Skip to main content
Log in

Positive solutions for discontinuous problems with applications to \(\phi \)-Laplacian equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We establish existence and localization of positive solutions for general discontinuous problems for which a Harnack-type inequality holds. In this way, a wide range of ordinary differential problems such as higher order boundary value problems or \(\phi \)-Laplacian equations can be treated. In particular, we study the Dirichlet–Neumann problem involving the \(\phi \)-Laplacian. Our results rely on Bohnenblust–Karlin fixed point theorem which is applied to a multivalued operator defined in a product space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  2. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for some nonlinear problems involving mean curvature operators in Euclidian and Minkowski spaces. Proc. Am. Math. Soc. 137, 171–178 (2009)

    MATH  Google Scholar 

  3. Bereanu, C., Jebelean, P., Şerban, C.: The Dirichlet problem for discontinuous perturbations of the mean curvature operator in Minkowski space. Electron. J. Qual. Theory Differ. Equ. 35, 1–7 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bereanu, C., Mawhin, J.: Existence and multiplicity results for some nonlinear problems with singular \(\phi \)-Laplacian. J. Differ. Equ. 243, 536–557 (2007)

    Article  MathSciNet  Google Scholar 

  5. Biles, D.C., Federson, M., Pouso, R.L.: A survey of recent results for the generalizations of ordinary differential equations. Abstr. Appl. Anal. 2014, 1–9 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bonanno, G., Bisci, G.M.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, 670675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonanno, G., Buccellato, S.M.: Two point boundary value problems for the Sturm–Liouville equation with highly discontinuous nonlinearities. Taiwan. J. Math. 14(5), 2059–2072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonanno, G., Giovannelli, N.: An eigenvalue Dirichlet problem involving the \(p\)-Laplacian with discontinuous nonlinearities. J. Math. Anal. Appl. 308, 596–604 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bonanno, G., Jebelean, P., Şerban, C.: Three periodic solutions for discontinuous perturbations of the vector \(p\)-Laplacian operator. Proc. R. Soc. Edinb. A 147, 673–681 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cabada, A., Heikkilä, S.: Implicit nonlinear discontinuous functional boundary value \(\phi \)-Laplacian problems: extremality results. Appl. Math. Comput. 129, 537–549 (2002)

    MathSciNet  Google Scholar 

  11. Cabada, A., Pouso, R.L.: Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions. Nonlinear Anal. 42, 1377–1396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cellina, A., Fryszkowsk, A., Rzezuchowsk, T.: Upper semicontinuity of Nemytskij operators. Ann. Mat. Pura Appl. 160(4), 321–330 (1991)

    Article  MathSciNet  Google Scholar 

  13. Cid, J.A., Franco, D., Minhós, F.: Positive fixed points and fourth-order equations. Bull. Lond. Math. Soc. 41, 72–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cid, J.A., Pouso, R.L.: Ordinary differential equations and systems with time-dependent discontinuity sets. Proc. R. Soc. Edinb. A 134, 617–637 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  16. Figueroa, R., Pouso, R.L.: Discontinuous first-order functional boundary value problems. Nonlinear Anal. 69, 2142–2149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figueroa, R., Pouso, R.L., Rodríguez-López, J.: A version of Krasnosel’skiĭ’s compression-expansion fixed point theorem in cones for discontinuous operators with applications. Topol. Methods Nonlinear Anal. 51, 493–510 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988)

    Book  Google Scholar 

  19. Frigon, M., O’Regan, D.: Fixed points of cone-compressing and cone-extending operators in Fréchet spaces. Bull. Lond. Math. Soc. 35(5), 672–680 (2003)

    Article  MATH  Google Scholar 

  20. Heikkilä, S., Lakshmikantham, V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  21. Heikkilä, S., Seikkala, S.: On singular, functional, nonsmooth and implicit \(\phi \)-Laplacian initial and boundary value problems. J. Math. Anal. Appl. 308, 513–531 (2005)

    Article  MathSciNet  Google Scholar 

  22. Herlea, D.-R.: Existence, localization and multiplicity of positive solutions for the Dirichlet BVP with \(\phi \)-Laplacian. Fixed Point Theory 18(1), 237–246 (2017)

    Article  MathSciNet  Google Scholar 

  23. Herlea, D.-R.: Harnack type inequalities and multiple positive solutions of nonlinear problems. Ph.D. Thesis, Babeş -Bolyai University, Cluj–Napoca (2016)

  24. Herlea, D.-R.: Positive solutions for second-order boundary-value problems with \(\phi \)-Laplacian. Electron. J. Differ. Equ. 18, 1–8 (2016)

    MathSciNet  Google Scholar 

  25. Herlea, D.-R., Precup, R.: Existence, localization and multiplicity of positive solutions to \(\phi \)-Laplace equations and systems. Taiwan. J. Math. 20, 77–89 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hu, S.: Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 154, 377–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pouso, R.L.: Schauder’s fixed–point theorem: new applications and a new version for discontinuous operators. Bound. Value Probl. 2012, 7 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. McShane, E.J.: Integration. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  29. O’Regan, D., Perán, J.: One dimensional \(\phi \)-Laplacian functional equations. J. Math. Anal. Appl. 371, 177–183 (2010)

    Article  MathSciNet  Google Scholar 

  30. Precup, R.: Fixed point theorems for decomposable multi-valued maps and applications. Z. Anal. ihre. Anwend. 22(4), 843–861 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Precup, R.: Moser–Harnack inequality, Krasnosel’ski ĭ type fixed point theorems in cones and elliptic problems. Topol. Methods Nonlinear Anal. 40, 301–313 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Rachunková, I., Tvrdý, M.: Periodic problems with \(\phi \)-Laplacian involving non-ordered lower and upper functions. Fixed Point Theory 6, 99–112 (2005)

    MathSciNet  Google Scholar 

  33. Stromberg, K.R.: An Introduction to Classical Real Analysis. Wadsworth Inc., Belmon (1981)

    MATH  Google Scholar 

  34. Webb, J.R.L., Infante, G., Franco, D.: Positive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions. Proc. R. Soc. Edinb. A 148, 427–446 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Jorge Rodríguez-López was financially supported by Xunta de Galicia Scholarship ED481A-2017/178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Precup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Precup, R., Rodríguez-López, J. Positive solutions for discontinuous problems with applications to \(\phi \)-Laplacian equations. J. Fixed Point Theory Appl. 20, 156 (2018). https://doi.org/10.1007/s11784-018-0636-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0636-0

Keywords

Mathematics Subject Classifications

Navigation