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1. Introduction

We fix a self-map f : M → M of a compact connected manifold and a natural
number n. What is the least number of n-periodic points #Fix(hn) where h
runs through the homotopy class of f? If we moreover restrict to simply
connected M and we allow all continuous maps homotopic to f , then the
least number is always 1 or 0 [4]. However, if h runs only through the smooth
homotopy class of f , then the least number may be much larger, which was
noticed by Shub and Sullivan [10]. This gave rise to Dm

n (f) an algebraic lower
bound of the number of n-periodic points in the smooth homotopy class of
f , see [4]. In dimension m ≥ 3, the homotopy invariant Dm

n (f) turned out to
be the best lower bound, i.e., it can be realized by a smooth map homotopic
to the given f (a Wecken-type theorem) [4] .

On the other hand, the sphere S2 is the unique two-dimensional closed
simply connected manifold. Surprisingly, the methods of reducing fixed and
periodic points do not work in general on surfaces. The reason is that the
Whitney trick of canceling intersection points does not hold in low dimen-
sions, thus the Wecken theorem for periodic points works only from dimension
3 on. See [8,9]. This makes the problem of minimizing the number of periodic
points open in dimension 2, in particular for self-maps of S2.

In [6], we started to study this case.
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Theorem 1.1. (Theorem 2.6 in [6])
Let f : S2 → S2 be a map of degree d ∈ Z and let n be a natural number.

Then f is homotopic to a smooth map h so that Fix(hn) is a point (or empty
set) ⇐⇒ one of conditions

(1) |d| ≤ 1
(2) n = 1
(3) d = −2 and n = 2

is satisfied. �

In this paper and in [6] by smooth we mean C∞, since the maps in
Lemma 2.2, which are given explicitly in the proof of Theorem 3.7 in [1],
may by represented by C∞ maps.

In Sect. 3 we give the algebraic necessary condition to homotope a self-
map of S2 to a map with at most two n-periodic points. The main result of
the paper is Theorem 3.2 saying that the above condition is also sufficient
for deg(f) = 2 and n = 2.

This must be done directly, since the techniques of reducing isolated
periodic orbits with opposite indices, used in the Nielsen fixed and periodic
point theory, are not available in dimension 2.

2. Indices of iterations of a smooth map

In 1983, Dold [3] noticed that a sequence of fixed point indices Ak = ind(fk;
x0), where f is a continuous self-map of a Euclidean space R

m and x0 is an
isolated fixed point for each k, must satisfy some congruences. Namely for
each n ∈ N

∑

k|n
μ(n/k) · ind(fk;x0) ≡ 0(modulo n)

where μ denotes the Möbius function.
It was shown [1] that each sequence of integers (Ak) satisfying Dold

congruences can be realized as Ak = ind(fk;x0), for a continuous self-map of
R

m for m ≥ 3. In other words, Dold congruences are the only restriction for
a sequence of integers to realize the fixed point index of a continuous map.

Surprisingly, it turned out that there are much more restrictions on
sequences Ak = ind(fk;x0) when f is smooth [2,7,10]. In [5] it is proved that
the necessary conditions given in [2] are, in dimension ≥ 3, also sufficient and
the full description of all such sequences is given in [5]. We call them smoothly
realizable in dimension m.

It is convenient to present the sequences of integers as the sum of the
following elementary periodic sequences

Definition 2.1. For a given l ∈ N we define

regl(n) =

{
l if l divides n,

0 if l does not divide n.
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It is easy to notice that each integer sequence (An) can be written down
uniquely in the following form of a periodic expansion: An =

∑∞
l=1 alregl(n),

where an = 1
n

∑
l|n μ(n

l ) Al for suitable al ∈ R. Moreover, all coefficients al

are integers if and only if the sequence (An) satisfies Dold congruences.
The above observations, applied in dimension 2, resulted in the full

description of all possible sequences smoothly realizable in dimension 2. In
the next Lemma, we reformulate Theorem 3.7 in [1] using our notations

Lemma 2.2. [1] see also Lemma 1.1 in [6].
Let U ⊂ R

2 be a neighborhood of (0, 0) and let f : U → R
2 be a

smooth map such that (0, 0) is an isolated periodic point. Then, the periodic
expansion of the local fixed point index of f takes one of the following forms:
(1) ind(fk; (0, 0)) = c · reg1(k) for c ∈ Z

(2) ind(fk; (0, 0)) = reg1(k) + c · regm(k) for c ∈ Z , m ∈ N , c 
= 0
(3) ind(fk; (0, 0)) = c · reg2(k) for c ∈ Z , c 
= 0
(4) ind(fk; (0, 0)) = −reg1(k) + c · reg2(k) for c ∈ Z , c 
= 0 �

Remark 2.3. The right-hand side of the above formulae may be also written
as
(1) constant

(2)

{
1 + cm if m | k

1 otherwise
(3) 0, 2c, 0, 2c, . . .
(4) −1,−1 + 2c,−1,−1 + 2c, . . .. �

3. Algebraic necessary condition

Let us fix a pair of numbers (d, n) ∈ Z × N. Does there exist a smooth map
f : S2 → S2 satisfying deg(f) = d and #Fix(fn) ≤ 2? Theorem 1.1 allows
to concentrate on |d| ≥ 2 and n ≥ 2. Suppose that there exists f a smooth
map of degree d with at most two n-periodic points. We may assume that
Fix(fn) ⊂ {NPole,SPole}. Then

dk + 1 = L(fk) = ind(fk) = ind(fk;SPole) + ind(fk; NPole)
= C1(k) + C2(k)

for some expressions C1, C2 of types (1) − −(4) for all k|n. In other words,
the existence of expressions C1, C2 satisfying dk + 1 = C1(k) + C2(k) is a
necessary algebraic condition to reduce Fix(fn) to two points.

Lemma 3.1. Let f : S2 → S2 be a self-map of degree d satisfying |d| ≥ 2 and
let n ∈ N, n 
= 1. Then there exist expressions C1 , C2 of types (1)− (4) such
that the equality dk + 1 = C1(k) + C2(k) is satisfied for all k|n if and only if
n is a prime number.

Proof. ⇒. We assume that dk + 1 = C1(k) + C2(k) for k|n where C1, C2 are
of type (1)− (4). We will show that n is a prime. First we assume that one of
C1 , C2 is of type (1). Then, the sum C1(k)+C2(k) takes at most two values.
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Since dk + 1 takes distinct values (for a fixed |d| ≥ 2) and equality holds for
all divisors of n, n must be a prime.

On the other hand if no of C1, C2 is of type (1) then −2 ≤ C1(1) +
C2(1) ≤ 2 hence −3 ≤ d ≤ 1. This proves ⇒ for d /∈ {−3,−2,−1, 0,+1}. It
remains to consider the cases d = −2 , d = −3 where no Ci is of type (1).

Let d = −2. Then C1(1)+C2(1) = −1, hence one of Ci must be of type
(4) and the other of type (3). Then C1 + C2 takes at most two values.

Let d = −3. Then C1(1) + C2(1) = −2, hence both C1, C2 must be of
type (4 ), so their sum takes only two values.

⇐. If p is a prime number then the equality dp + 1 = d + 1 + (dp−1
p )p,

implies

dk + 1 = d · reg1(k) + reg1(k) +
(

dp − d

p
regp(k)

)

for k = 1 and k = p. Moreover dp−d
p is an integer by small Fermat’s theorem.

�

In the rest of the paper, we will assume that n = d = 2. We will show
that then the above condition is also sufficient. We will show that

Theorem 3.2. There exists a smooth map f : S2 → S2 of degree 2 which has
only two 2-periodic points.

This will be done as follows. First, we give a convenient formula of a
map of degree 2. Then, we deform smoothly this map near the poles to realize
their appropriate values of the fixed point index. Some extra 2-periodic points
appear. The last step is to remove these points.

Remark 3.3. To get a smooth map we start with a map which is smooth near
the poles and we use continuous deformations which are constant near the
poles. Finally we deform the obtained map, with only two 2-periodic points, to
a smooth map by a homotopy constant near the poles. If the last deformation
is sufficiently small, the poles remain the unique 2-periodic points.

4. Notation

Let us introduce some notation. We will consider the sphere S2 as the quotient
set [−π

2 , π
2 ]×S1/ ∼ where we identify the points [θ, φ], [θ′, φ′] ∈ [−π

2 , π
2 ]×S2

if θ = θ′ = π
2 or θ = θ′ = −π

2 . Moreover S1 = R/(2π · Z) and φ denotes
a real number modulo 2π. We will refer to θ ,φ as latitude and longitude,
respectively. We also denote by

S2
+ = {[θ, φ] ∈ S2;

π

6
≤ θ ≤ π

2
} , S2

0 = {[θ, φ] ∈ S2;−π

6
≤ θ ≤ π

6
}

S2
− = {[θ, φ] ∈ S2;−π

2
≤ θ ≤ −π

6
}

three sectors of the sphere. We will denote NPole = [π
2 , ∗] and SPole =

[−π
2 , ∗]. Please notice that symbols S2

+ , S2
− have a different meaning in [6].
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We define a continuous map f0 : S2 → S2.

f0[θ, φ] =

⎧
⎪⎨

⎪⎩

[3θ − π, φ + π] for [θ, φ] ∈ S2
+

[ − 3θ, 0] for [θ, φ] ∈ S2
0

[3θ + π, φ] for [θ, φ] ∈ S2
−

Remark 4.1. The degree of f0 equals 2, since the restrictions of f0 to S2
− and

S2
+ are orientation-preserving diffeomorphisms .

Lemma 4.2. Fix(f2
0 ) consists of three fixed points NPole, SPole and [0, 0] and

two 2-orbits {[3π
10 ; 0]; [− π

10 ;π]} , {[− 3π
10 ; 0]; [ π

10 ; 0]}.

Proof. We notice that f0 has exactly one fixed point in each sector: NPole ∈
S2
+ , [0, 0] ∈ S2

0 , SPole ∈ S2
−, since the coordinate θ is being expanded on

each sector.
Now we look for 2-orbits. The above argument (θ is expanding) implies

that there is no 2-orbit contained in a sector. Moreover the component φ
excludes a 2-orbit with a point in S2

+ and the other one in S2
−. Now each

2-orbit must have one element in S2
0 and the second in S2

+ or in S2
−. Let

[θ, φ] ∈ S2
+ be a 2-periodic point. Then f0[θ, φ] = [3θ − π, φ + π] ∈ S2

0 which
implies f2

0 [θ, φ] = f [3θ − π, φ + π] = [−9θ + 3π, 0]. Now [−9θ + 3π, 0] = [θ, φ]
implies −9θ+3π = θ , φ = 0, hence θ = 3π

10 , φ = 0. Since f0[3π
10 ; 0] = [− π

10 ;π],
we get the orbit {[3π

10 ; 0]; [− π
10 ;π]}.

Let [θ, φ] ∈ S2
− be a 2-periodic point. Then f0[θ, φ] = [3θ + π, φ] ∈ S2

0

which implies f2
0 [θ, φ] = f [3θ+π, φ] = [−9θ−3π, 0]. Now [−9θ−3π, 0] = [θ, φ]

implies −9θ − 3π = θ , φ = 0, hence θ = − 3π
10 , φ = 0. Since f0[− 3π

10 ; 0] =
[− 9π

10 + π; 0] = [ π
10 ; 0], we get the orbit {[− 3π

10 ; 0]; [ π
10 ; 0]}. �

Thus

Fix(f2
0 ) = {NPole,SPole, [0, 0]; a = [

3π

10
; 0], f(a) = [− π

10
;π];

b = [−3π

10
; 0], f(b) = [

π

10
; 0]}

The aim of this paper is to reduce the above set to {NPole,SPole}.
In Sect. 5 we deform the map f0 near SPole to a smooth map f1 sat-

isfying ind(f1;SPole) = 2. Then a new fixed point b′ appears and we re-
move simultaneously the points b′, b, f(b), [0, 0] by a homotopy with the car-
rier in a neighborhood near the meridian φ = 0. We get a map f2 with
Fix(f2

2 ) = {NPole,SPole; a, f(a)}.
In Sect. 6 we consider again the original map f0 (not f2) and we deform it

near NPole to get a map f3 satisfying ind(f3;NPole) = 1 , ind(f3;NPole) =
3. This will give a new 2-orbit {w0, w2}. In the next deformation the or-
bit a, f(a) reduces with the new one. We get a map f4 with Fix(f2

4 ) =
{NPole,SPole; b′,b, f(b), [0, 0]}. Finally the maps f2 and f4 define a map
f̃ , also of degree 2 satisfying Fix(f̃2) = {NPole,SPole}.



14 Page 6 of 13 J. Jezierski JFPTA

5. Removing the orbit {b, f(b)}
In this section, we will remove the orbit {b, f(b)} and the fixed point [0, 0]
by a deformation with the carrier in a neighborhood of the arc < b, f(b) >.
Here is the sketch of the deformation. We start by a smooth deformation
of f0 near SPole adding an additional fixed point b′. The orbit {b, f0(b)},
the points [0, 0] and b′ belong to the arc < SPole, [π/6, 0] >. The map f0
sends the ends of the last arc to SPole, the middle point of the arc goes to
NPole and the f0 is linear on each half of the arc. The restrictions of f0
to neighbor arcs < SPole, [π/6, φ0] > look similar. We consider the region
V1 = {[θ, φ];−π/2 ≤ θ ≤ π/6, |φ| ≤ ε} for a small ε > 0. We notice that f0
sends V1 to the region V2 = {[θ, φ];−π/2 ≤ θ ≤ π/2, |φ| ≤ ε}. We consider
the restriction f0| : V1 → V2. Now if we denote f0[θ, φ] = [θ′, φ′] then φ′ = φ
for −π/2 ≤ θ ≤ −π/6 and φ′ = 0 for −π/6 ≤ θ ≤ π/6. We deform the
restriction of f0 to the arc < SPole, [π/6, 0] >, keeping the end points fixed,
by squeezing the arc to a neighborhood of SPole so that there is no periodic
point inside the arc. Then, we extend this deformation to V1 by a homotopy
which keeps the boundary bdV1 fixed, the meridians are sent into themselves,
or to the meridian 0. Finally, we compose the obtained deformation with a
homeomorphism of V1 which is constant on the boundary and for φ = 0 and
which makes |φ| smaller elsewhere. The final map is a self-map of degree 2
with no periodic points inside V1. This gives the maps f2 with Fix(f2

2 ) =
Fix(f2

2 )\{b, f(b)} = {NPole,SPole, a, f2(a)}.
Now we go to the details. We start with a deformation of f0 near SPole.

We introduce polar coordinates in S2\NPole by identifying

S2\NPole 
 [θ, φ] → (θ +
π

2
) exp(φ · i) ∈ K(0;π) ⊂ C

Since the map f0 near the South Pole has the form f0[θ, φ] = [3θ + π, φ], in
the new coordinates we get the map f̂(z) = 3z (for |z| < π

3 ). Lemma 7.1,
Remark 7.3 and the above coordinates give a deformation of f0 to a map
which we will denote by f1. Then ind(fk

1 ;SPole) = 2 and a new fixed point
b′ with ind(fk

1 ; b′) = −1 appears.
Now we are ready to remove the periodic points b, f(b), [0, 0] and b′. We

will modify the map f1 on [−π/2, π/6] × [−ε, ε] to a map f2 so that

(1) f2 = f1 in [−π/2; b′′] × [−ε, ε], for some b′′ ∈ (−π/2, b′), and on the
boundary of [−π/2, π/6] × [−ε, ε].

(2) f2([−π/2, π/6] × [−ε, ε]) ⊂ [−π/2, π/2] × [−ε, ε].
(3) f2

2 (x) 
= x for x ∈ (−π/2, π/6] × [−ε, ε].

Then f2 has no 2-periodic points in (−π/2, π/6] × [−ε, ε] which implies

Fix(f2
2 ) = Fix(f2

1 )\{ union of orbits in Fix(f2
1 ) which are disjointed from

×(−π/2, π/6] × [−ε, ε]}
= {SPole,NPole, a, f1(a)}

as required.
It remains to construct a map f2 satisfying (1)-(3).
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(−π/2,−π/2) (π/6,−π/2)

(−π/2, π/2) (π/6, π/2)

−π/6b′

−π/6

π/6

x = y

b− b+

C
b−

b+

b′′

Figure 1. f2 : [−π/2;π/6] × 0 → [−π/2;π/2] × 0

We start by analyzing the restriction f1| : [−π/2, π/6]×0 → [−π/2, π/2]
×0. The graph is given in Fig. 1, where the asymmetry in the left lower corner
is resulted by the above deformation of f0 to f1. Let (b′, 0) be the unique
fixed point in (−π/2, 0) × 0. We fix a point b− ∈ (−π/2, b′) and we denote
C = f1(b−). Then −π/2 < C < b− and we fix another point b′′ ∈ (C, b′) (see
the bottom of Fig. 1). Now the formula

f̄1(θ) = min(p1f1(θ, 0);C)

contracts interval [−π/2, π/6] near SPole. Here p1, p2 denote the projections
of [−π/2;+π/2] × [−ε; +ε].

Now we define the map f2| : [−π/2, π/6] × [−ε,+ε] → [−π/2, π/2] ×
[−ε,+ε] by

f2|(θ, φ) = ((1 − η(θ, φ))p1f1(θ, φ) + η(θ, φ) · f̄1(θ);R(θ, φ) · (p2f1(θ, φ)))

where
η : [−π/2, π/6] × [−ε,+ε] → [0, 1] is a Urysohn function satisfying

η−1(0) = bd([−π/2,−π/6] × [−ε,+ε]) ∪ ([−π/2, b′′] × [−ε, ε]) , η−1(1) =
[b′

−, b′
+] × 0 and
R : [−π/2, π/6]×[−ε,+ε] → [−ε, ε] satisfies the following: if R(θ, φ) = φ′

then
• sign(φ′) = sign(φ),
• φ′ = φ on the boundary and for θ ≤ b′′

• |φ′| < |φ| for (0 < |φ| < ε and θ ≥ b′′).
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Roughly speaking: [b−; b+] × 0 is squeezed near SPole and R makes |φ|
smaller. Since f2| coincides with f1 on the boundary, we may define the map

f2(θ, φ) =

{
f2|(θ, φ) for (θ, φ) ∈ [−π/2,−π/6] × [−ε,+ε]
f1(θ, φ) for (θ, φ) /∈ [−π/2,−π/6] × [−ε,+ε]

We check that f2 satisfies (1) − (3). (1),(2) follow straight from the
definition. We check (3).

First we assume that φ 
= 0 and we show (θ, φ) ∈ (−π/2, π/6]× [−ε,+ε]
is not a periodic point. First we assume that θ ≤ b′′. Then f2(θ, φ) = f1(θ, φ).
If we denote f2(θ, φ) = (θ′, φ′) then |φ′| < |φ| because f̂ has also this property
near 0 (Remark 7.3). If b′′ < θ then R(θ, φ) makes |φ′| < |φ|. This proves
that there is no periodic point for φ 
= 0.

Now we consider a point (θ, 0).
If −π/2 ≤ θ ≤ b′′ then p1f|(θ, 0) < θ, since the similar inequality holds

for the map f̂ .
If b′′ ≤ θ ≤ b+ then p1f|(θ, 0) = f̄|(θ) = min(C, p1f1(θ)) ≤ C < b′′ ≤ θ.
If b+ ≤ θ ≤ π/6 then p1f|(θ, 0) < b+ ≤ θ. �

6. Removing the orbit a, f(a)

In this section, we deform the map f0 (not f2) and we remove the other
2-orbit {a, f(a)}. The carrier of the deformation will be disjointed from the
carrier of the previous deformation. At the end of the section, we will show
that the two deformations give a map of degree 2 whose 2-periodic points are
only NPole and SPole. This will end the proof of Theorem 3.2

We will say that a subset A ⊂ S2 is S2-convex if A does not contain
antipodal points and for each a, a′ ∈ A the geodesic joining the points is
contained in A.

We will deform the map f0 only in the northern hemisphere, hence we
introduce other polar coordinates

S2\SPole 
 [θ, φ] → (π/2 − θ) · exp(φ · i) ∈ K(0, π) ⊂ C

Let f̂2 denote the induced map of C. Now in a neighborhood of 0 ∈ C ,
f̂(z) = −3z, hence Lemma 7.1 (for n = 2 , a = 3) gives a small local defor-
mation of f̂ . After the deformation Fix(f̂2) = {0;w0, w2} and ind(f̂2, 0) = 3
, ind(f̂k, wk) = −1 for k = 0, 2.

Let f3 be the induced map of S2. We will cancel simultaneously the
orbits; {a = [3π

10 ; 0]; f0(a) = [− π
10 ;π]} and {w0, w2} by a homotopy with the

carrier in an arbitrarily prescribed neighborhood of the arc < f3(a);w2 >⊂
S2.

We consider the arc < w0, a >, its images f3 < w0, a >=< w2, f3(a) >
and f2

3 < w0, a >= f3 < w2, f3(a) >=< w0, SPole > . See Fig. 2. Since the
above arcs contain no antipodal points, we can choose an S2-convex neighbor-
hood V3 ⊂< w0, SPole > then an S2-convex neighborhood V2 ⊃< w2, f3(a) >
satisfying f3(cl(V2)) ⊂ V3 and an S2-convex neighborhood V1 ⊃< w0, a >
satisfying f3(cl(V1)) ⊂ V2.
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w0w2 af(a) SPole

NPole

V1f3(V1)

Figure 2. Orbit {a, f(a)}

Now f2
3 (clV1) ⊂ f3(clV2) ⊂ V3 and the last set is S2-convex. On the

other hand

ind(f2
3 ; cl(V1)) = ind(f23 ; w1) + ind(f23 ; a) = −1 + 1 = 0

By Hopf theorem, there is a homotopy ht : cl(V1) → cl(V3) constant on
the boundary, satisfying h0 = (f2

3 )|cl(V1), h1(x) 
= x. Now Lemma 6.1 gives
a homotopy so that f0 = f , ft is constant on bd(V1) and f2

1 (x) 
= x for
x ∈ cl(V1). To see the last, we check the assumptions of Lemma 6.1 for
X = S2 , A = V1 , f = f3 , ht = ht.

1. cl(V1) ∩ f3(cl(V1)) = ∅, since the elements of both sets have different
longitudes

2. f3|cl(V1) is a homeomorphism, since cl(V1) ⊂ int(S2
+) and f3 is a home-

omorphism on int(S2
+).

3. Follows from the definitions of both functions ht.
4. f3(cl(V1)) ∩ h1(cl(V1)) = ∅, since h1(cl(V1)) ⊂ V3 and the last is dis-

jointed from f3(cl(V1).

In the consequence Lemma 6.1 gives a homotopy with carrier in f(clV1) from
f : S2 → S2 to a map f4 satisfying Fix(f2

4 ) ⊂ Fix(f2
4 )\(cl(A)∪ f(cl(A)). This

implies Fix(f2
4 ) = Fix(f2)\{w0, w2; a, f(a)}.

Lemma 6.1. Let f : X → X be a continuous map of a topological space,
A ⊂ X an open subset. We assume that

(1) cl(A) ∩ f(cl(A)) = ∅
(2) the restriction f| : cl(A) → f(cl(A)) is a homeomorphism
(3) ht : cl(A) → X is a homotopy satisfying: h0 = (f2)|cl(A) , ht is constant

on the boundary, h1(a) 
= a for all a ∈ cl(A).
(4) f(cl(A)) ∩ h1(cl(A)) = ∅
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Then the formula

ft(x) =

{
ht(f−1

|cl(A)(x)) for x ∈ f(cl(A))
f(x) for x /∈ f(A)

gives a homotopy from f0 = f to a map f1 : X → X satisfying
(1) f1 is homotopic to f by a homotopy constant outside f(cl(A))
(2) f2

1 (a) 
= a for all a ∈ cl(A) ∪ f(cl(A))
(3) Fix(f2

1 ) ⊂ Fix(f2)\(cl(A) ∪ f(cl(A))).

Proof. We notice that the map ft is correctly defined, since for x ∈ bd(f(cl
(A))) the upper formula gives

htf
−1
|cl(A)(x) = h0f

−1
|cl(A)(x) = f2f−1

|cl(A)(x) = f(x)

Now (1) follows straight from the formula.
To get (2) we fix a ∈ cl(A). Then f2

1 (a) = f1f(a) = h1f
−1
|cl(A)f(a) =

h1(a) 
= a.
To show (3) we first prove that Fix(f2

1 ) ⊂ Fix(f2)\cl(A).
By (2) it is enough to show that Fix(f2

1 ) ⊂ Fix(f2). Let f2
1 (x) = x. If

moreover no of the points x, f(x) belongs to cl(A) then f2(x) = f2
1 (x) = x.

Otherwise we may assume that x ∈ cl(A). But now (2) implies f2
1 (x) 
= x

which is a contradiction. �

Proof of Theorem (3.2). Since (−π/2, π/6] × [−ε, ε] ⊂ S2 (carrier of the ho-
motopy from f0 to f2 in Sect. 5) is disjointed from f3(clV1) (carrier of the
homotopy from f0 to f4), the map

f̃(x) =

⎧
⎪⎨

⎪⎩

f2(x) for x ∈ (−π/2;π/6] × [−ε, ε]
f4(x) for x ∈ f3(clV1)
f0(x) otherwise

is defined.
It remains to show that Fix(f̃2) = {NPole,SPole}. ⊃ is evident. To

prove ⊂ we consider an orbit in Fix(f̃2) which contains no pole. If the orbit is
disjointed from (−π/2, π/6)× (−ε, ε) then x = f̃2(x) = f2

4 (x). But Fix(f2
4 ) =

{NPole,SPole,b, f0(b)} implies that the orbit coincides with {b, f0(b)}. But
f̃ and f2 coincide in (−π/2, π/6]× [−ε, ε] and f2 has no periodic points there.

�

7. Lemmas

We consider the complex plane as the union of sectors C =
⋃2n−1

k=0
Sk where

Sk = {z; kπ
n ≤ arg(z) ≤ (k+1)π

n }. See Fig. 3 for n = 4.
In this section we will show

Lemma 7.1. (Compare Lemma 6.2 in [6]) For given ρ > 0 and a > 1 there
exists a smooth map K1 : C → C so that K1(z) = az for |z| ≥ ρ and

(1) K1 maps each sector Sk = {[r, φ]; kπ
2n ≤ φ ≤ (k+1)π

2n } into itself,
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Figure 3. Vector field for n = 4

w0

w2

w4

w6

Figure 4. Zeroes of the vector field

(2) K1 maps each half-line Lk = {[r, φ] ∈ S2; kπ
n = φ} into itself,

(3) K1 has exactly n + 1 fixed points w0, w2, . . . , w2n−2 (lying on lines L0 ,
L2 ,. . . , L2n−2, respectively) and (0, 0) . See Fig. 4.

(4) K1 has no periodic points different than w0, w2, . . . , w2n−2 and (0, 0)
(5) ind(Km

1 ;ωi) = −1 for all m ∈ N , i = 0, 2, . . . , 2n − 2.
(6) ind(Km

1 ; 0) = 1 + n

We are going to define map K1. We consider vector field Φ given by
Fig. 3.

Lemma 7.2. (Compare Lemma 6.1 in [6]) The time-1 map φ(v) := Φ1(v)
satisfies.
(1) 0 is the unique fixed point
(2) φ(Sk) ⊂ Sk for each sector Sk = {z; kπ

n ≤ arg(z) ≤ (k+1)π
n } for k =

0, . . . , 2n − 1.
(3) In particular φ maps each half-line Lk = {z; arg(z) = k

n} into itself.
(4) Points 0, z, φ(z) belong to a line ⇐⇒ z ∈ Lk = {z; arg(z) = k

n} for a
k = 0, . . . , 2n − 1. Moreover
z ∈ (0, φ(z)) ⇐⇒ z ∈ Lk for k odd ;
φ(z) ∈ (0, z) ⇐⇒ z ∈ Lk for k even .

(5) If z ∈ intSk then arg(φ(z)) < arg(z) (arg(φ(z)) > arg(z)) for k- even
(k- odd). �
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Figure 5. Vector field for n = 1

Figure 6. Vector field for n = 2

Let us fix two numbers 0 < ε1 < ε2 and a smooth Urysohn function
η : [0,∞) → R satisfying η(t) = 1 for 0 ≤ t < ε1 , η(t) = 0 for t ≥ ε2 and
moreover t ≤ t′ implies η(t) ≥ η(t′).

We define a new vector field on C as the convex combination K(z) =
η(|z|) · Φ1(z) + (1 − η(|z|)) · az, where a > 1.

We define K1 as the time-1 map of the vector field K.

Proof of Lemma 7.1. The first two properties follow from Lemma 7.2, since
the map Φ1 preserves sectors Sk and half-lines Lk. To prove the third prop-
erty we notice that the vectors φ(z) , az are collinear ⇐⇒ z ∈ Lk for
a k = 0, . . . , 2n − 1. Moreover they have the same direction for k odd
and are opposite for k even. Now, for k odd, their convex combination
never vanishes K(z) 
= 0. Similarly, for k even, K has exactly one zero for
ε1 ≤ |z| ≤ ε2 , z ∈ Lk, since η is nonincreasing. Now we prove (5). We
notice that in each fixed point z2k the map K1 is expanding the line L2k

and is squeezing at the orthogonal direction (since so does Φ1). Now fixed
point index equals (−1) · (+1) = −1. The same argument works for all iter-
ations of K1. To prove (6) we notice that the total index must be +1, hence
ind(Km

1 ; (0, 0)) = 1 − n(−1) = 1 + n for any m ∈ N. �

Remark 7.3. For n = 1 Fig. 3 becomes Fig. 5. Now Fig. 5 and Lemma 7.1
give a map K1 with a single additional fixed point with index −1.



Vol. 21 (2019) The least number of 2-periodic points of a smooth Page 13 of 13 14

Similarly for n = 2 we get the Fig. 6 and a map K1 with two additional
fixed points each of index −1.
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