s ∈ X such that U is t-order preserving on X, [s, t]-
order preserving on X, and

t � Ut, (4.2)

U it � s, ∀i ∈ N. (4.3)

Then, U has a fixed point.

Proof. For a fixed point to exists, it is enough to show the existence of x̂, t
satisfying conditions (3.1)–(3.4).

Let xi = U it ∀i ∈ N. It follows from (4.2), and t−order preserving
condition on U that, {xi}i∈N is increasing. We next need to show the sequence
{xi} is Cauchy, using (4.1)–(4.3), and regularity of p. Let ε > 0, from (4.1)–
(4.3) there exists m ∈ N such that, |p(Umt, Ums) − β| < ε. Let j, k ∈ N,
suppose k > j > m, and N = k − m. Clearly, xm � xj � xk, from which we
proceed as

|p(xj , xk) − β| ≤ |p(xm, xk) − β|
= |p(Umt, Ukt) − β|
= |p(Umt, UmUN t) − β|
≤ |p(Umt, Ums) − β| < ε.

Hence, limj,k−→∞ p(xj , xk) = β. So, {xi}i∈N is Cauchy. By completeness of
(X, p), there exists x̂ ∈ X such that, xi −→ x̂, i.e., limn−→∞ p(xi, x̂) =
p(x̂, x̂). Thus, (3.2) follows immediately from Assumption 4.2.

Furthermore, using Assumption 4.2, t-order preserving property of U ,
and (4.2), we have

t � U it � x̂ ∀i ∈ N. (4.4)
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Using t and x̂ in (4.1), and (4.4), we have p(U it, U ix̂) −→ β. Also, from
Assumption 4.3, (4.3), and (4.4), we have

t � xi � x̂ � s ∀i ∈ N. (4.5)

From (4.5), Assumption 4.3, and for U [t, s]-order preserving, we have

xi � x̂ � U is ∀i ∈ N. (4.6)

Considering (4.1), (4.5), (4.6), and regularity of p, we have

p(x̂, x̂) ≤ p(xi, x̂)

≤ p(xi, U
is)

= p(U it, U is)
−→ β.

Thus, from above inequalities, we have p(x̂, x̂) ≤ β. To show the other way
round, we proceed as follows.

p(xm, xn) ≤ p(xm, x̂) + p(x̂, xn) − p(x̂, x̂)
−→ p(x̂, x̂) + p(x̂, x̂) − p(x̂, x̂)
= p(x̂, x̂).

Hence, from above inequalities, we deduce that β ≤ p(x̂, x̂). Therefore, β =
p(x̂, x̂). From (4.6), and regularity of p, we have

p(x̂, x̂) ≤ p(U it, x̂)

≤ p(U it, U is)
−→ p(x̂, x̂).

Therefore, limi−→∞ p(U is, x̂) = p(x̂, x̂). Using xi = U it, yi = U is, (4.6),
p(U is, x̂) = p(x̂, x̂), and Assumption 4.4 we have xi � x̂ � Ux̂ � yi ∀i ∈ N,
and p(Ux̂, Ux̂) ≤ p(x̂, x̂). Hence, (3.1), (3.3), and (3.4) immediately follow.
So, from the prove of Theorem 3.1, x̂ is a fixed point of U . �

4.1. Some applications to probability density functions

Let F be the set of all probability density functions on R. Let U be a self-
mapping on F.

Define p : F × F −→ R+ as follows:

p(f, g) = Af , g + Af , g, (4.7)

where Af , g is the area of the region under both f and g while Af , g is the
area of the region between f and g.
Claim: The function p defined by (4.7) is a partial metric.

Proof. Let us denote the area under the density functions f, g, and h by
A(f), A(g), and A(h), respectively. Also, let the alphabets a, b, c, d, e, and
k represent the area of regions between or under the density functions. Below
are the eight basic possible permutations(arrangements) that we can have
with the density functions f, g and h. To show p is a partial metric, we need
to check the conditions (P1), (P2), and (P3) for both Figures 1 and 2; two
cases only. While, (P4) is verified using Figs. 3, 4, 5, 6, 7 and 8.
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1. To check for condition (P1), we have the followings from Fig. 1.
p(f, g) = a + b + c = 1 + c or p(f, g) = a + b + c = a + 1. Also,

p(f, f) = a + b = 1 and p(g, g) = b + c = 1. So, if p(f, g) = p(f, f) =
p(g, g), then p(f, g) = b = 1. In each case, it implies a = 0, and c = 0.
Thus, f = g.

Conversely, if f = g, then 1 = p(f, f) = p(f, g) = p(g, g). There-
fore, condition (P1) holds in Fig. 1.

2. To check for condition (P2) in Fig. 1, we proceed as follows:
p(f, f) = a+b = 1, p(g, g) = b+c = 1, and p(f, g) = a+b+c = 1+a

or p(f, g) = a + b + c = 1 + c. Thus, p(f, f) = 1 ≤ 1 + c = p(f, g). Also,
p(g, g) = 1 ≤ 1 + a = p(f, g). Hence, condition (P2) holds in Fig. 1.

3. To check for condition (P3) in Fig. 1, observe that, p(f, g) = a+ b+ c =
c + b + a = p(g, f). So, condition (P3) holds in Fig. 1.

Similarly, to check for conditions (P1)–(P3) in Fig. 2, we proceed as
follows:

1. Observe that,
p(f, g) = a + b = 2. Also, p(f, f) = a = 1, and p(g, g) = b = 1. So,

if p(f, g) = p(f, f) = p(g, g), then p(f, g) = a + b = 1. Which means,
either a = 0 or b = 0. In any case, f = g.

Conversely, if f = g, then p(f, g) = p(f, f) = p(g, g) = 1. Thus,
condition (P1) holds in Fig. 2.

2. To check for condition (P2) in Fig. 2, observe that, p(f, f) = a =
1, p(g, g) = b = 1, and p(f, g) = a + b = 2. So we have, p(f, f) =
1 < 2 = p(f, g), and p(g, g) = 1 < 2 = p(f, g). Therefore, condition
(P2) holds in Fig. 2.

3. To check for condition (P3) in Fig. 2, it is clear that, p(f, g) = a + b =
b + a = p(g, f). Thus, condition (P3) holds in Fig. 2.

In view of the above facts, conditions (P1)–(P3) hold for the function
p(f, g) = Af , g + Af , g. Next, we show that, condition (P4) hold in all the

remaining six figures (Figs. 3, 4, 5, 6, 7, 8).
Specifically, we are to show the condition p(f, g) ≤ p(f, h) + p(h, g) −

p(h, h) is true for all the possible permutations of f, g, and h across the six
figures (Figs. 1, 2, 3, 4, 5, 6, 7).

Using Fig. 3, we have p(f, g) = a + b, p(f, h) = a + c, p(h, g) = b + c,
and p(h, h) = c. Consequently,

p(f, g) = a + b

< a + b + c

= (a + c) + (b + c) − c

= p(f, h) + p(h, g) − p(h, h).

Hence, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 3.
Using Fig. 4, we have p(f, g) = a + b + d + e, p(f, h) = b + c + d +

e, p(h, g) = a + b + c + d, and p(h, h) = b + c + d. So that,



Vol. 21 (2019) Fixed points of terminating mappings in partial metric spacesPage 11 of 20 39

p(f, g) = a + b + d + e

< a + b + c + d + e

= (b + c + d + e) + (a + b + c + d) − (b + c + d)
= p(f, h) + p(h, g) − p(h, h).

Thus, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 4.
Using Fig. 5, we have p(f, g) = a + b + c, p(f, h) = a + c + d, p(h, g) =

b + c + d, and p(h, h) = c + d. So that,

p(f, g) = a + b + c

< a + b + c + d

= (a + c + d) + (b + c + d) − (c + d)
= p(f, h) + p(h, g) − p(h, h).

Thus, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 5.
Using Fig. 6, we have p(f, g) = a + b + c, p(f, h) = a + b + d, p(h, g) =

b + c + d, and p(h, h) = d. Consequently,

p(f, g) = a + b + c

< a + 2b + c + d

= (a + b + d) + (b + c + d) − d

= p(f, h) + p(h, g) − p(h, h).

Thus, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 6.
Using Fig. 7, we have p(f, g) = a + b + c + e + k, p(f, h) = a + b + c +

d + e, p(h, g) = b + c + d + e + k, and p(h, h) = b + c + d + e. So that,

p(f, g) = a + b + c + e + k

< a + b + c + d + e + k

= (a + b + c + d + e) + (b + c + d + e + k) − (b + c + d + e)
= p(f, h) + p(h, g) − p(h, h).

Thus, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 7.
Using Fig. 8, we have p(f, g) = a + b + c + d, p(f, h) = a + b + d +

e, p(h, g) = b + c + d + e, and p(h, h) = d + e. So

p(f, g) = a + b + c + d

< a + 2b + c + d + e

= (a + b + d + e) + (b + c + d + e) − (d + e)
= p(f, h) + p(h, g) − p(h, h).

Thus, p(f, g) ≤ p(f, h) + p(h, g) − p(h, h) in Fig. 8. Therefore, the function p
defined by (4.7) is indeed a partial metric function. �

Now, define an order �p on F by

f �p g ⇐⇒ p(f, g) ≤ p(f, f). (4.8)

The order �p is a partial order.
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Figure 1. A(f)
⋂

A(g) �= ∅

Figure 2. A(f)
⋂

A(g) = ∅

It is easy to verify that, under the definitions of �p (4.8), and p (4.7)
above, Assumptions 3.2–3.4 are satisfied. The application theorems are as
follows:

Theorem 4.2. The self-mapping U has a unique globally stable invariant prob-
ability density function, iff U is a terminating mapping on F.

Proof. The prove follows immediately from Theorem 3.4 and Lemma 3.3.
�

Theorem 4.3. Suppose (F, p) is a complete partial metric space. The mapping
U has a unique globally stable invariant probability density function, iff U is
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Figure 3. A(f)
⋂

A(h) = ∅, A(g)
⋂

A(h) = ∅ and
A(f)

⋂
A(g) = ∅

Figure 4. A(f)
⋂

A(h) �= ∅, A(g)
⋂

A(h) �= ∅ and
A(f)

⋂
A(g) = ∅

a semi-terminating mapping on F, there exist g, g∗ ∈ F such that, U is both
g-order preserving and [g, g∗]-order preserving on F, and the below conditions
hold:

U ig �p g∗, ∀i ∈ N (4.9)
g �p Ug. (4.10)

Proof. The semi-terminating conditions (2.5) and (2.7) follow immediately
from the facts that, �p is reflexive, and the invariant probability density
function being globally stable. Also, using g∗ = g = k, where k is the globally
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Figure 5. A(f)
⋂

A(h) = ∅, A(g)
⋂

A(h) �= ∅ and
A(f)

⋂
A(g) = ∅

Figure 6. A(f)
⋂

A(h) = ∅, A(g)
⋂

A(h) = ∅ and
A(f)

⋂
A(g) �= ∅

stable invariant probability density function of U , then U is both g-order
preserving on F, and [g, g∗]-order preserving on F. Moreover, conditions (4.9)
and (4.10) are trivially satisfied.

Conversely, the existence of an invariant probability density function
follows immediately from Theorem 4.1. The uniqueness, and global stability
of the invariant probability density function (fixed point) follow from the
respective similar proves in Lemma 3.3. �

The existence of g∗, satisfying (4.10) in Theorem 4.3 is by assuming
{U if} is tight; as provided by (4.9) and (4.10), see [5,6].
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Figure 7. A(f)
⋂

A(h) �= ∅, A(g)
⋂

A(h) �= ∅ and
A(f)

⋂
A(g) �= ∅

Figure 8. A(f)
⋂

A(h) = ∅, A(g)
⋂

A(h) �= ∅ and
A(f)

⋂
A(g) �= ∅

5. Application on quantum operations

Consider the Bloch sphere below and denote it by Q (Fig. 9).
The states of a single bit two-level (|0〉, |1〉) quantum bit (qubit) are

described by the Bloch sphere below with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π; qubit
is just a quantum system. Consider the phase flip transformation (E) of the
Bloch sphere defined by
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Figure 9. Cross section of a Bloch sphere

E(ρ) =
1∑

i=0

TiρT †
i , for

T0 =

⎡

⎣

√
1+cos θ

2 0

0
√

1+cos θ
2

⎤

⎦ , T1 =

⎡

⎣

√
1 − 1+cos θ

2 0

0 −
√

1 − 1+cos θ
2

⎤

⎦ ,

(5.1)

where E : Q −→ D ⊆ Q is a quantum operation, ρ are the quantum states
on or in the Bloch sphere. Define the order relation � on Q by ρ � γ implies
|ρa + ρb + ρc| ≥ |γa + γb + γc| for

ρ =
[

1 + ρa ρb − iρc

ρb + iρc 1 − ρa

]

,

γ =
[

1 + γa γb − iγc

γb + iγc 1 − γa

]

, for ρa, ρb, ρc, γa, γb, γc ∈ [−1, 1].

Also, define the functional p : X × X −→ (0,+∞) by

p(ρ, γ) = e|ρa−γa|+|ρb−γb|+|ρc−γc|.

But, each quantum state ρ has a spherical representation as a Bloch vector
ρ = [ρb, ρc, ρa] such that ‖ρ‖ ≤ 1. So in Theorem 3.1, if U = E , X = Q; where
Q here represents the Bloch Sphere in Fig. 10. s = [ 1

m , 1
m , 1

m ] and t = [0, 0, 1
m ]

for 1
m ∈ [−1, 1]. Then, Assumptions 3.1–3.4 are satisfied, all conditions of the

theorem are also satisfied; hence, {[0, 0, 1
m ] : 1

m ∈ [−1, 1]} is the fixed point
set of E (Fig. 11).
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Figure 10. Before phase flip operation (E)

Figure 11. After phase flip operation (E)

In Fig. 11, the black ellipse in the Block sphere shows a cross section
of an ellipsoid that is formed due to the effect of T0 and T1 on the states
of the qubit, with 1+cosθ

2 = 0.44. Furthermore, the black straight line in
the Bloch sphere (Fig. 11) joining (0, 0, 1) and (0, 0,−1) through the origin
(0,0,0) is the representation of the set of the fixed states of the qubit under
the transformation E (5.1).

6. Conclusion

The result(s) in this paper,

1. extend(s) the work of Kamihigashi and Stachurski [5] from a metric
space to a partial metric space.

2. improve(s) the work of Hassen [25] by establishing bi-conditional (iff)
theorems, i.e., Theorems 4.2 and 4.3 compared to his Theorem 2.1.
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3. improve(s) the work of Altun and Erduran [26]. We provide more simpler
prove, and do not use any continuity property on U if our Theorem 3.1
is compared with their Hassen [25] Theorem 2.1.

4. improve(s) Matthews’s [7] Theorem 5.3; as our Theorem 3.1 requires no
completeness property and is bi-conditional.

5. Fixed point sets of a quantum operation are used in information pre-
serving structures(IPS); the fixed point set of E is isometric to some
IPS.

Remark. The mapping U we used is assumed to be nonlinear. As no lin-
earity property was utilized. However, it can also work for linear cases like
Markov chain. Finally, the idea of connecting the definition of p on F with the
area of probability density functions may be extended to volumes in higher
dimensions (Rn).
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