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1. Introduction

In what follows, R denotes the space of real numbers, Rn is the n-dimensional
Euclidean topological vector space, and ei is the ith basic unit vector in Rn,
n = 1, 2, . . .

For any ∅ �= A ⊆ N = {1, 2, . . . , n}, let

ΔA =

{
(x1, x2, . . . , xn) :

n∑
i=1

xi = 1, xi ≥ 0 for all i, and xi = 0 for all i /∈ A

}
.

Thus ΔN is the canonical (n − 1)-dimensional simplex in Rn, and ΔA is a
(|A| − 1)-dimensional face of that simplex.

The KKM Theorem refers to the following celebrated theorem due to
Knaster et al. [5]:

Theorem 1. If Fi, i ∈ N , are closed subsets of ΔN such that ΔA ⊆
⋃

{Fi : ∅

�= i ∈ A} for each ∅ �= A ⊆ N , then
⋂

{Fi : i ∈ N} �= ∅.

The contrapositive version of the KKM theorem (i.e., in the form of the
implication ∼ q →∼ p, with ∼ p denoting the negation of p), where the closed
sets Fi have been replaced by their complements Ui, takes the following form:

(KKM). If U1, . . . , Un are open subsets of ΔN that cover ΔN , then there
exists A ⊆ N such that ΔA ∩

⋂
i∈A

Ui �= ∅.
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The (KKM) version of the original KKM-theorem can be restated in
two more equivalent forms.

(KK) If {Vi : i = 1, 2, . . . , n} is an open cover of a topological space X
and f : ΔN → X is a continuous function, then there exists B ⊆ N such
that f

(
ΔB

) ∩
⋂

{Vi : i ∈ B} �= ∅.
(K) If A is a finite subset of a topological vector space X and {Vx : x ∈

A} is an open cover of X, then there exists B ⊆ A such that coB ∩
⋂

{Vx :
x ∈ B} �= ∅, where coB stands for the convex hull of B.

Clearly (KKM) implies (KK) by taking Ui = f−1 (Vi). To see that
(KK) implies (K), let A = {x1, x2, . . . , xn} and let f : ΔN → X be given
by f

(∑n

i=1
λiei

)
=

∑n

i=1
λixi. Then f is a continuous and since f

(
ΔB

)
=

co {xi : i ∈ B}, we are done. Finally, (K) implies (KKM) since KKM is a
special version of (K) with X = Rn, A =

{
ei : i = 1, 2, . . . , n

}
, and Vi =

Ui ∪ (
Rn − ΔA

)
.

In [6], Kulpa derived statement (K) from Brouwer’s Fixed Point Theo-
rem and referred to it as The Theorem on Indexed Families. Statement (K)
has served as a prototype for L∗-operators [9], which we define next.

For any non-empty set E, let 〈E〉 and exp (E) denote the collection
of all non-empty finite subsets of E and the collection of all subsets of E,
respectively.

An L∗-operator on a topological space X is any function Λ : 〈X〉 →
exp (X) satisfying the following condition:

(∗) If A ∈ 〈X〉 and {Ux : x ∈ A} is an open cover of X, then there
exists B ⊆ A such that Λ (B) ∩

⋂
{Ux : x ∈ B} �= ∅.

Statement (K) just asserts that the convex hull operator on any topo-
logical vector space is an L∗-operator on that space. However, unlike the co
operator, the existence of an L∗-operator on a topological space does not
entail imposing any additional algebraic structure on that space. It is a topo-
logical property.

A topological space endowed with an L∗-operator is going to be re-
ferred to as an L∗-space. Those spaces constitute a common generaliza-
tion of Kulpa’s simplicial structures [6] and Park’s–Ben Mechaiekh et al.
L-stuctures1 [1].

In the setting of L∗-spaces, an important feature attributed exclusively
to simplices can be utilized without any involvement of simplices. In this
way, proving various types of fixed point theorems (of Tychonoff or Schauder
type), along with a version of Nash’s equilibrium theorem, and generalization
of the Maynard-Smith theorem has become achievable within L∗-spaces (see
[7–10]). Since Park’s partial KKM spaces are closely related to L∗-spaces,
many results obtained by S. Park in his development of the KKM theory
carry out to L∗-spaces (see [18–20,22–29]).

1 An L-structure on a topological space X is given by a function Γ : 〈X〉 → exp (X) such
that for every A ∈ 〈X〉 there exists a continuous function fA : Δ (A) → Γ (A) so that

fA (Δ (B)) ⊆ Γ (B) for all B ⊆ A.
Simplicial structures and L-structures coincide if Γ is a T1 operator (cf. [30]).
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In [12], Kulpa presented versions of some classical theorems valid within
L∗-spaces. The present paper provides further account of such possible gen-
eralizations. We prove two classical fixed-point theorems, that of Brouwer,
Theorem 2, and of Schauder, Theorem 3, in the L∗-spaces realm. We gener-
alize the theorem on signatures from [12] and derive from it the existence
of symmetric equilibria (Theorems 4 and 5). We also introduce and discuss
L∗

n-operators (the convex hull operator on Rn is an instance of such an op-
erator). We prove a new fixed point theorem and a version of the classical
Helly’s theorem for spaces that admit L∗

n-operators.

2. L∗-operators and fixed point theorems

L∗-operators can be defined on arbitrary topological space: for a given space
X, set Λ (A) to be any dense subset of X. Notice also that if Λ is an L∗-
operator on the space X and Υ : 〈X〉 → exp (X) verifies that Λ (A) ∩ Υ (A)
is a dense subset of Λ (A) for each A ∈ 〈X〉, then Υ is also an L∗-operator
on X.

Those examples, notwithstanding being trivial and not interesting, wit-
ness at least that L∗-operators do not have to be monotone operators nor
that A has to be a subset of Λ (A). They also indicate that the property (∗)
alone is not sufficient to get any kind of noteworthy properties of topological
spaces that admit L∗-operators. More adequate L∗-operators to work with
and topological spaces admitting them will be provided in the next sections.

For the following exposition of L∗-operators we will introduce some
technicalities first:

For a relation S ⊆ X ×Y , we write xSy to mean that (x, y) ∈ S. We set
Sx = {y ∈ Y : xSy} and Sy = {x ∈ X : xSy}. Notice that y ∈ Sx iff x ∈ Sy.
Now, consider the following:

(∗∗) If S ⊆ X × X, A ∈ 〈X〉, and {Sx : x ∈ A} is an open cover of X,
then there exist B ⊆ A and y ∈ Λ (B) such that B ⊆ Sy.

Proposition 1. The conditions (∗) and (∗∗) are equivalent.

Proof. For the sake of completeness we provide a simple proof.
(⇒) Observe that if y ∈ Λ (B) ∩

⋂
{Sx : x ∈ B}, then y ∈ Λ (B) and

B ⊆ Sy.
(⇐) Let S ⊆ X × X be any relation such that Sx = Ux for each

x ∈ A ∈ 〈X〉. Let y ∈ Λ (B) and B ⊆ Sy for some B ⊆ A. Then y ∈ Sx = Ux

for each x ∈ B. Thus y ∈ Λ (B) ∩
⋂

{Ux : x ∈ B}. �

Example 1. Let P be an open family in a space X and let g : X → X be
continuous. We set: xSy if ∃U∈P x, g (y) ∈ U . Then Sx = g−1 (star (x,P))
and Sy = star (g (y) ,P) for each x, y ∈ X. Assume that X is endowed with
an L∗-operator Λ. By (∗∗), if P is finite and g (X) is covered by P, then
for any selection of points xU ∈ U ∈ P, there exist B ⊆ {xU : U ∈ P} and
y ∈ Λ (B) such that B ⊆ star (g (y) ,P).
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Example 2. Let N be a neighborhood assignment on X, i.e., N is a function
on X such that N (x) is an open neighborhood of x for each x ∈ X,. Suppose
that g : X → X is continuous. We set: xSy if g (y) ∈ N (x). Then Sx =
g−1 (N (x)); Assuming additionally that N is symmetric (i.e., y ∈ N (x) iff
x ∈ N (y) ) we get that Sy = N (g (y)) for each x, y ∈ X.

Remark 1. Neighborhoods assignments that are symmetric can be defined,
e.g., by means of any real valued continuous symmetric function μ (x, y): Fix
any real number ε and set N (x) = {y : μ (x, y) < ε}.

Let Λ be an L∗-operator on the space X. A set C ⊆ X is called convex
if Λ (B) ⊆ C for each B ∈ 〈C〉; the family of all such convex sets is going to
be denoted by CON (X,Λ).

Example 3. Let f : X × X → R be continuous. We set: xSy if f (x, y) >
f (y, y). For each x ∈ X, the function gx : X → R defined by gx (y) =
f (x, y) − f (y, y) is continuous. Then Sx = g−1

x ((0,∞)) and so Sx is open
for each x ∈ X. By the similar argument, Sy = {x ∈ X : f (x, y) > f (y, y)}
is open (and convex if f is assumed to be quasi-concave) for each y ∈ X.

Proposition 2. Let N be a symmetric neighborhood assignment on a space X
endowed with an L∗-operator such that N (x) is convex for each x ∈ X. If
g : X → X is continuous and g (X) can be covered by finitely many N (x) -
s, then there exists a ∈ X such that g (a) ∈ N (a).

Proof. Consider the relation xSy if g (y) ∈ N (x). Let Λ be the L∗-operator
on X. In the light of Example 2 and utilizing (∗∗), there exist a finite set B
and a ∈ Λ (B) such that B ⊆ Sa. Since Sa = N (g (a)) is convex, a ∈ Λ (B) ⊆
N (g (a)). Since N is symmetric, g (a) ∈ N (a). �
Theorem 2. (Brouwer Fixed Point Theorem) Let X be space with an L∗-
operator Λ satisfying the following condition:
⊕ For each finite open cover P of X there exists a symmetric and convex
neighborhood assignment N on X so that {N (x) : x ∈ X} is a refinement
of P.
Then each continuous function g : X → X so that g (X) is contained in a
compact subset of X has a fixed point.

Proof. Suppose otherwise and let g : X → X be continuous, g (X) is con-
tained in a compact subset of X and yet g has no fixed points. Then each
point x ∈ X has an open neighborhood Ux such that Ux ∩g−1 (Ux) = ∅. Pick
finitely many among them that cover the closure of g (X). Those sets together
with the complement of the closure of g (X) constitute a finite open cover P
of X. By ⊕, there exists a symmetric and convex neighborhood assignment
N on X so that {N (x) : x ∈ X} is a refinement of P. Since g (X) can be
covered by finitely many N (x)−s, by Proposition 2, there exists a ∈ X such
that g (a) ∈ N (a). Since N (a) intersects g (X), N (a) must be contained in
one of Ux’s. But then g (a) ∈ g (Ux) ∩ Ux; a contradiction. �

Let 〈V 〉≤n denote the collection of all subsets of V of size at most n.
If Φ : 〈X〉 → exp (X) and n is a natural number, then Φ is said to be n-
continuous at a point p ∈ X if each open neighborhood U of p contains a
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neighborhood V of p verifying that Φ(A) ⊆ U whenever A ∈ [V ]≤n; Φ is
n-continuous on a set Y if Λ is n-continuous at each point of Y .

We say that Φ is continuous at a point p ∈ X if each open neighborhood
U of p contains a neighborhood V of p verifying that Φ(A) ⊆ U whenever
A ∈ 〈V 〉. We say that Φ is continuous on a set Y if Λ is continuous at each
point of Y .

The following two propositions establish continuity properties of the
convex hull operator:

Proposition 3. (cf. e.g. [10]) The convex hull operator on any topological vec-
tor space is n-continuous for all n = 1, 2, . . .

Proof. Let X be a topological vector space and let U be an open neighbor-
hood of 0. Take first an open set W such that 0 ∈ W + W ⊆ U , and then,
take an open and balanced set V with 0 ∈ V ⊆ W . It shows that the convex
hull operator in X is 2-continuous, and, by induction, that it is n-continuous
for all n = 1, 2, . . . �

Proposition 4. The convex hull operator on a topological vector space is con-
tinuous if and only if the space is locally convex.

Proof. Only the necessity of the statements requires some argument. So let
X be a topological vector space with the continuous convex hull operator
and let U be an open neighborhood of 0. If V is an open neighborhood of
0 verifying that co(A) ⊆ U whenever A ∈ 〈V 〉, then co (V ) ⊆ U . Hence the
interior of co (V ) is as required for 0 and by translation, for any point of X.

�

Let us point out that since X = Lp ([0, 1]), the space of all Lebesgue

integrable real functions on the interval [0, 1] with
∫ 1

0

|f (x)|p dx < ∞ and

0 < p < 1, is not locally convex, the convex hull operator is not continuous at
0 (hence it is continuous at no point) but it is n-continuous for all n = 1, 2, . . .
(cf. [10]).

Theorem 3. (Brouwer–Schauder Fixed Point Theorem) Let X be a space with
an L∗-operator Λ and let g : X → X be continuous so that g (X) is contained
in a compact subset C of X. If Λ is continuous at each point of C, then g
has a fixed point.

Proof. Suppose, contrary to our claim, that g(x) �= x for each x ∈ X. For
each x ∈ X, pick an open neighborhood Wx of x such that Wx ∩ g (Wx) = ∅.
Without loss of generality, we may assume that g (X) is a dense subset of C.
Next, for each x ∈ C, pick an open neighborhood Vx of x so that Vx ⊆ Wx and
Λ(A) ⊆ Wx provided A ∈ 〈Vx〉. There exists an open finite covering U of the
compact set C that constitutes a star-refinement of the family {Vx : x ∈ C}
on the compact set C (cf. Engelking [4, p. 377]), i.e., for each y ∈ C there
exists x ∈ C such that star (y,U) =

⋃{U ∈ U : y ∈ U} ⊆ Vx. Choose
points xU ∈ U ∩ g (X) in each U ∈ U . As was noticed in Example 1, there
exist B ⊆ {xU : U ∈ U} and y ∈ Λ (B) such that B ⊆ star (g (y) ,U). Since
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star (g (y) ,U) ⊆ Vx, B ∈ 〈Vx〉 and so y ∈ Λ (B) ⊆ Wx. Hence both y and
g (y) belong to Wx; a contradiction. �

In the theorem, above, the continuity assumption for Λ is essential.
In [6], a simplicial compact space without the fixed point property is con-
structed; however, the space is locally convex at each point but one.

Corollary 1. Let Λ be an L∗-operator on a compact Hausdorff space X and
let M be a family of continuous function from X × X into [0,∞) verifying
the following properties:

(1) If � ∈ M, p ∈ X, and r > 0, then the pseudoball B� (p, r) = {x ∈ X :
�(x, p) < r} is convex;

(2) � (x, x) = 0 for each x ∈ X and � ∈ M;
(3) For each two distinct points x, y ∈ X there is � ∈ M with � (x, y) > 0.

Then any continuous function h : X → X has a fixed point.

Proof. By compactness, the family{⋂
{B� (p, r) : � ∈ F} : p ∈ X and r > 0 and F ∈ Fin (M)

}
is an open base in X that consists of convex sets. Hence Λ is continuous and
the corollary follows from Theorem 3. �

In Corollary 1, if M = {‖‖}, we get the classical Schauder fixed point
theorem.

3. Signatures

The main result of this section is a theorem called here the Theorem on
Signatures (Theorem 4). The notion of signature along with the forthcoming
Theorem on Signatures were first introduced and discussed in [10], but only in
the context of simplicial spaces. In [12], Kulpa proved it in the context of L∗-
spaces and in the case h = id. We derive from the Theorem on Signatures the
existence of symmetric equilibrium points on compact Hausdorff L∗-spaces
(see Theorem 4), which in turn, enables getting a proof of the Separating
Hyperplane Theorem that is surprisingly simple and elegant (see Remark
2(b)).

Corollary 1 is sort of a prototype for the signature theorem. In our ter-
minology, a signature is going to be a family of functions (like M, above)
that satisfies the first two (adequately modified) conditions. Unlike the origi-
nal families, signatures may consist of functions defined on the product of two
arbitrary topological spaces. This imposes the necessity of modifying prop-
erty (2). Towards this goal, we introduce the property of contingency at 0,
which is defined as follows:

Let M be a family of non-negative real functions defined on the product
of two sets X × Y . We say that the family M is (Y -)contingent at 0 if for
each finite subfamily F of M, for each ε > 0, and for each y ∈ Y there exists
a ∈ X such that μ (a, y) < ε for each μ ∈ M.
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Clearly, if M verifies condition (2) of Theorem 1, then M is (X-)
contingent at 0. In case X is a compact Hausdorff space and each function
μ ∈ M is continuous, to be (Y -)contingent at 0 for M is equivalent to

(�) For each y ∈ Y there exists a ∈ X such that μ (a, y) = 0 for each
μ ∈ M.

In the equivalence (�), compactness of X is necessary (see Example 4).

Example 4. Let μ : X × Y → [0,∞) be such that for each ε > 0 and for each
y ∈ Y the pseudoball A (y; ε) = {x ∈ X : μ (x, y) < ε} is non-empty. Then
M = {μ} is (Y -)contingent at 0.

Example 5. Let Xα, α ∈ A, be a compact Hausdorff space and let X =∏
α∈A Xα be the product of the spaces Xα. Suppose that for each α ∈ A, fα :

X → R is a continuous real function on X. We define μα : X × X → [0,∞),
α ∈ A, by setting μα (x, y) = −fα (Nα (x, y)) + supw∈X fα (Nα (w, y)) ,where
Nα : X × X → X denotes the αth Nash projection: Nα (x, y) = z = (zξ),

where zξ =
{

yξ if ξ �= α
xα if ξ = α

.

The family M = {μα : α ∈ A} consists of non-negative continuous real func-
tions on the space X × X. We shall show that M is contingent at 0 by
verifying (�). Pick y ∈ X. For each α ∈ A, let aα =

(
aα

ξ

)
be such that

μα (aα, y) = 0. If a = (aα
α), then since Nα (a, y) = Nα (aα, y), μα (a, y) = 0

for each α ∈ A.

Let Λ be an L∗-operator on a space X. A collection M of continuous
functions μ : X × Y → [0,∞) is said to be a signature on X × Y if:

(i) For each ε > 0 and for each y ∈ Y the pseudoball A (y; ε) =
{x ∈ X : μ (x, y) < ε} is convex. 2

(ii) M is (Y -)contingent at 0.

Theorem 4. (Theorem on Signatures) Let Λ be an L∗-operator on a compact
Hausdorff space X. Let M be a signature on X×Y . Then for each continuous
function h : X → Y there exists a ∈ X such that μ (a, h (a)) = 0 for all
μ ∈ M.

Proof. Fix ε > 0 and a finite subset F of M. For x ∈ X and y ∈ Y we set
A(y) = {x ∈ X : μ(x, y) < ε for each μ ∈ F} and B(x) = {y ∈ Y : μ(x, y) <
ε for each μ ∈ F}. Observe that x ∈ A (y) iff y ∈ B (x), and therefore, since
A(y) is non-empty for each y ∈ Y , {B (x) : x ∈ X} is an open cover of Y .
We claim that there exists a ∈ X such that μ(a, h(a)) < ε for each μ ∈ F .

Proof of the claim. Let A ∈ 〈X〉 be such that {B(x) : x ∈ A} is a fi-
nite cover of the compact space h (X). There exist B ⊆ A and a point
w ∈ X such that w ∈ Λ (B) ∩

⋂ {
h−1 (B (x)) : x ∈ B

}
. Since h(w) ∈

2 In terms of more familiar notions, condition (i) can be restated as follows. Let Λ be
an L∗-operator on X. Recall that a real function f : X → R is said to be quasi-convex

(resp. quasi-concave) if the set {x ∈ X : f (x) < r} (resp., if the set {x ∈ X : f (x) > r}) is
convex for each r ∈ R. Thus (i) asserts that µ (., y) is quasi-convex.
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⋂{
h−1 (B (x)) : x ∈ B

}
, B ⊆ A (h (w)). Since A (h (w)) is convex, w ∈

Λ (B) ⊆ A (h (w)); the claim is proved.
For μ ∈ M and ε > 0, let K(μ, ε) = {x ∈ X : μ(x, h(x)) ≤ ε }. Every

set K(μ, ε) is closed in X and, by the claim, the family {K(μ, ε) : μ ∈ M and
ε > 0} is centered. By compactness of X,

⋂{K(μ, ε) : μ ∈ M and ε > 0} �= ∅.
Thus any a ∈ ⋂{K(μ, ε) : μ ∈ M and ε > 0} verifies that μ (a, h (a)) = 0 for
each μ ∈ M. �

Here is an alternative proof of Corollary 1 as a corollary to the above
theorem:

Proof. Theorem on Signatures yields a point a ∈ X such that μ (a, h (a)) = 0
for all μ ∈ M. Since M is separating, a = h (a). �

A point a ∈ X is said to be a symmetric equilibrium point for a function
f : X × X → R if f(x, a) ≤ f(a, a) for each x ∈ X. It is a Nash equilibrium
point in the symmetric game associated with f (i.e., a two-person game with
the same strategy set X for the two players and the payoff function g for
the second player as given by g (x, y) = f (y, x)). Symmetric equilibrium
points are generalizations of evolutionarily stable strategies, ESS, which were
introduced by Smith and Price in their ground breaking paper [15] (see also
[14,16,17]).

Theorem 5. Let Λ be an L∗-operator on a compact Hausdorff space X. If
f : X × X → R is continuous and quasi-concave with respect to the first
variable, then there exists a symmetric equilibrium point for f .

Proof. Let μ(x, y) = −f (x, y) + supz∈X f (z, y). One easily checks that μ :
X × X → [0,∞) is continuous and quasi-convex with respect to the first
variable and that for each y there exists x such that μ(x, y) = 0. By applying
the Theorem on Signatures to M = {μ} and h = idX , we get a point a ∈ X
such that μ (a, a) = 0, i.e., a point a such that f (a, a) = supz∈X f (z, a). �

Remark 2. (a) Here is another proof of Theorem 5 (appealing directly to
(∗∗)).
Set xSy if f (x, y) > f (y, y). Clearly, for each x ∈ X, Sx is open; and,
for each y ∈ Y , Sy is convex. Since no y can belong to Sy, by (∗∗), Sx−s
do not cover the space X. Hence, for some a ∈ X, f (x, a) ≤ f (a, a) for
each x ∈ X.

(b) Here is an elegant and very simple proof of the Separating Hyperplane
Theorem based on that theorem (see [12]). Let C and D be two compact
convex disjoint subsets of an inner product space V . Then X = D−C is
convex and compact and 0 /∈ X. The Maynard-Smith theorem applied
to f (x, y) = −〈x, y〉 on X yields a symmetric equilibrium a for f . Thus
〈x, a〉 ≥ 〈a, a〉 = ‖a‖ > 0 for each x ∈ X. It follows that there exists α
such that 〈c, a〉 < α < 〈d, a〉 for each c ∈ C and d ∈ D. Thus 〈x, a〉 = α
is an equation of a separating hyperplane.
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4. Topological spaces admitting L∗
n -operators

An operator Λ : 〈X〉 → exp (X) on a topological space X is called L∗
n-operator

if it satisfies the following condition (∗+):
(∗+) If A ∈ 〈X〉 and {Ux : x ∈ A} is an open cover of X, then there

exists B ⊆ A such that |B| ≤ n + 1 and Λ (B) ∩
⋂

{Ux : x ∈ B} �= ∅.
The condition defining L∗

n-operators is the original condition (∗) with
an additional requirement imposed on the size of the set B.

The class of L∗
n-operators and spaces that admit them possess some

important properties. Among them, a fixed point property (Theorem 6) and
Helly’s property (Theorem 10).

Lemma 1. Let (X,Λ) be an L∗-space and let f : X → X be a continuous
function. If P is a finite open family in X and f (X) ⊆

⋃
P, then there

exists p ∈ X and F ∈ 〈st (f (p) ,P)〉 such that p ∈ Λ (F ).

Proof. There exists an A ∈ 〈f (X)〉 and Q = {Ua : a ∈ A} ⊆ P such that
f (X) ⊆

⋃
Q and a ∈ Ua for each a ∈ A (e.g., let Q ⊆ P irreducibly covers

f (X) ). Since
{
f−1 (Ua) : a ∈ A

}
is an open cover of X, there exists F ⊆ A

such that Λ (F )∩
⋂{

f−1 (Ua) : a ∈ F
} �= ∅. If p is any point from that non-

empty set, then f (p) ∈
⋂

{Ua : x ∈ F} and since a ∈ Ua for each a ∈ F ,
F ∈ 〈st (f (p) ,Q)〉 ⊆ 〈st (f (p) ,P)〉. �

Theorem 6. If X is a compact T2 space that admits (n + 1)-continuous L∗
n-

operator, then X has the fixed point property.

Proof. Let f : X → X be a continuous function and suppose that f(x) �= x
for each x ∈ X. Hence there exists a finite open cover U of X such that
U ∩f (U) = ∅ for each U ∈ U . By (n + 1)-continuity of Λ, there exists a finite
open cover V of X such that

{⋃
Λ

(
[V ]≤n+1

)
: V ∈ V

}
is a refinement of

U . There exists a finite open family P that is a star-refinement of the family
V (cf. Engelking [4, p. 377]). Applying Lemma 1 to that P we get a point
p ∈ X and an F ∈ [st (f (p) ,P)]≤n+1such that p ∈ Λ (F ). Pick V ∈ V that
contains st (f (p) ,P) and U ∈ U that contains

⋃
Λ

(
[V ]≤n+1

)
. Then both p

and f (p) belong to U which is impossible. �

A natural question that arises is what kind of L∗-operators could be L∗
n-

operators for some n. For that purpose, let’s recall the concept of an n-ary
operation.

Following van del Vel [31], a function Λ : 〈X〉 → exp (X) is said to be
n- ary, n = 1, 2, . . ., if Λ (A) =

⋃ {
Λ (F ) : F ∈ [A]≤n+1

}
for each A ∈ 〈X〉.

Theorem 7. If Λ : 〈X〉 → exp (X) is an L∗-operator that is also n-ary, then
Λ is an L∗

n-operator.

Proof. Let A ∈ 〈X〉 and {Ux : x ∈ A} is an open cover of X. There exists
B ⊆ A such that Λ (B) ∩

⋂
{Ux : x ∈ B} �= ∅. Since Λ is n-ary, Λ (C) ∩
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⋂
{Ux : x ∈ B} �= ∅ for some subset C of B of size at most n + 1. Since⋂
{Ux : x ∈ B} ⊆

⋂
{Ux : x ∈ C}, Λ (C) ∩

⋂
{Ux : x ∈ C} �= ∅. �

Theorem 8. The convex hull operator on Rn is an L∗
n-operator.

Proof. By the classical Caratheodory’s theorem , co is n-ary. �
We shall state more properties enjoyed by L∗

n-operators.
An operator Λ : 〈X〉 → exp (X) on a set X is called n-monotone if it

Λ (A) ⊆ Λ (B) provided that A ⊆ B and |B| ≤ n + 1.

Theorem 9. Let Λ : 〈X〉 → exp (X) be an L∗
n-operator and n-monotone op-

erator on a normal space X.
If A is a subset of X of size n + 2, then

⋂
{clΛ (A − {x}) : x ∈ A} �= ∅.

Proof. Assume otherwise. By the Swelling Theorem (see [4], Theorem 7.1.4),
there exist open sets Vx such that clΛ (A − {x}) ⊆ Vx and

⋂
{Vx : x ∈ A} =

∅. For each a ∈ A set Ua =
(
X −

⋃
{clΛ (A − {x}) : x ∈ A}

)
∪ Va. Since⋃

{clΛ (A − {x}) : x ∈ A} ⊆
⋃

{Vx : x ∈ A}, the family {Ux : x ∈ A} con-
stitutes an open cover of X. So there exists B ⊆ A such that |B| ≤ n+1 and
Λ (B) ∩

⋂
{Ux : x ∈ B} �= ∅. Notice that since Λ is n-monotone,

Λ (B) ⊆
⋂

{Λ (A − {x}) : x ∈ A − B} ⊆
⋂

{Vx : x ∈ A − B}. Conse-

quently, Λ (B) ∩
⋂

{Ux : x ∈ B} ⊆
(⋃

{clΛ (A − {x}) : x ∈ A}
)

∩
⋂

{Vx :

x ∈ A − B} ∩
⋂

{Ux : x ∈ B} ⊆
⋂

{Vx : x ∈ A − B} ∩
⋂

{Vx : x ∈ B} = ∅;
a contradiction. �
Remark 3. (a) The convex hull operator on Rn is L∗

n-operator but it is
not L∗

n−1-operator. Towards this goal, consider an n-dimensional sim-
plex Δ in Rn with vertices x0, x1, . . . , xn. Let Δi denote the (n − 1)-
dimensional face of the simplex Δ of all the original vertices but xi.
Thus Δi = co (A − {xi}), where A = {x0, x1, . . . , xn}. Since a point
x =

∑n

i=0
λixi of Δ belongs to the face Δk if and only if λk = 0,⋂

{Δi : i = 0, 1, . . . , n} = ∅. Clearly, the convex hull operator in any
vector space is n-monotone for any n. Hence Theorem 9 shows that co
cannot be L∗

n−1-operator.
(b) The convex hull operator on any infinitely dimensional topological vec-

tor space cannot be an L∗
n-operator for any n. For any such vector space

contains simplices of all possible finite dimensions and thus arguments
from part (a) apply.

Helly’s Theorem has its counterpart within topological spaces admitting
L∗

n-operators.

Theorem 10. (Helly’s Theorem) Let Λ : 〈X〉 → exp (X) be an L∗
n-operator

and n-monotone operator on a normal space X. If C is a family of convex
subset of X such that any n + 1 of them have a non-empty intersection, then
the family {clF : F ∈ C} is centered.
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Proof. Suppose otherwise and let F be a finite subfamily of C such that⋂
{clF : F ∈ F} = ∅. Assume that F is of size n + 2 (the smallest pos-

sible), say F = {F1, . . . , Fn, Fn+1, Fn+2}. By the Swelling Theorem (see
[4], Theorem 7.1.4), there exist open sets Vi such that clΛFi ⊆ Vi and⋂

{Vi : i = 1, 2, . . . , n + 2} = ∅. For each i = 1, 2, . . . , n + 2, pick ai ∈⋂
{Fj : j �= i} and set

Uai
=

(
X −

⋃
{clFj : j = 1, 2, . . . , n + 2}

)
∪ Vi. The open sets Uai

cover the space X and since Λ is an L∗
n-operator, there exists A ⊂ {1, 2, . . . ,

n + 2}, |A| ≤ n + 1, such that Λ ({ai : i ∈ A}) ∩
⋂

{Uai
: i ∈ A} �= ∅. Since

ai ∈
⋂

{Fj : j �= i}, for each i = 1, 2, . . . , n, we have {ai : i ∈ A} ⊆
⋂

{Fj :

j /∈ A}. In consequence, Λ ({ai : i ∈ A}) ⊆
⋂

{Fj : j /∈ A} ⊆
⋂

{Vj : j /∈ A}.

Clearly, the set Λ ({ai : i ∈ A}) is also contained in
⋃

{clFj : j = 1, 2, . . . ,

n + 2}. Hence ∅ �= Λ ({ai : i ∈ A}) ∩
⋂

{Uai
: i ∈ A} ⊆

(⋃
{clFj : j =

1, 2, . . . , n + 2}
)

∩
⋂

{Vj : j /∈ A} ∩
⋂

{Uai
: i ∈ A} ⊆

⋂
{Vj : j /∈ A} ∩⋂

{Vj : j ∈ A} = ∅; a contradiction.
By induction, Helly’s Theorem holds true. �

The statement: Every compact convex subset of a metric linear topolog-
ical space has the fixed point property is known as the Schauder conjecture.
Since its publication in The Scottish Book in 1935 (cf. [13], Problem 54),
the conjecture has stimulated a great deal of research in efforts to settle it.
Schauder’s conjecture was solved affirmatively (with a complicated and con-
troversial 3 proof) by Cauty [2] (see also [3] for some details and for some
pertinent references). Therefore it is desirable to come up with much simpler
arguments than Cauty’s. It was the motivation of the first author when he
introduced the concept of the characteristic of a metric in [11].

Let (X, ρ) be a metric space. The characteristic of the metric (pseudo-
metric) ρ is defined as follows:

χ(ρ) = inf {order (U) · mesh (U) : U is an open point-finite open cover of X} ,

where mesh (U) = sup {diam (V ) : V ∈ U} and ord (U) = sup{|{V : x ∈ V ∈
U}| : x ∈ X}. In the same paper[11], he posed the following problem:

Problem 1. Let Y ⊆ E be a convex compact subset of a metrizable linear
space E. Is there a subnorm ‖ · ‖ : E → [0,∞) such that the metric ρ(x, y) =
‖x − y‖ for x, y ∈ Y , is of characteristic equal to zero, χ(ρ) = 0, and ρ is
compatible with the topology of Y ?

3 Cauty’s original proof and its follow up one stirred some controversies (cf. [21]). Even
though Cauty’s proof is accepted to be correct by some, “Many people think that Cauty’s

proofs are incorrect and that the Schauder conjecture is still open.”—to quote a referee of
this paper.
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It is worth pointing out that an affirmative answer to that problem
would allow us to present an alternative, much simpler, proof of the Schauder
conjecture based on the method presented in Theorems 3 and 6.
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