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Abstract. In this paper we investigate autonomous as well as nonau-
tonomous superposition operators acting between spaces of functions of
bounded Λ-variation. A particular emphasis is put on acting conditions
as well as on continuity problems for such operators. In particular, we
give necessary and sufficient conditions for nonautonomous superposi-
tion operators to map a space of functions of bounded Λ-variation into
itself. Moreover, we prove the continuity of certain autonomous superpo-
sition operators acting between various spaces of functions of bounded
Λ-variation. We also examine the existence of ΛBV -solutions as well
as the topological structure of such solution sets to classical nonlinear
integral equations.
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1. Introduction

One of the most interesting generalizations of the classical variation in the
sense of Jordan seems to be the notion of Λ-variation. It was introduced
by Waterman in 1972 [18], in connection with his investigation of Fourier
series. More precisely, it appears that Fourier series of functions of bounded
harmonic variation which is a particular Λ-variation converge pointwise to
the arithmetic mean of the left- and the right-hand side limits and converge
uniformly to the functions under consideration on closed intervals of their
continuity (see [18] for more details).

It appears that functions of bounded Λ-variation possess some prop-
erties which are entitled to functions of bounded variation in the sense of
Jordan. For example, functions of bounded Λ-variation are bounded and sets
of points of their discontinuities are at most denumerable (see [14], Theorem
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3 and Theorem 4). Moreover, for such functions a Helly-type theorem holds
(see [11]). Let us add also that the space of functions of bounded Λ-variation
from a functional point of view was investigated, for example, in the paper
[16]. It has appeared that the so-called Shao–Sablin index plays an essential
role in that approach.

The autonomous superposition operators acting in the spaces of func-
tions of bounded Λ-variation have been investigated for example in the paper
[15]. The authors proved in it an analogue of the well-known Josephy theo-
rem, which describes the behavior of such operators in the space of functions
of bounded variation in the sense of Jordan. On the other hand, the sufficient
conditions for nonautonomous superposition operators to act in the spaces
of functions of bounded Λ-variation were given in the paper [2].

The existence and the existence and uniqueness of global and local
ΛBV -solutions, that is, solutions being functions of bounded Λ-variation, to
nonlinear Hammerstein as well as to nonlinear Volterra–Hammerstein inte-
gral equations were investigated, for example, in the paper [4]. Let us also add
that linear and semilinear differential equations in the spaces of continuous
functions of bounded Λ-variation were investigated in the paper [2].

In this paper we would like to achieve a few goals. First, in Sect. 3
we focus on nonautonomous superposition operators acting in the spaces of
functions of bounded Λ-variation. The main result in this section is Theorem
7 which gives necessary and sufficient conditions for nonautonomous super-
position operators to map a space of functions of bounded Λ-variation into
itself. The results included in this section are mainly inspired by the paper [3].
However, let us emphasize the fact that nonautonomous superposition oper-
ators in the spaces of functions of bounded Λ-variation behave in a slightly
different way than in spaces of functions of bounded variation in the sense of
Jordan (see Example 1).

In Sect. 4 we deal with the problem of continuity of autonomous super-
position operators acting between spaces of functions of bounded Λ-variation.
It appears that in some cases generators of such operators reduce to constant
mappings (see Theorem 10). Let us recall that a necessary and sufficient
condition for an autonomous superposition operator to map a space of func-
tions of bounded Λ-variation into itself is the requirement of its generator
to be a locally Lipschitz function (see [15] or [1], Theorem 5.14). We show
that in case of generators being continuously differentiable functions the cor-
responding superposition operator is continuous. However, if one considers
generators that do not have to be locally Lipschitz functions, then it appears
that for a given domain it is possible to indicate a space of functions of
bounded Λ-variation that the superposition operator acts to (see Theorem
11). According to Theorem 12 it appears that such operators are continuous
without additional assumptions. Let us add that the problem of continuity
of the superposition operators still remains open (even in the autonomous
case) because we still cannot say anything about the continuity of operators
with a general Lipschitz generator and acting from a space of functions of
bounded Λ-variation into itself.
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In Sect. 5 we focus on ΛBV -solutions to some classical nonlinear integral
equations. We prove therein an existence result to the nonlinear Hammer-
stein integral equation, extending Theorem 1 from the paper [4]. Moreover,
we prove an Aronszajn-type theorem concerning the topological structure of
continuous ΛBV -solution sets to the nonlinear Volterra–Hammerstein inte-
gral equations.

Finally, in Sect. 6 we examine embeddings of compact subsets of a given
space of functions of bounded Λ-variation into another space of this type. It
appears, roughly speaking, that sets of functions which are continuous in Λ-
variation possess some nice properties, as far as compactness is concerned
(see Theorems 18, 19).

2. Preliminaries

In this section we collect some basic definitions and facts, which will be needed
in the sequel.

Notation. Throughout the paper, we will denote the unit interval [0, 1] by I.
By Sn we denote the symmetric group of the set {1, 2, . . . , n}.
Definition 1. Let us consider a nondecreasing sequence of positive real num-
bers Λ = (λn)n∈N. We call such sequence a Waterman sequence if

∞∑

n=1

1
λn

= +∞.

Definition 2. Let (λn)n∈N be a Waterman sequence, J = [a, b] ⊂ I and let
x : I → R. We say that x is of bounded Λ-variation over J if there exists
a positive constant M such that for any finite sequence of nonoverlapping1

subintervals {[a1, b1], [a2, b2], . . . , [an, bn]} of J , the following inequality holds
n∑

i=1

|x(bi) − x(ai)|
λi

≤ M.

The supremum of the above sums taken over the family of all the finite
collections of nonoverlapping subintervals of J is called the Λ-variation of
x over J and it is denoted by varΛ(x;J). If J = I, then we simply write
varΛ(x).

Remark 1. In the above definition the finite collections of intervals and the
finite sums may be replaced by countable collections and series, respectively
(see [19], Theorem 1, p. 34).

The vector space of all the functions defined on the interval I and
of bounded Λ-variation, endowed with the norm ‖x‖ΛBV :=|x(0)| + varΛ(x)
forms a Banach space ΛBV (I) (see [19], Section 3).

Below the norm in the normed space E will be denoted by ‖·‖E . The
exception is the supremum norm in the space B(I) of all bounded functions

1Two closed intervals I1 and I2 are said to be nonoverlapping if I1 ∩ I2 consists of at most
one point.
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on the interval I (and its subspaces) which will be denoted by ‖·‖∞. To
shorten slightly the notation, we will also write ‖·‖ΛBV instead of ‖ ·‖ΛBV (I).
The open ball, in the space E, centered at x0 with radius r > 0 will be
denoted as BE(x0, r), while the closed ball as BE(x0, r).

Let a = t0 < t1 < · · · < tn−1 < tn = b be a partition of the interval J .
We will denote such partition by π = {t0, t1, . . . , tn−1, tn}.
Now we are going to rephrase the definition of Λ-variation (in a slightly
different way than it was done before by Prus-Wísniowski—see [16]). This,
very simple, observation will play an essential role in our considerations.

Proposition 1. Let x : J → R and let Λ be a Waterman sequence. The fol-
lowing conditions are equivalent:
(1) there exists a positive constant M such that for any finite partition

π = {c0, c1, . . . , cn} of J and any permutation σ ∈ Sn, we have
n∑

i=1

|x(ci) − x(ci−1)|
λσ(i)

≤ M ;

(2) x is of bounded Λ-variation.

Proof. Let x be as in (1). Let us choose an arbitrary finite sequence
{[a1, b1], [a2, b2], . . . , [an, bn]} of nonoverlapping subintervals of J . We com-
plete it to be also a finite partition π = {c0, c1, . . . , cm} of J . We have

n∑

i=1

|x(bi) − x(ai)|
λi

≤ sup
σ∈Sm

m∑

i=1

|x(ci) − x(ci−1)|
λσ(i)

≤ sup
σ∈Sm

M = M.

The verification of the inverse direction is trivial. �

In the next lemma, to simplify the notation a little bit, instead of taking
any interval J ⊂ I we will focus on the entire interval I.

Lemma 1. There exists a positive constant c̃Λ such that for any function x ∈
ΛBV (I) we have

‖x‖∞ ≤ c̃Λ ‖x‖ΛBV .

Proof. Taking any t ∈ I, we get

|x(t)| ≤ |x(0)| + |x(t) − x(0)| = |x(0)| + λ1
|x(t) − x(0)|

λ1
≤ |x(0)|

+λ1varΛ(x) ≤ max{1, λ1} ‖x‖ΛBV .

Finally, for completeness, let us recall the definition of nonlinear super-
position operators.

Definition 3. Let J be an arbitrary interval.
(a) Let f : J × R → R. The operator

F (g)(u):=f(u, g(u)),

where g : J → R is an arbitrary function, is called the nonautonomous
superposition operator generated by the function f .
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(b) Let f : R → R. The operator

F (g)(u):=f(g(u)),

where g : J → R is an arbitrary function, is called the autonomous
superposition operator generated by the function f .

3. Nonautonomous superposition operators in the space of
functions of bounded Λ-variation.

In this section, for the sake of simplicity, instead of an arbitrary interval
J , we will consider the unit interval I. In the paper [3] Bugajewska et al.
have stated the necessary and sufficient conditions which guarantee that the
nonautonomous superposition operator generated by a function f : I×R → R

maps the space BV(I) of all functions of bounded variation in the sense of
Jordan into itself and is locally bounded.

Theorem 1. ([3, Theorem 3.8]) Suppose that f : I×R → R is a given function.
The following conditions are equivalent:
(i) the nonautonomous superposition operator F , generated by f , maps the

space BV (I) into itself and is locally bounded;
(ii) for every r > 0 there exists a constant Mr > 0 such that for every

k ∈ N, every finite partition 0 = t0 < · · · < tk = 1 of the interval I and
every finite sequence u0, u1, . . . , uk ∈ [−r, r] with

∑k
i=1|ui − ui−1| ≤ r,

the following inequalities hold
k∑

i=1

∣∣f(ti, ui)−f(ti−1, ui)
∣∣ ≤ Mr and

k∑

i=1

∣∣f(ti−1, ui)−f(ti−1, ui−1)
∣∣ ≤ Mr.

Now we are going to present some results that show that the similar
conditions may be stated for the more general case of nonlinear superposition
operators between spaces ΛBV (I) and ΓBV (I) (to avoid confusion, let us
explain that Λ and Γ in the above symbols mean that those spaces may be
constructed with the help of two various Waterman sequences). But before we
proceed to that more general case we are going to begin with the generators
f satisfying the local Lipschitz condition with respect to the second variable.

First, let us explicitly write the definition which will be used in the
sequel.

Definition 4. We say that a function f : I × R → R is locally bounded if the
image f(I × [−M,M ]) is bounded for any M > 0. Similarly we say that
the superposition operator F : ΛBV (I) → ΓBV (I) is locally bounded if the
image of each ball F (BΛBV (0,M)) is bounded in ΓBV (I).

Theorem 2. Let f : I × R → R satisfy the following conditions:
(i) f satisfies the local Lipschitz condition on R uniformly in t ∈ I;
(ii) for any r > 0 there exists Mr > 0 such that for any positive number

n, any partition π of the interval I, any u0, u1, . . . , un ∈ R and any
permutation σ ∈ Sn, the following implication holds
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sup
σ∈Sn

n∑

i=1

|ui − ui−1|
λσ(i)

≤ r =⇒ sup
σ∈Sn

n∑

i=1

|f(ti, ui−1) − f(ti−1, ui−1)|
λσ(i)

≤ Mr.

Then the nonautonomous superposition operator F , generated by f , maps the
space ΛBV (I) into itself and is locally bounded.

Proof. Let x ∈ ΛBV (I) be such that ‖x‖ΛBV ≤ r. Let Lr be the uniform
Lipschitz constant corresponding to the function u 	→ f(t, u) restricted to the
interval [−r̃, r̃], where r̃ = rc̃Λ. For any partition π = {t0, t1, . . . , tn} we have

n∑

i=1

|f(ti, x(ti)) − f(ti−1, x(ti−1))|
λσ(i)

≤
n∑

i=1

|f(ti, x(ti)) − f(ti, x(ti−1))|
λσ(i)

+
n∑

i=1

|f(ti, x(ti−1)) − f(ti−1, x(ti−1))|
λσ(i)

≤ Lr

n∑

i=1

|x(ti) − x(ti−1)|
λσ(i)

+ Mr ≤ Lr · r + Mr,

which proves that F maps the space ΛBV (I) into itself. Moreover, we have:

‖F (x)‖ΛBV = |F (x(0))| + varΛ(F (x)) ≤ |f(0, x(0))| + Lr · varΛ(x) + Mr

≤ |f(0, x(0)) − f(0, 0)| + |f(0, 0)| + LrvarΛ(x) + Mr

≤ Lr ‖x‖ΛBV + Mr + |f(0, 0)| ≤ Lr · r + Mr + |f(0, 0)|,
which means that F is locally bounded.

It appears that in the case of functions satisfying the local Lipschitz
condition in view of the first variable, the condition (ii) of Theorem 2 plays
an important role, if one considers the space BV (I). More precisely, the
following result holds.

Theorem 3. ([3], Proposition 3.3) Let us assume that f : I × R → R satisfies
the condition (i) of Theorem 2. If the nonautonomous superposition operator
F , generated by f , maps the space BV (I) into itself and is locally bounded,
then f satisfies (ii).

It is quite surprising that in the above result one cannot replace the
space BV (I) by an arbitrary space ΛBV (I). To establish that, let us consider
the following.

Example 1. Let us consider the function f : I × R → R, defined by the for-
mula

f(t, x) =

{
0, if t < 1;
x, if t = 1.

The nonautonomous superposition operator, generated by the function f ,
maps any space ΛBV (I) into any space ΓBV (I) and it is locally bounded. Let
λn = n and an = 1√

n
, for n ∈ N. Obviously

∑∞
n=1 an = +∞ and there exists

r > 0 such that
∑∞

n=1
an

λn
≤ r. Therefore, one can take an arbitrarily large
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interval [0,
∑N

n=1 an] and its partition consisting of points ui =
∑i

n=1 an (i =
1, . . . , N) and u0 = 0. For that partition, the predecessor of the implication
which appears in the condition (ii) of Theorem 2 is satisfied. On the other
hand, we have

N∑

i=1

|f(ti, ui−1) − f(ti−1, ui−1)|
λσ(i)

=
|f(1, uN−1)|

λσ(N)
,

so for some permutation σ ∈ SN the above sum is equal to |uN−1|
λ1

, which
means that it can be arbitrarily large.

Remark 2. Let us notice that the local Lipschitz condition imposed on a func-
tion f : R → R is a necessary and sufficient condition for the autonomous
superposition operator to act from ΛBV (I) to ΛBV (I) (cf. [15]), so The-
orem 2 presented above is the direct generalization of that result to the
nonautonomous case.

The following three results describe some properties of nonautonomous
superposition operators acting between spaces ΛBV (I) and ΓBV (I).

Theorem 4. Assume that f : I × R → R generates a nonautonomous super-
position operator F which maps a space ΛBV (I) into ΓBV (I). If f is not
locally bounded, then neither is F .

Proof. Since f is not locally bounded, there exists r > 0 and sequences
(tn)n∈N, tn ∈ I for n ∈ N and (un)n∈N, un ∈ [−r, r] for n ∈ N, such that

lim
n→+∞|f(tn, un)| = +∞.

For every n ∈ N we define

xn(t) =

{
un, if t = tn,

0, otherwise.

We have ‖xn‖ΛBV = |xn(0)| + varΛ(xn) ≤ r + 1
λ1

r + 1
λ2

r for each n. By the
assumptions, we infer that F (xn) ∈ ΓBV (I) and for fixed s 
= tn we have

|f(tn, un)| − |f(s, 0)| ≤ |f(tn, un) − f(s, 0)|

= γ1
|f(tn, xn(tn)) − f(s, xn(s))|

γ1
≤ γ1varΓ(F (xn)),

where s is an arbitrary point of the interval I. Hence, lim
n→∞ varΓ(F (xn)) =

+∞.

Theorem 5. If the nonautonomous superposition operator F , generated by f ,
maps a space ΛBV (I) into a space ΓBV (I), then for every r > 0 the set
Tr = {t ∈ I : sup

u∈[−r,r]

|f(t, u)| = +∞} is finite.

Proof. Let us assume that F : ΛBV (I) → ΓBV (I) and there exists such
r > 0 that the set Tr is at least denumerable (countable and infinite). There
exists a sequence ((tn, un))n∈N, (tn, un) ∈ I × [−r, r] for n ∈ N such that:
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• |f(tn+1, un+1)| ≥ |f(tn, un)| + 1;
• tn, un are monotone;
• tn → t0, un → u0 as n → +∞;
• tm 
= tn if m 
= n.

Let us define the function

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un, if t = tn,

u0, if t = t0,

linear, if t ∈ (min{tn, tn+1},max{tn, tn+1}),
x(supn∈N tn), if t ∈ (supn∈N tn, 1],
x(infn∈N tn), if t ∈ [0, infn∈N tn).

This function is monotone, so it is of bounded variation in the sense of Jordan
and, therefore, x ∈ ΛBV (I). For any n we have

varΓ(F (x)) ≥
n∑

i=1

|F (x)(ti+1) − F (x)(ti)|
γi

≥
n∑

i=1

|f(ti+1, x(ti+1)) − f(ti, x(ti))|
γi

≥
n∑

i=1

1
γi

,

which tends to infinity as n → +∞. This gives a contradiction.

Theorem 6. Let F be a nonautonomous superposition operator, generated by
f : I × R → R, which maps a space ΛBV (I) into ΓBV (I). Then for every
u ∈ R the function t 	→ f(t, u) is of bounded Γ-variation. Furthermore, in
general, nothing can be said about the function u 	→ f(t, u), where t ∈ I is
fixed.

Proof. For every u ∈ R let us set xu = u. In view of the assumption, F (xu) ∈
ΓBV (I), that is, the function t 	→ f(t, u) is of bounded Γ-variation.

To show the second claim, let us consider the function f : I × R → R

given by the formula f(t, u) = h(t)g(u), where g : R → R is an arbitrary
function and h : I → R is defined as follows:

h(t) =

{
0, if t ∈ (0, 1],
1, if t = 0.

Then the nonautonomous superposition operator F , generated by the func-
tion f , is defined as follows:

F (x)(t) =

{
0, if t ∈ (0, 1],
g(x(0)), if t = 0,

where x ∈ ΛBV (I). Therefore, F maps the space ΛBV (I) into ΓBV (I) and
nothing can be said about the function u 	→ f(0, u) = g(u).

Now, let us introduce the following.

Definition 5. Let u = {u0, u1, . . . , uk} be a finite sequence of real numbers.
The number

varΛ(u) = sup
ũ

{
sup

σ∈Sn

n∑

i=1

|uki
− uki−1 |
λσ(i)

}
,
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where ũ = {uk0 , uk1 , . . . , ukn
} is any subsequence of u, is called the Λ-

variation of the sequence u.

We are ready to prove the main result of this section.

Theorem 7. Let f : I × R → R. The following conditions are equivalent:

(i) the nonautonomous superposition operator F , generated by f , maps the
space ΛBV (I) into ΓBV (I) and is locally bounded,

(ii) for every r > 0 there exists Mr > 0 such that for every k ∈ N,
every partition π = {t0, t1, . . . , tk} of the interval I and every sequence
u = {u0, u1, . . . , uk} of elements of the interval [−rc̃Λ, rc̃Λ] such that
varΛ(u) ≤ r, the following inequalities hold

sup
σ∈Sk

k∑

i=1

|f(ti, ui) − f(ti−1, ui)|
γσ(i)

≤ Mr and

sup
σ∈Sk

k∑

i=1

|f(ti−1, ui) − f(ti−1, ui−1)|
γσ(i)

≤ Mr.

Proof. (ii) ⇒ (i) Let x ∈ ΛBV (I) be such that ‖x‖ΛBV ≤ r. Let Mr and π
be as in (ii). We have

k∑

i=1

|f(ti, x(ti)) − f(ti−1, x(ti−1))|
γσ(i)

≤
k∑

i=1

|f(ti, ui) − f(ti−1, ui)|
γσ(i)

+
k∑

i=1

|f(ti−1, ui) − f(ti−1, ui−1)|
γσ(i)

≤ 2Mr,

where ui = x(ti) and σ ∈ Sk. Furthermore, we have

‖F (x)‖ΓBV = |F (x(0))| + varΓ(F (x)) = |f(0, x(0))| + varΓ(F (x))

≤ |f(0, x(0)) − f(0, 0)| + |f(0, 0)| + varΓ(F (x))

= γ1
|f(0, x(0)) − f(0, 0)|

γ1
+ |f(0, 0)| + varΓ(F (x))

≤ γ1 · Mr + |f(0, 0)| + 2Mr = (γ1 + 2)Mr + |f(0, 0)|,

which means that F is locally bounded.
(i) ⇒ (ii) Assume that F satisfies the condition (i) and there exists r > 0

such that for every n ∈ N there exists a partition πn = {t
(n)
0 , t

(n)
1 , . . . , t

(n)
kn

} of

the interval I and a sequence u
(n)
0 , u

(n)
1 , . . . , u

(n)
kn

of elements of the interval
[−rc̃Λ, rc̃Λ] such that varΛ(u) ≤ r and
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sup
σ∈Skn

kn∑

i=1

|f(t(n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i )|

γσ(i)
> n (1)

or

sup
σ∈Skn

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)
> n. (2)

For each n ∈ N we define the function ξn : [0, 1] → R by the formula

ξn(t) =

{
u

(n)
i , if t = t

(n)
i ,

linear, if t ∈ (t(n)
i−1, t

(n)
i ).

Obviously, we have

varΛ(ξ(n)) = varΛ(u(n)) ≤ r.

Since F is locally bounded, there exists R (corresponding to r) such that
sup
n∈N

‖F (ξn)‖ΓBV ≤ R. For any n ∈ N we have

kn∑

i=1

|f(t(n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i )|

γσ(i)

≤
kn∑

i=1

|f(t(n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)
+

kn∑

i=1

|f(t(n)
i−1, u

(n)
i−1) − f(t(n)

i−1, u
(n)
i )|

γσ(i)

≤ sup
n

varΓ(F (ξn)) +
kn∑

i=1

|f(t(n)
i−1, u

(n)
i−1) − f(t(n)

i−1, u
(n)
i )|

γσ(i)
.

Taking the supremum over σ ∈ Skn
we get

sup
σ∈Skn

kn∑

i=1

|f(t(n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i )|

γσ(i)
≤ sup

n
varΓ(F (ξn))

+ sup
σ∈Skn

kn∑

i=1

|f(t(n)
i−1, u

(n)
i−1) − f(t(n)

i−1, u
(n)
i )|

γσ(i)
.

Similarly, we obtain

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)

≤
kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i , u
(n)
i )|

γσ(i)
+

kn∑

i=1

|f(t(n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)

≤ sup
n

varΓ(F (ξn)) +
kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i , u
(n)
i )|

γσ(i)
.
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Taking the supremum over σ ∈ Skn
we get

sup
σ∈Skn

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)
≤ sup

n
varΓ(F (ξn))

+ sup
σ∈Skn

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i , u
(n)
i )|

γσ(i)
.

Hence, supσ∈Skn

∑kn

i=1

|f(t
(n)
i−1,u

(n)
i )−f(t

(n)
i−1,u

(n)
i−1)|

γσ(i)
tends to infinity (as n → ∞)

if and only if supσ∈Skn

∑kn

i=1

|f(t
(n)
i−1,u

(n)
i )−f(t

(n)
i ,u

(n)
i )|

γσ(i)
tends to infinity. By this

observation, we get

lim
n→+∞ sup

σ∈Skn

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)
= +∞

Let us fix n ∈ N and let us consider the finer partition π with a sequence of
additional points τ

(n)
i ∈ (t(n)

i−1, t
(n)
i ), i = 1, 2, . . . , kn. Let us define a sequence

(sn
i ) in the following manner:

sn
0 :=t

(n)
0 , sn

1 :=τ
(n)
1 , sn

2 :=t
(n)
1 , sn

3 :=τ
(n)
2 , . . . , sn

2kn−1:=τ
(n)
kn

, sn
2kn

:=t
(n)
kn

.

Let us define two functions:

x
n
(t)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u
(n)
i , if t ∈ [sn

2i−2, sn
2i−1] for some i ∈ {1, . . . , kn},

sn
2i

−t

sn
2i

−sn
2i−1

u
(n)
i +

t−sn
2i−1

sn
2i

−sn
2i−1

u
(n)
i+1 if t ∈ [sn

2i−1, sn
2i] for some i ∈ {1, . . . , kn − 1},

u
(n)
kn

, if t ≥ sn
2kn−1,

and

y
n
(t)

=

⎧
⎪⎨

⎪⎩

sn
2i−1−t

sn
2i−1−sn

2i−2
u

(n)
i−1 +

t−sn
2i−2

sn
2i−1−sn

2i−2
u

(n)
i if t ∈ [sn

2i−2, sn
2i−1] for some i ∈ {1, . . . , kn},

u
(n)
i , if t ∈ [sn

2i−1, sn
2i] for some i ∈ {1, . . . , kn}.

Actually, by defining the above functions we were going to build two functions
that are continuous, piecewise linear and constant in the left (the case of x(n))
or in the right (the case of y(n)) part of each interval [t(n)

i−1, t
(n)
i ], and achieving

values u
(n)
i in points t

(n)
i of the partition π.

We have xn(0) = u
(n)
1 , yn(0) = u

(n)
0 and

varΛ(xn) ≤ varΛ(ξ(n)) ≤ r,

and

varΛ(yn) ≤ varΛ(ξ(n)) ≤ r.
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Hence, ‖xn‖ΛBV ≤ 2r and ‖yn‖ΛBV ≤ 2r for each n ∈ N. By the local
boundedness of F we get ‖F (zn)‖ΓBV ≤ R for zn ∈ {xn, yn}. On the other
hand, we have

kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)

≤
kn∑

i=1

|f(t(n)
i−1, u

(n)
i ) − f(τ (n)

i , u
(n)
i )|

γσ(i)
+

kn∑

i=1

|f(τ (n)
i , u

(n)
i ) − f(t(n)

i−1, u
(n)
i−1)|

γσ(i)

=
kn∑

i=1

|f(t(n)
i−1, x

n(t(n)
i−1)) − f(τ (n)

i , xn(τ (n)
i ))|

γσ(i)

+
kn∑

i=1

|f(τ (n)
i , yn(τ (n)

i )) − f(t(n)
i−1, y

n(t(n)
i−1))|

γσ(i)

≤ varΓ(F (xn)) + varΓ(F (yn)) ≤ 2R,

which contradicts (2).

4. Continuity of the autonomous superposition operator

Now we are going to concentrate on the continuity of an autonomous super-
position operator mapping the space ΛBV (I) into itself.

First, we will show that the space ΛBV (I) is a Banach algebra under a
certain norm, equivalent to the norm ‖·‖ΛBV .

Let us consider an arbitrary Waterman sequence (λn)n∈N. If that
sequence is bounded by M , then for any λi, i ∈ N, we have

1
M

≤ 1
λi

≤ 1
λ1

and, therefore, the norm ‖·‖ΛBV is equivalent to the norm ‖·‖BV , what means
that ΛBV (I) = BV (I) and this space is a Banach algebra under certain
equivalent norm.

If the sequence (λn)n∈N is proper, that is, unbounded, then by Lemma
1 there exists such constant c̃Λ ≥ 1 that for any function x ∈ ΛBV (I) we
have

‖x‖∞ ≤ c̃Λ ‖x‖ΛBV .

Hence, for any two functions x, y ∈ ΛBV (I), any partition π =
{c0, c1, c2, . . . , cn} of I and any permutation σ ∈ Sn we have

|x(0)y(0)| +
n∑

k=1

|x(ci)y(ci) − x(ci−1)y(ci−1)|
λσ(i)

≤ ‖y‖∞

(
|x(0)| +

n∑

i=1

|x(ci) − x(ci−1)|
λσ(i)

)
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+ ‖x‖∞

(
|y(0)| +

n∑

i=1

|y(ci) − y(ci−1)|
λσ(i)

)

≤ ‖y‖∞ ‖x‖ΛBV + ‖x‖∞ ‖y‖ΛBV

≤ 2c̃Λ ‖x‖ΛBV ‖y‖ΛBV .

Therefore, we get

‖xy‖ΛBV ≤ 2c̃Λ ‖x‖ΛBV ‖y‖ΛBV .

Let us multiply both sides of the above inequality by 2c̃Λ and let us
denote ‖x‖′

ΛBV = 2c̃Λ ‖x‖ΛBV . Then we get

‖xy‖′
ΛBV ≤ ‖x‖′

ΛBV ‖y‖′
ΛBV

and, therefore, ΛBV (I) is a Banach algebra under a norm, ‖·‖′
ΛBV which is

equivalent to the norm ‖·‖ΛBV .
We begin our considerations concerning the problem of continuity of

autonomous superposition operators with the case of analytic generators of
such operators.

Theorem 8. Let f : R → R be a sum of a power series centered at 0 with the
radius of convergence ρ = +∞, that is, there exist real numbers a0, a1, . . .
such that

f(u) =
∞∑

i=0

aiu
i for u ∈ R.

Then the autonomous superposition operator F , generated by f , which maps
the Banach space ΛBV (I) into itself is continuous.

Proof. Let us note that the operator F is well defined, since the function f
satisfies a local Lipschitz condition (see Remark 2).

Write

fn(u) =
n∑

i=1

aiu
i, gn(u) = f ′

n(u) =
n∑

i=1

iaiu
i−1,

where u ∈ R and u0 = 1. Furthermore, let x0(t) ≡ 1 and

Fn(x) =
n∑

i=1

aix
i for every n ∈ Nand x ∈ ΛBV (I).

Since ΛBV (I) is a Banach algebra under a certain norm equivalent to ‖·‖ΛBV ,
the mapping Fn : ΛBV (I) → ΛBV (I) is continuous. Therefore, to show the
continuity of F it suffices to show that the sequence of mappings (Fn)n∈N

converges to F uniformly on bounded sets. Since the function u 	→ (fn−f)(u)
satisfies the Lipschitz condition on every interval [−a, a] with the constant
Ln(a) = supu∈[−a,a]|f ′(u) − gn(u)|, we obtain

varΛ(Fn(x) − F (x)) ≤ Ln(b)varΛ(x),
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where b = c̃Λ ‖x‖ΛBV , hence

‖Fn(x) − F (x)‖ΛBV = |fn(x(0)) − f(x(0))| + varΛ(Fn(x) − F (x))

≤ |fn(x(0)) − f(x(0))| + Ln(ac̃Λ)varΛ(x),

which shows that Fn(x) → F (x) as n → +∞ uniformly for every x ∈
BΛBV (0, a), where a is an arbitrary, fixed real number.

Now, we are going to consider generators of C1-class. For that we will
use the well-known concept of Bernstein polynomials. For the definition and
properties (especially those required in the proof below) of Bernstein poly-
nomials we would like to refer the reader to [5] and references therein.

Theorem 9. Let f : R → R be a continuously differentiable function. Then
the autonomous superposition operator F : ΛBV (I) → ΛBV (I), generated by
the function f , is continuous.

Proof. First observe that the operator F is well defined due to the continuity
of f ′ and the mean-value theorem.

To show its continuity we will approximate F by an almost uniformly
convergent sequence of continuous mappings on the space ΛBV (I).

For a given a > 0 let φa denote the restriction of f to the interval [−a, a].
Moreover, let Fn : BΛBV (0, r) → ΛBV (I) be the autonomous superposition
operator generated by the nth Bernstein polynomial Ba

n(φa) of the function
φa, where a = c̃Λr. Since ΛBV (I) is a Banach algebra, the operators Fn are
continuous.

Now we are going to show that the sequence (Fn)n∈N converges uni-
formly to F on BΛBV (0, r). Note that the function u 	→ [f − Ba

n(φa)](u)
satisfies the Lipschitz condition on the interval [−a, a] with the constant
Ln(a) = supu∈[−a,a]|f ′(u) − d

duBa
n(φa)(u)|, and thus we have

varΛ(F (x) − Fn(x)) ≤ Ln(a)varΛ(x) for x ∈ BΛBV (0, r).

Therefore, by [5] Proposition 1 and Proposition 2, for x ∈ BΛBV (0, r),
we get

‖F (x) − Fn(x)‖ΛBV ≤ |f(x(0)) − Ba
n(φa)(x(0))| + Ln(a)varΛ(x)

≤ |φa(x(0)) − Ba
n(φa)(x(0))| + rLn(a) → 0,

as n → +∞, which ends the proof.

We should note here that we cannot expect a similar result to hold for
the codomain being the proper subspace of the domain. To show it, first we
introduce some useful notation. Given two Waterman sequences Λ = (λn)n∈N

and Γ = (γn)n∈N we will write Γ < Λ, whenever

lim
n→+∞

γn

λn
= 0.

It is quite easy to show that if Γ < Λ, then
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lim
n→+∞

∑n
j

1
λj∑n

j
1
γj

= 0,

what implies that ΓBV (I) � ΛBV (I) (see [13], Theorem 3).
We may also observe that since there exists such M > 0 that 1

λn
≤ M 1

γn

we have

‖x‖ΛBV ≤ M ‖x‖ΓBV ,

for all x ∈ ΓBV (I), which makes the inclusion ΓBV (I) � ΛBV (I) a contin-
uous map.

Theorem 10. If Γ < Λ is a Waterman sequence and F : ΛBV (I) → ΓBV (I)
is an autonomous superposition operator, generated by f : R → R, then f is
a constant function.

Proof. We may assume that γn ≥ 1 for every n ∈ N. We will prove that f is
differentiable at every point of its domain and that its derivative is equal to
zero.

Assume, contrary to our claim, that there exists x0 ∈ R, ε > 0 and a
sequence (xn)n∈N of real numbers such that xn → 0 and

∣∣∣∣
f(x0 + xn) − f(x0)

xn

∣∣∣∣ ≥ ε. (3)

We may assume that (xn)n∈N is monotone and, moreover, that all terms
are of the same sign. To abbreviate a notation, let us assume that they are
positive. Since (xn)n∈N tends to zero, there exists an infinite set P ⊆ N such
that for every p ∈ P there is m such that p ≤ x−1

m < p + 1.
Now, we are going to define some sequences (Nk)k∈N, (mk)k∈N, (pk)k∈N

of positive integers. Put N1 = 1. Choose a positive integer N2 > N1 such
that λn ≥ 2γn for every n ≥ N2 and

p1 ≤
N2−1∑

n=N1

1
γn

< p1 + 1 (4)

for some positive integer p1 ∈ P, p1 ≥ 2. Such N2 must exist since∑∞
n=N1

1
γn

= +∞ and γn ≥ 1 for every positive integer n. Let m1 be such a
positive integer that p1 ≤ x−1

m1
< p1 + 1.

Assume that k > 1 and that Nk,mk−1, pk−1 are already defined. Choose
a positive integer Nk+1 > Nk such that λn ≥ 2kγn for every n ≥ Nk+1 and

pk ≤
Nk+1−1∑

Nk

1
γn

< pk + 1 (5)

for some positive integer pk ∈ P such that pk > max{pk−1, 2k}. As above,
such Nk+1 must exist since

∑∞
n=Nk

1
γn

= +∞ and γn ≥ 1 for every positive
integer n. Let mk be such a positive integer that pk ≤ x−1

mk
< pk + 1, that is

1
pk + 1

< xmk
≤ 1

pk
. (6)
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Let us notice that
1
pk

<
1
2k

(7)

for every positive integer k. Put yn = xmk
for n such that Nk ≤ n < Nk+1.

By (5) and (6), we get

∞∑

n=1

yn

γn
=

∞∑

k=1

xmk

Nk+1−1∑

n=Nk

1
γn

>

∞∑

k=1

1
pk + 1

· pk = +∞. (8)

Using additionally (7) and the fact that λn ≥ 2k−1γn for every n ≥ Nk, we
get

∞∑

n=1

yn

λn
≤

∞∑

k=1

xmk

2k−1

Nk+1−1∑

n=Nk

1
γn

<
∞∑

k=1

1
2k−1

pk + 1
pk

< +∞. (9)

Now we are ready to define a function g : [0, 1] → R such that g ∈
ΛBV (I) and F (g) 
∈ ΓBV (I) what will contradict our assumption. Let

g(t) =
{

yn + x0 if t = 1
2n forn ∈ N,

x0 if t 
= 1
2n .

Let tn = 1
n for n ∈ N. The function g is of bounded Λ-variation if and only

if
∑∞

j=1
|g(tj+1)−g(tj)|

λj
< ∞; however, by (9), we get

∞∑

n=1

|g(tn+1) − g(tn)|
λn

≤
∞∑

n=1

|g(t2n) − g(t2n−1)| + |g(t2n+1) − g(t2n)|
λn

< +∞

since |g(t2n) − g(t2n−1)| = |g(t2n+1) − g(t2n)| = yn. Furthermore, by (3) and
(8), we have

∞∑

n=1

|F (g)(t2n) − F (g)(t2n−1)|
γn

=
∞∑

n=1

|f(g(t2n)) − f(g(t2n−1))|
γn

=

=
∞∑

n=1

|f(x0 + yn) − f(x0)|
γn

≥ ε

∞∑

n=1

yn

γn
= ∞.

It means that F (g) is not of bounded Γ-variation, which gives a contradiction.

We will end this section considering the general case of continuous func-
tions f : R → R. Since f is not necessarily Lipschitz continuous, then the
superposition operator generated by f and defined in ΛBV (I) does not nec-
essarily act in ΛBV (I). However, we can show that it acts in some space
ΓBV (I). For that, we will need the following three lemmas.

Let Γk = (γk
n)n∈N for k ∈ N.

Lemma 2. Assume that Γk is a Waterman sequence for every k ∈ N and that

γk+1
n ≥ γk

n (10)

for n, k ∈ N. Then there exists a Waterman sequence Γ such that ΓkBV (I) ⊆
ΓBV (I) for all k ∈ N.
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Proof. There exists a sequence (Nk)k∈N of positive integers such that N1 = 1
and

Nk+1−1∑

n=Nk

1
γk

n

≥ 1.

Let us define γn = γk
n for Nk ≤ n < Nk+1. The sequence Γ is monotone

by (10) and the monotonicity of each Γk. Furthermore,
∑∞

n=1
1

γn
= +∞,

by the definition of the sequence (Nk)k∈N and therefore Γ is a Waterman
sequence.

Inequality (10) implies that for every k ∈ N there exists N ∈ N such
that γk

n ≤ γn for n ≥ N and hence ΓkBV (I) ⊆ ΓBV (I) for every positive
integer k, which ends the proof.

Lemma 3. If (wn)n∈N is a monotone sequence of positive real numbers tend-
ing to zero and Γ is a Waterman sequence, then there exists a Waterman
sequence Γ′ = (γ′

n)n∈N such that γ′
n ≥ γn for every positive integer n and∑∞

n=1
wn

γ′
n

< +∞.

Proof. Let (Nk)k∈N be such a strongly increasing sequence of positive integers
that

(i) N1 = 1;
(ii) ∀k>1∀n≥Nk

wn ≤ 1
2k ;

(iii) ∀k≥1

∑Nk+2−1
n=Nk+1

1
γn

≥ ∑Nk+1−1
n=Nk

1
γn

≥ 1.

Let us define

γ′
n =

⎛

⎝
Nk+1−1∑

j=Nk

1
γj

⎞

⎠ γn

for Nk ≤ n < Nk+1 and k ∈ N. It is readily seen from (iii) that Γ′ is monotone
and γ′

n ≥ γn for every positive integer n. It is a Waterman sequence, since

∞∑

n=1

1
γ′

n

=
∞∑

k=1

Nk+1−1∑

n=Nk

1
γ′

n

=
∞∑

k=1

Nk+1−1∑

n=Nk

⎛

⎝
Nk+1−1∑

j=Nk

1
γj

⎞

⎠
−1

1
γn

= +∞.

Finally, we get
∞∑

n=2

wn

γ′
n

=
∞∑

k=2

Nk+1−1∑

n=Nk

wn

γ′
n

≤
∞∑

k=2

1

2k

Nk+1−1∑

n=Nk

⎛

⎝
Nk+1−1∑

Nk

1

γj

⎞

⎠
−1

1

γn
=

∞∑

k=2

1

2k
< +∞.

Lemma 4. If Λ is a Waterman sequence, then there exists a Waterman
sequence Λ′ = (λ′

n)n∈N such that Λ < Λ′. Moreover, the sequence (λn

λ′
n
)n∈N is

monotone.

Proof. Let (Nk)k∈N be such a sequence that N1 = 1 and
∑Nk+1−1

n=Nk

1
λn

≥ 2k

for k ∈ N. Let us define λ′
n = 2kλn for Nk ≤ n < Nk+1 and k ∈ N. Obviously,

Λ′ is monotone, λn

λ′
n

→ 0, as n → ∞ and
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∞∑

n=1

1
λ′

n

=
∞∑

k=1

Nk+1−1∑

n=Nk

1
λ′

n

=
∞∑

k=1

1
2k

Nk+1−1∑

n=Nk

1
λn

= +∞

Hence, Λ′ is a Waterman sequence having all the desired properties.

Theorem 11. If f : R → R is continuous, F is the autonomous superposition
operator, generated by f and Λ is a Waterman sequence, then there exists a
Waterman sequence Γ such that F (ΛBV (I)) ⊆ ΓBV (I).

Proof. First, let Λ′ = (λ
′
n)n∈N be the Waterman sequence given in Lemma 4.

For every positive integer k let ωk denote a modulus of continuity of the func-
tion f |[−k,k]. We have ωk(δ) → 0, as δ → 0, because obviously a continuous
function on compact interval is uniformly continuous.

We shall define a sequence (Γk)k∈N of Waterman sequences such that
γk

n ≤ γk+1
n for all positive integers n, k. Let Γ1 be a Waterman sequence such

that
(i) γ1

n ≥ λ′
n;

(ii)
∑∞

n=1

ω1(
λn
λ′

n
)

γ1
n

< +∞.

Assume that Γk is already defined. Let Γk+1 be a Waterman sequence
such that

(i) γk+1
n ≥ γk

n;

(ii)
∑∞

n=1

ωk+1(
λn
λ′

n
)

γk+1
n

< +∞.

The above construction is possible by Lemma 3. Let Γ be such Water-
man sequence that ΓkBV (I) ⊆ ΓBV (I) for all k ∈ N. Lemma 2 implies the
existence of such a sequence.

Now it suffices to prove that if x : I → R is of bounded Λ-variation, then
F (x) is of bounded Γ-variation. Let x ∈ ΛBV (I). Obviously, there exists a
positive integer k such that |x(t)| ≤ k for t ∈ [0, 1]. Let (In)n∈N ⊆ [0, 1] be a
sequence of nonoverlapping intervals. Let us define A = {n ∈ N : |x(In)| ≤
λn

λ′
n
}. Let us notice that

∑
n�∈A

1
λ′

n
≤ ∑

n�∈A
|x(In)|

λn
< +∞, since x ∈ ΛBV (I).

Using this fact, properties (i), (ii), and the monotonicity of ωk for every k ∈ N,
we get

∑

n∈N

|(f ◦ x)(In)|
γk

n

≤
∑

n∈N

ωk(|x(In)|)
γk

n

=
∑

n∈A

ωk(|x(In)|)
γk

n

+
∑

n�∈A

ωk(|x(In)|)
γk

n

≤
∑

n∈A

ωk(λn

λ′
n
)

γk
n

+
∑

n�∈A

ωk(2k)
γk

n

≤
∑

n∈A

ωk(λn

λ′
n
)

γk
n

+ ωk(2k)
∑

n�∈A

1
λ′

n

< +∞.

Hence, F (x) is of bounded Γk-variation and, therefore, it is also of bounded
Γ-variation.

Now we are going to prove that the superposition operator considered
above is actually continuous. We will use again Bernstein polynomials and
will keep the notation used in Theorem 9. More precisely, we will need one
more property of Bernstein polynomials which we will state below. But first
let us remind the important definition.
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Definition 6. (cf. [7],p. 40) The optimal modulus of continuity of a function
f : [−a, a] → R is a function ωf : [0, 2a] → R given by

ωf (δ) = sup
{|f(t) − f(s)| : t, s ∈ [−a, a] and |t − s| ≤ δ

}
, δ ≥ 0.

Proposition 2. (cf. [10]) If φa : [−a, a] → R is a continuous function with the
optimal modulus of continuity ωφa

, then ωBa
n(φa)(t) ≤ 4ωφa

(t) for t ≥ 0.

As an obvious consequence of the above proposition, we get

ωφa−Ba
n(φa)(t) ≤ 5ωφa

(t), for t ∈ [−a, a].

An easy observation (the proof will be omitted) is the following.

Proposition 3. ωφa−Ba
n(φa)(2a) → 0 as n → +∞.

The following theorem refers to the superposition operator acting from
the space ΛBV (I) to certain space ΓBV (I), which actually depends on the
generator f (as it is constructed in Theorem 11).

Theorem 12. If f : R → R is continuous, F is the autonomous superposition
operator, generated by f and Λ is a Waterman sequence, then there exists
such a Waterman sequence Γ that the autonomous superposition operator
F : ΛBV (I) → ΓBV (I) is continuous.

Proof. Let Γ and Γk (k ∈ N) be the Waterman sequences constructed in the
proof of Theorem 11. Hence, F (ΛBV (I)) ⊆ ΓBV (I) and we may focus on
the proof of the continuity of the superposition operator F .

Let us fix r > 0 and put a = c̃Λr. Let us define Fn : BΛBV (0, r) →
ΓBV (I) as the sequence of autonomous superposition operators, generated
by Bernstein polynomials Ba

n(φa), where φa = f |[−a,a]. Let us fix k > a. Since
ΓkBV (I) is a Banach algebra, we conclude that the superposition operator
Fn is continuous, for every n ∈ N. Now we are going to show that Fn(x)
converges to F (x), uniformly in view of x ∈ BΛBV (0, r), in the norm of the
space ΓkBV (I) (and hence in the norm of the space ΓBV (I)).

Let us take any x ∈ BΛBV (0, r) and estimate the norm ‖F (x) −
Fn(x)‖ΓkBV . Let us take any collection (Im)m∈N of nonoverlapping inter-
vals, contained in I. Let Λ′ be the Waterman sequence given as in the
Lemma 4; without loss of generality we may assume that λm

λ′
m

≤ 2a for every

m ∈ N. Let A = {m ∈ N : |x(Im)| ≤ λm

λ′
m

}. As above one can check that
∑

m �∈A
1

λ′
m

≤ ∑
m �∈A

|x(Im)|
λm

≤ ‖x‖ΛBV ≤ r. Hence, we get

∑

m∈N

|((φa − Ba
n(φa)) ◦ x)(Im)|

γk
m

≤
∑

m∈N

ωφa−Ba
n(φa)(|x(Im)|)

γk
m

=
∑

m∈A

ωφa−Ba
n(φa)(|x(Im)|)

γk
m

+
∑

m �∈A

ωφa−Ba
n(φa)(|x(Im)|)

γk
m

≤
∑

m∈N

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

+ ωφa−Ba
n(φa)(2a)

∑

m �∈A

1
λ′

m
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≤
∑

m∈N

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

+ rωφa−Ba
n(φa)(2a).

Now, let us concentrate on the sum

∑

m∈N

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

.

Fix ε > 0. Since the series
∑

m∈N

ωk( λm
λ′

m
)

γk
m

converges, we can find such m0 ∈ N

that

∑

m≥m0

5ωk(λm

λ′
m

)

γk
m

<
ε

3

Then also

∑

m≥m0

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

≤
∑

m≥m0

5ωk(λm

λ′
m

)

γk
m

<
ε

3
.

Now let us take such large n ∈ N that

ωφa−Ba
n(φa)(2a)

∑

m �∈A

1
λ′

m

<
ε

3
,

and

∑

m≤m0

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

≤ ωφa−Ba
n(φa)(2a)

∑

m≤m0

1
γk

m

<
ε

3
.

Now for n big enough we have

∑

m∈N

|((φa − Ba
n(φa)) ◦ x)(Im)|

γk
m

≤ rωφa−Ba
n(φa)(2a) +

∑

m≥m0

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

+
∑

m≤m0

ωφa−Ba
n(φa)(λm

λ′
m

)

γk
m

< ε.

which proves that Fn converges to F , as n → ∞, uniformly on the ball
BΛBV (0, r). It implies the continuity of the operator F .

5. Applications

As applications of our results from previous sections we are going to give some
theorems concerning the so-called ΛBV -solutions to some nonlinear integral
equations.
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5.1. Hammerstein integral equation

In this subsection we will be interested in the problem of the existence of
solutions of bounded Λ-variation to the following nonlinear Hammerstein
integral equation

x(t) := λ

∫ 1

0

k(t, s)f(x(s))ds, t ∈ I, (11)

where λ ∈ R. Let us make the following assumptions:
1 ◦ f : R → R is a continuously differentiable function which is sub-
linear, that is, limu→∞|f(u)|/|u| = 0;
2 ◦ the kernel k : I × I → R is such that:
(a) for every t ∈ I the function s 	→ k(t, s) is Lebesgue measurable;
(b) the function s 	→ k(0, s) is Lebesgue integrable;
(c) there exists such a Waterman sequence Λ that varΛ(k(·, s)) ≤ m(s)

for a. e. s ∈ I, where m : I → [0,+∞] is a Lebesgue integrable
function.

Remark 3. Let us note that if the function k satisfies assumptions 2 ◦ (a)–(c),
then for every t ∈ I, the function s 	→ k(t, s) is Lebesgue integrable on I.
Indeed

|k(t, s)| ≤ |k(0, s)| + |k(0, s) − k(t, s)| ≤ |k(0, s)| + λ1varΛ(k(·, s))
≤ λ1m(s) + |k(0, s)| for a.e. s ∈ I,

which confirms our claim.

Proposition 4. Let k : I × I → R satisfy 2 ◦(a) – (c). Then the operator K,
defined by the formula

Kx(t) =
∫ 1

0

k(t, s)x(s)ds t ∈ I, x ∈ ΛBV (I), (12)

maps the space ΛBV (I) into ΛBV (I) and is compact.

Proof. Let x ∈ ΛBV (I). Then, by Remark 3, we have
∣∣∣∣
∫ 1

0

k(t, s)x(s)ds

∣∣∣∣ ≤
∫ 1

0

|k(t, s)x(s)|ds ≤ ‖x‖∞ m1 ≤ c̃Λm1 ‖x‖ΛBV ,

where m1 =
∫ 1

0
(λ1m(s) + |k(0, s)|)ds. Hence, Kx(t) exists and is finite for

every t ∈ I. Moreover, for any partition π = {t0, t1, . . . , tn} of the interval I
and any permutation σ ∈ Sn we have

n∑

i=1

|Kx(ti) − Kx(ti−1)|
λσ(i)

≤
∫ 1

0

n∑

i=1

|(k(ti, s) − k(ti−1, s))x(s)|
λσ(i)

ds

≤
∫ 1

0

varΛ(k(·, s))|x(s)|ds

≤ ‖x‖∞

∫ 1

0

m(s)ds ≤ c̃Λm2 ‖x‖ΛBV ,
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where m2 =
∫ 1

0
m(s)ds. Since

‖Kx‖ΛBV ≤
∫ 1

0

|k(0, s)x(s)|ds + c̃Λm2 ‖x‖ΛBV

≤ c̃Λ

(∫ 1

0

|k(0, s)|ds + m2

)
‖x‖ΛBV = c ‖x‖ΛBV ,

where

c = c̃Λ

(∫ 1

0

|k(0, s)|ds + m2

)
,

we conclude that K is well defined and continuous.
Now we will show that K is compact. Let (xn)n∈N be a sequence of ele-

ments of BΛBV (0, 1). In view of Helly’s extraction theorem (cf. [11], Theorem
3.2), there exists a subsequence (xnk

)k∈N of (xn)n∈N, pointwise convergent to
some x ∈ BΛBV (0, 1). Let us set yk = xnk

− x for k ∈ N. We will show that
Kyk → 0 with respect do the ΛBV -norm. Given ε > 0 let k0 be such that

∫ 1

0

|k(0, s)yk(s)|ds ≤ ε

2
and

∫ 1

0

m(s)|yk(s)|ds ≤ ε

2
for k ≥ k0.

Let π and σ be as above. Then
n∑

i=1

|Ky(ti) − Ky(ti−1)|
λσ(i)

≤
∫ 1

0

n∑

i=1

|k(ti, s) − k(ti−1, s)|
λσ(i)

|yk(s)|ds

≤
∫ 1

0

m(s)|yk(s)|ds ≤ ε

2
,

and therefore varΛ(Kyk) ≤ ε
2 for k ≥ k0. Finally, we obtain

‖Kyk‖ΛBV ≤
∫ 1

0

|k(0, s)yk(s)|ds +
∫ 1

0

m(s)|yk(s)|ds ≤ ε

which ends the proof.

Since we have the completely continuous linear map we can apply the
Schauder fixed point theorem to get the following existence result.

Theorem 13. Let k : I×I → R and f : R → R satisfy 2 ◦ and 1 ◦, respectively.
Then for every λ ∈ R there exists a ΛBV -solution to equation (11).

Proof. If λ = 0 the claim is obvious. Without loss of generality we can assume
that λ = 1. Let us consider the operator G = K ◦ F : ΛBV (I) → ΛBV (I),
where the integral operator K : ΛBV (I) → ΛBV (I) is defined in (12) and
F : ΛBV → ΛBV is the autonomous superposition operator generated by
the function f . Due to Proposition 4, the operator K is continuous and due
to Theorem 9, the operator F is also continuous, so the G is continuous, too.
Moreover, it is completely continuous, because F maps bounded sets into
bounded ones as a consequence of f being a locally Lipschitz function.

Therefore, it is enough to find a closed ball BΛBV (0, a) ⊂ ΛBV (I) which
is invariant under the completely continuous map G. First, let us observe that
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for any ball BΛBV (0, a) and x ∈ BΛBV (0, a) there is ‖x‖∞ ≤ c̃Λa and

‖F (x)‖∞ ≤ sup
u∈[−c̃Λa,c̃Λa]

|f(u)|.

By assumption 1 ◦ (a) there exists R > 0 such that

sup
u∈[−c̃ΛR,c̃ΛR]

|f(u)|
(∫ 1

0

|k(0, s)|ds +
∫ 1

0

m(s)ds

)
≤ R.

Otherwise, there would exist a sequence (un)n∈N of real numbers for which
we would have

|f(un)| ·
(∫ 1

0

|k(0, s)|ds +
∫ 1

0

m(s)ds

)
> n and |un| ≤ c̃Λn.

The sequence (un)n∈N is not bounded, so there must exist an appropriate
subsequence (wn)n∈N, such that |wn| → +∞ and

|f(wn)|
|wn| ≥

(∫ 1

0

|k(0, s)|ds +
∫ 1

0

m(s)ds

)−1

c̃−1
Λ ,

which contradicts 1 ◦ (a). Therefore,

‖G(x)‖ΛBV = |G(x)(0)| + varΛ(G(x)) ≤
∫ 1

0

|k(0, s)||f(x(s))|ds

+
∫ 1

0

m(s)|f(x(s))|ds

≤ sup
u∈[−c̃ΛR,c̃ΛR]

|f(u)|
(∫ 1

0

|k(0, s)|ds +
∫ 1

0

m(s)ds

)
≤ R

for x ∈ BΛBV (0, R), which implies that the ball BΛBV (0, R) is invariant
under the mapping G. By the Schauder fixed point theorem, this implies
that there exists a fixed point of G, which completes the proof.

Let us focus on the continuity of the operator K which appears in
Proposition 4. In the paper [6] the authors gave the sufficient and necessary
conditions for the integral operator K : BV (I) → BV (I) of the form (12) to
be continuous (see [6], Theorem 4). It appears that similar conditions may
be stated for such integral operators K : BV (I) → ΛBV (I).

Notation. For a given function f ∈ BV (I), by vf we will denote the function
t → var(f, [0, t]), t ∈ I, where var(f, [0, t]) denotes the variation in the sense
Jordan of the function f over the interval [0, t]. Moreover, to avoid misun-
derstandings in the next theorem as well as in its proof, the Lebesgue integral
will be denoted by “(L)

∫
” while the Riemann–Stieltjes integral is denoted by

“(RS)
∫
”.

Theorem 14. The linear integral operator K, defined by (12), maps contin-
uously the space BV (I) into ΛBV (I) if and only if the following conditions
are satisfied:

(i) for every t ∈ I the function s 	→ k(t, s) is Lebesgue integrable on I,
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(ii) there exists a constant M > 0 such that sup
ξ∈I

varΛ

(
(L)

∫ ξ

0

k(·, s)ds

)
≤

M .

Proof. Suppose that the conditions (i) and (ii) hold. We will show that the
operator K maps BV (I) into ΛBV (I) and is continuous.

Let us note that by [6], Remark 5, the function Kx is well defined for
every x ∈ BV (I). Suppose now that I1, . . . , In is an arbitrary finite family
of nonoverlapping subintervals of I of the form Ii = [ai, bi]. Then, by [6],
Proposition 2 and the condition (ii), for every x ∈ BV (I), we get

n∑

i=1

∣∣Kx(Ii)
∣∣

λi
=

n∑

i=1

1
λi

∣∣∣∣(L)
∫ 1

0

[k(bi, s) − k(ai, s)]x(s)ds

∣∣∣∣

≤ |x(1)| ·
n∑

i=1

1
λi

∣∣∣∣(L)
∫ 1

0

[k(bi, s) − k(ai, s)]ds

∣∣∣∣

+ (RS)
∫ 1

0

n∑

i=1

1
λi

∣∣∣∣(L)
∫ ξ

0

[k(bi, s) − k(ai, s)]ds

∣∣∣∣dvx(ξ)

≤ M ‖x‖∞ + Mvx(1) ≤ M ‖x‖BV,

which implies that Kx ∈ ΛBV (I) and varΛ(Kx) ≤ 2M ‖x‖BV . Therefore,
‖Kx‖ΛBV ≤ (‖k(0, ·)‖L1 + 2M

) · ‖x‖BV for x ∈ BV (I). This shows that the
linear operator K is continuous.

Now, we shall show that the conditions (i) and (ii) are necessary. The
function x ≡ 1 is clearly of bounded Jordan variation, and hence the function

t 	→ (L)
∫ 1

0

k(t, s)ds

is of bounded Λ-variation. Thus, for every t ∈ I, the function s 	→ k(t, s)
is Lebesgue integrable on I. It remains to show the condition (ii). Since the
linear operator K is continuous, there exists a positive number M > 0 such
that ‖Kx‖ΛBV ≤ M ‖x‖BV for every x ∈ BV (I). Hence,

varΛ(Kχ[0,ξ]) ≤ ∥∥Kχ[0,ξ]

∥∥
ΛBV

≤ M
∥∥χ[0,ξ]

∥∥
BV

≤ 2M.

Therefore,

sup
ξ∈I

varΛ

(
(L)

∫ ξ

0

k(t, s)ds

)
= sup

ξ∈I
varΛ(Kχ[0,ξ]) ≤ 2M,

which ends the proof. �

5.2. Volterra–Hammerstein integral equation.

In this subsection we are going to focus not only on the existence of ΛBV -
solutions to the nonlinear Volterra–Hammerstein integral equation but we
would like to examine also the topological structure of such solution sets.
More precisely, let us consider the following nonlinear Volterra–Hammerstein
integral equation

x(t) = g(t) +
∫ t

0

k(t, s)f(s, x(s))ds, t ∈ I, (13)
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where

3◦ g ∈ C(I) ∩ ΛBV (I);
4◦ f : I × R → R satisfies the Carathéodory conditions, that is:
(a) for every u ∈ R the function t 	→ f(t, u) is Lebesgue measurable;
(b) for a.e. t ∈ I the function u 	→ f(t, u) is continuous;
(c) |f(t, u)| ≤ m1(t) for (t, u) ∈ I × R with m1 ∈ Lp(I), where p ∈

(1,+∞];
5◦ the kernel k : Δ → R, where Δ := {(t, s) ∈ I × I : 0 ≤ s ≤ t ≤ 1}, is
such that:
(a) for every t ∈ I the function s 	→ k(t, s) is Lebesgue measurable on

[0, t];
(b) |k(s, s)| + varΛ(k(·, s), [s, 1]) ≤ m2(s) for a.e s ∈ I with m2 ∈

Lq(I),where q−1 + p−1 = 1;
(c) for every ε > 0 there exists δ > 0 such that

∫ 1

0

|k(τ, s) − k(t, s)|m1(s)ds ≤ ε,

for all (τ, t) ∈ Δ such that 0 ≤ τ − t ≤ δ.

Remark 4. Let us note that if the kernel k satisfies the assumptions 5◦ (a)
and (b), then for every t ∈ I the function s 	→ k(t, s) belongs to Lq[0, t].
Indeed, given any t ∈ I, we have

|k(t, s)| ≤ λ1|k(s, s) − k(t, s)|
λ1

+ |k(s, s)| ≤ λ1varΛ(k(·, s), [s, 1]) + |k(s, s)|
≤ max(λ1, 1)m2(s),

for almost every s ∈ [0, t], which confirms our claim.

First, let us focus on the continuity of a certain linear Volterra integral
operator.

Lemma 5. Let p ∈ (1,+∞]. If the kernel k satisfies assumptions 5◦ (a) and
(b), then the linear Volterra integral operator K defined by

Kx(t) =
∫ t

0

k(t, s)x(s)ds, t ∈ I, (14)

maps the space Lp(I) into ΛBV (I) and is continuous.

Proof. Let x ∈ Lp(I). First let us observe that the integral
∫ t

0

k(t, s)x(s)ds

exists and is finite for every t ∈ I (cf. Remark 4), hence the operator K is
well defined. Given an arbitrary partition 0 = t1 ≤ t2 ≤ . . . ≤ tn = 1 and
σ ∈ Sn we have
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n∑

i=1

|Kx(ti) − Kx(ti−1)|
λσ(i)

=
n∑

i=1

| ∫ ti

0
k(ti, s)x(s)ds − ∫ ti−1

0
k(ti−1, s)x(s)ds|

λσ(i)

≤
∫ 1

0

n∑

i=1

|k̃(ti, s) − k̃(ti−1, s)|
λσ(i)

|x(s)|ds,

where

k̃(t, s) =

{
k(t, s), if (t, s) ∈ Δ,

0, if (t, s) /∈ Δ.
(15)

Since
n∑

i=1

|k̃(ti, s) − k̃(ti−1, s)|
λσ(i)

≤ |k(s, s)|
λ1

+ varΛ(k(·, s), [s, 1])

≤ max(
1
λ1

, 1)m2(s) for a.e. s ∈ I,

we infer that
n∑

i=1

|Kx(ti) − Kx(ti−1)|
λσ(i)

≤ max(
1
λ1

, 1)
∫ 1

0

m2(s)|x(s)|ds,

which proves that ‖Kx‖ΛBV ≤ max( 1
λ1

, 1) ‖m2‖Lq · ‖x‖Lp , which means that
K maps the space Lp(I) into ΛBV (I) and is continuous. �

We will also need the following.

Lemma 6. Let p ∈ (1,+∞]. Suppose the assumptions 5◦ (a) and (b) hold. If a
bounded sequence (xn)n∈N, xn ∈ Lp(I) for n ∈ N converges almost everywhere
(or in measure) to a function x ∈ Lp(I), then the sequence (Kxn)n∈N, where
K is given by (14), converges to Kx with respect to the ΛBV -norm.

Proof. First let us note that Kx, Kxn ∈ ΛBV (I), by Lemma 5. Let us take
an arbitrary partition 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1 of the interval I and a
permutation σ ∈ Sn. Then for the function k̃ : I × I → R, defined by (15),
we have

n∑

i=1

|Kx(ti) − Kxn(ti) − Kx(ti−1) + Kxn(ti−1))|
λσ(i)

≤
∫ 1

0

n∑

i=1

|k̃(ti, s) − k̃(ti−1, s)|
λσ(i)

|xn(s) − x(s)|ds.

Hence,

varΛ(Kxn − Kx) ≤ max(
1
λ1

, 1)
∫ 1

0

m2(s)|xn(s) − x(s)|ds.

Therefore, in view of the assumptions and Vitali’s Convergence Theorem we
get ‖Kxn − Kx‖ΛBV → 0, as n → +∞. �

Now we are going to present the Aronszajn-type result for ΛBV -
solutions to the Volterra–Hammerstein equation in ΛBV (I). We are going
to apply the certain Vidossich-type result. In what follows, assume that
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K is a bounded and convex subset of a normed space, and E is a Banach
space. Denote by C(K, E) the space of all bounded and continuous functions
x : K → E endowed with the supremum norm.

Theorem 15. ([17],Theorem 2) Let F : C(K, E) → C(K, E) be a continuous
mapping satisfying the following conditions:

(i) the set F (C(K, E)) is equiuniformly continuous;
(ii) there exists t0 ∈ K and x0 ∈ E such that F (x)(t0) = x0 for every

x ∈ C(K, E);
(iii) for every ε > 0 and every x, y ∈ C(K, E) the following implication holds

x|Kε
= y|Kε

⇒ F (x)|Kε
= F (y)|Kε

,

where Kε = {t ∈ K : ‖t − t0‖ ≤ ε};
(iv) every sequence (xn)n∈N in C(K, E) such that limn→+∞(xn−F (xn)) = 0

has a limit point.

Then the set of fixed points of the mapping F is a compact Rδ, that is,
it is homeomorphic to the intersection of a decreasing sequence of compact
absolute retracts.

Theorem 16. If the assumptions 3◦ - 5◦ hold, then the set T of all continu-
ous solutions of bounded Λ-variation to the nonlinear Volterra–Hammerstein
integral equation (13) is a compact Rδ in the Banach space C(I) ∩ ΛBV (I),
endowed with the ΛBV -norm.

Proof. The proof falls into two parts. First, we shall show that the mapping

F (x)(t) = g(t) +
∫ t

0

k(t, s)f(s, x(s))ds, t ∈ I,

defined for x ∈ C(I) satisfies the assumptions of Theorem 15. Let x ∈ C(I)
and ε > 0. In view of the assumptions, there exists δ > 0 such that:

• |g(t) − g(τ)| ≤ ε
3 for t, τ ∈ I, |t − τ | < δ;

• ∫ t

0
|k(τ, s) − k(t, s)|m1(s)ds ≤ ε

3 for (τ, t) ∈ Δ, |t − τ | ≤ δ;
• max{1, λ1}

∫
A

m1(s)m2(s)ds ≤ ε
3 for any Lebesgue measurable set A ⊂

I such that μ(A) ≤ δ.

Therefore, for t, τ ∈ I such that 0 ≤ τ − t ≤ δ, we have

|F (x)(t) − F (x)(τ)| ≤ |g(t) − g(τ)| +
∣∣∣∣
∫ t

0
k(t, s)f(s, x(s))ds −

∫ τ

0
k(τ, s)f(s, x(s))ds

∣∣∣∣

≤ |g(t) − g(τ)| +
∫ t

0
|k(t, s) − k(τ, s)||f(s, x(s))|ds +

∫ τ

t

|k(τ, s)||f(s, x(s))|ds

≤ |g(t) − g(τ)| +
∫ t

0
|k(t, s) − k(τ, s)|m1(s)ds +max{1, λ1}

∫ τ

t

m1(s)m2(s)ds

≤ ε

3
+

ε

3
+

ε

3
= ε.

This shows that F (x) ∈ C(I). Furthermore, let us observe that the number
δ is independent of x, which implies, that the set F (C(I)) is equiuniformly
continuous.
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The continuity of the mapping F is a consequence of Lemma 6 and the
fact that if a sequence (xn)n∈N is uniformly convergent to x ∈ C(I), then the
sequence (f(·, xn(·)))n∈N, bounded in Lp(I), converges almost everywhere to
the function t 	→ f(t, x(t)), t ∈ I.

The assumptions (ii) and (iii) of Theorem 15 are obviously satisfied for
t0 = 0 and x0 = g(0).

Hence, it suffices to prove that the mapping F satisfies the Palais–Smale
condition (iv). Let (xn)n∈N be a sequence in C(I) such that limn→+∞(xn −
F (xn)) = 0 with respect to the supremum norm. In view of the Assumption
5.2 and Lemma 5 we get

varΛ(F (x)) ≤ ‖g‖ΛBV + max(
1
λ1

, 1) ‖m1‖Lp ‖m2‖Lq , for x ∈ C(I). (16)

Therefore, by Helly’s Extraction Theorem, there exists a subsequence
(F (xnk

))k∈N of (F (xn))n∈N pointwise convergent to a function y ∈ ΛBV (I).
Thus, (xnk

)k∈N is also pointwise convergent to y. Hence, for almost all
t ∈ I, we have f(t, xnk

(t)) → f(t, y(t)) as k → +∞, and the sequence
(f(·, xnk

(·)))k∈N is bounded in Lp(I). This, by Lemma 6, implies that
(F (xnk

))k∈N converges to F (y) = y with respect to the ΛBV -norm, and
so, since the supremum norm is weaker than the ΛBV -norm, the sequence
(xn)n∈N has a limit point in C(I).

All the assumptions of Theorem 15 are satisfied and, therefore, the
set S of all continuous solutions of the equation (13) is a compact Rδ in
C(I). To end the proof, it suffices to show that S endowed with the metric
d∞ induced by the supremum norm is homeomorphic to the set T of all
continuous solutions of (13) of bounded Λ-variation, endowed with the metric
dΛBV induced by the ΛBV -norm. Note that S = T as sets, and since the
ΛBV -norm is stronger than the supremum norm, we get that the identity
map id : S → T is continuous. Now, we shall show that id : T → S is also
continuous. Let us take a sequence (xn)n∈N in S convergent to x0 ∈ S.
Reasoning as above, we infer that the sequence (F (xn)n∈N) converges to
F (x0) with respect to the metric dΛBV induced by the norm ‖·‖ΛBV . But
F (xn) = xn for all n ∈ N ∪ {0}, and hence ‖xn − x0‖ΛBV → 0 as n → +∞.
This shows that the identity map constitutes a homeomorphism between
the metric spaces T and S and, in consequence, proves that the set of all
continuous solutions of (13) of bounded Λ-variation is a compact Rδ set in
C(I) ∩ ΛBV (I) with respect to the ΛBV -norm.

6. Compactness

Let us start with some notation. Let ω : [0,+∞) → [0,+∞) be a continuous
strictly increasing function such that ω(0) = 0. By Hω(I) we will denote the
vector space of real-valued functions defined on I which satisfy the following
condition:
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|x(t) − x(s)| ≤ kω(|t − s|)fort, s ∈ I,where k ≥ 0.

In the paper [6] the authors gave a sufficient condition for a subset
of ΛBV (I) space to be relatively compact. More precisely, let ΛBV ω(I)
denote the Banach space Hω(I) ∩ ΛBV (I), endowed with the norm⎪⎪x

⎪⎪
Λ =

max{‖x‖ω , ‖x‖Λ}, where

‖x‖ω = inf
{
k ≥ 0 : |x(t) − x(s)| ≤ kω(|t − s|) for t, s ∈ I

}
.

Proposition 5. (cf. [6], Proposition 5) Let Λ = (λn)n∈N and Γ = (γn)n∈N be
two Waterman sequences such that Λ < Γ. Then the space ΛBV ω(I) can be
compactly embedded into the space ΓBV (I).

It is interesting to know if it is possible, roughly speaking, to reverse
Proposition 5, that is, if it is possible to prove that for each compact subset
K of ΛBV (I) there exists such Waterman sequence Γ = (γn)n∈N, that Γ < Λ,
K ⊂ ΓBV (I) and K is bounded in the norm ‖ · ‖ΓBV . Below we are going to
show that in general the answer is negative, but for the wide range of Water-
man sequences the answer is positive. First, let us recall two definitions. For
given Waterman sequence Λ, let us denote by Λ(m) the Waterman sequence
constructed by deleting the first m − 1 terms of Λ.

Definition 7. (cf. [16]) A function x ∈ ΛBV (I) is said to be continuous in
Λ-variation, if limm→∞ varΛ(m)(x) = 0.

Definition 8. (cf. [16]) If Λ is a Waterman sequence, then:

SΛ = lim sup
n→∞

∑2n
i=1

1
λi∑n

i=1
1
λi

is called the Shao–Sablin index of Λ.

The set of functions which are continuous in Λ-variation will be denoted
by ΛBVc(I) while its subset consisting of all the functions which are also
continuous will be denoted by CΛBVc(I). Let us recall that this concept
was introduced by Waterman in [20] to provide a sufficient condition for the
so-called (C, β)-summability of the Fourier series of a function. Waterman
conjectured in [21] that not every function of bounded Λ-variation is contin-
uous in Λ-variation. An example of such function was given in the paper [8].
Moreover, Prus-Wísniowski in [16] described the relation between the Shao–
Sablin index of a Waterman sequence Λ and the existence of functions that
are not continuous in Λ-variation.

Theorem 17. (cf. [16]) For every proper Waterman sequence Λ, the following
statements are equivalent:

(i) the space CΛBV (I) is separable,
(ii) CΛBVc(I) = CΛBV (I),
(iii) ΛBVc(I) = ΛBV (I),
(iv) SΛ < 2.

Surprisingly, the concept of a function continuous in Λ-variation is
closely related to the compactness in the space ΛBV (I). We are going to
begin with the following.
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Lemma 7. For every proper Waterman sequence Λ and K ⊆ ΛBV (I), the
following conditions are equivalent:

(i) there exists such Γ < Λ that K ⊆ ΓBV (I) and K is bounded in ΓBV -
norm,

(ii) K is bounded and the following condition holds:

∀ε>0∃N∈N∀n≥N∀x∈KvarΛ(n)(x) < ε. (17)

Proof. Let us start with the implication (ii) ⇒ (i) There exists such M > 0
that ‖x‖ΛBV < 2M for any x ∈ K. By (17), there exists a strongly increasing
sequence (Nk)k∈N of positive integers such that N1 = 1 and varΛ(Nk)(x) < M

2k

for any k ∈ N and x ∈ K. Let us define the sequence Γ in the following way:
1
γ1

=
1
λ1

,

1
γk+1

= min
{

1
γk

,m · 1
λk+1

}
,

where m is a positive integer such that Nm ≤ k < Nm+1.
The sequence Γ < Λ is monotone directly by its definition, and 1

γk
≥ 1

λk

and, therefore, it is a Waterman sequence. Let (In)n∈N be any sequence of
nonoverlapping intervals. Then, for any x ∈ K we have

∞∑

n=1

|x(In)|
γn

=
∞∑

k=1

Nk+1−1∑

n=Nk

|x(In)|
γn

≤
∞∑

k=1

Nk+1−1∑

n=Nk

k · |x(In)|
λn

≤
∞∑

k=1

k · varΛNk
(x) <

∞∑

k=1

k · M

2k
< +∞.

This implies that x is of bounded Γ-variation and, moreover, that

‖x‖ΓBV ≤ |x(0)| +
∞∑

k=1

k · M

2k
≤ 2M +

∞∑

k=1

k · M

2k
< +∞

for any x ∈ K, that is, that K is bounded in ΓBV -norm which ends the first
part of the proof.

Now let us proceed to the proof of the implication (i) ⇒ (ii) and let us
assume that there exists Γ < Λ such that K ⊆ ΓBV (I) is bounded in ΓBV -
norm and that (17) does not hold. Then there exists such δ > 0 and a sequence
(Nn)n∈N, Nn → +∞ and functions xn ∈ K such that varΛ(Nn)(xn) > δ. Take
any M > 0. There exists N ∈ N such that

1
γn

≥ M
1
λn

,

for n ≥ N . We may also assume that Nn ≥ N . Take xn ∈ K and a sequence
of nonoverlapping intervals (Ik)k∈N, (Ik) ⊂ I for every k ∈ N, such that∑∞

k=Nn

|xn(Ik)|
λk

≥ δ. Then, we get

‖xn‖ΓBV ≥
∞∑

k=1

|x(Ik)|
γk

≥
∞∑

k=Nn

|x(Ik)|
γk

≥
∞∑

k=Nn

M · |x(Ik)|
λk

≥ Mδ
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and, therefore, K is not bounded in ΓBV -norm, which gives a contradiction.
�

Corollary 1. If x ∈ ΛBV , then the following conditions are equivalent
(i) there exists a Waterman sequence Γ < Λ such that x ∈ ΓBV (I),
(ii) x is continuous in Λ-variation.

Remark 5. As we mentioned above, if SΛ = 2, then there exists such a con-
tinuous function x0 ∈ ΛBV (I) that is not continuous in Λ-variation and thus
it does not belong to any ΓBV (I) � ΛBV (I). The set {x0} is compact but,
at the same time, there does not exist a space ΓBV (I) where Γ < Λ and
x0 ∈ ΓBV (I). This shows that if SΛ = 2, then not every compact subset of
ΛBV (I) is a bounded subset of some proper subspace ΓBV (I) � ΛBV (I).
As one can check, there exist proper Waterman sequences having the Shao–
Sablin index equal to 2. As an example of such a sequence one can consider
the sequence (ln(n + 1))n∈N.

Theorem 18. If K ⊂ ΛBV (I) is compact and K ⊆ ΛBVc(I), then there exists
a Waterman sequence Γ < Λ such that K ⊆ ΓBV (I) and K is bounded in
ΓBV (I).

Proof. Fix ε > 0. Since K is compact, there exist x1, x2, . . . , xk ∈ K such
that

K ⊆
k⋃

n=1

BΛBV

(
xn,

ε

2

)
.

Since x1, . . . , xk ∈ ΛBVc(I), there exists N ∈ N such that varΛ(n)(xm) < ε
2

for every n ≥ N and m = 1, 2, . . . k. Take any x ∈ K. There is such m that
x ∈ B(xm, ε

2 ). Then for n ≥ N we have

varΛ(n)(x) = varΛ(n)(x − xm + xm) ≤ varΛ(n)(x − xm) + varΛ(n)(xm)

≤ varΛ(n)(x − xm) + varΛ(n)(xm) < ε.

We have just proved (17) so by Lemma 7 there exists such Γ < Λ that
K ⊂ ΓBV (I) and K is bounded in ‖·‖ΓBV . �

Corollary 2. If SΛ < 2 and K ⊆ ΛBV (I) is compact, then there exists a
Waterman sequence Γ < Λ such that K ⊆ ΓBV (I).

Proof. By Theorem 17, if SΛ < 2, then ΛBV (I) = ΛBVc(I). �

Now we are going to consider σ-compact subsets of the space ΛBV (I).
Denote Γk = (γk

n)n∈N for k ∈ N, Γ = (γn)n∈N and Λ = (λn)n∈N. We will
start with the slight modification of the Lemma 2.

Lemma 8. If Λ is a Waterman sequence, Γk < Λ are Waterman sequences
for every k ∈ N and

λn ≥ γk+1
n ≥ γk

n (18)
for n, k ∈ N, then there exists a Waterman sequence Γ < Λ such that
ΓkBV (I) ⊆ ΓBV (I) for every k ∈ N.
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Proof. There exists a strongly increasing sequence (Nk)k∈N of positive inte-
gers such that N1 = 1 and

λn ≥ k · γk
n (19)

for every n ≥ Nk, k ∈ N.
Put γn = γk

n for Nk ≤ n < Nk+1 and k ∈ N. Then
(i) Γ = (γn)n∈N is monotone, by (18) and the monotonicity of Γk for k ∈ N,
(ii)

∑∞
n=1

1
γn

≥ ∑∞
n=1

1
λn

= +∞, by (18),

which implies that Γ is a Waterman sequence. Moreover, (19) implies that
for an arbitrary k ∈ N and n ∈ N such that Nk ≤ n < Nk+1:

λn

γn
=

λn

γk
n

≥ k,

so Γ < Λ. Finally, by the definition of Γ and (18), we get γn ≥ γk
n for every

n ≥ Nk, k ∈ N, so ΓkBV (I) ⊆ ΓBV (I) for all k ∈ N.

Lemma 9. If Γ1,Γ2 < Λ are Waterman sequences, then there exists a Water-
man sequence Γ < Λ such that γi

n ≤ γn for every n ∈ N (i = 1, 2).

Proof. We may assume that γ1
n, γ2

n ≤ λn for every n ∈ N, since Γ1 < Λ, Γ2 <
Λ. Let γn = max{γ1

n, γ2
n} for n ∈ N. Then Γ is monotone and

∑∞
n=1

1
γn

≥∑∞
n=1

1
λn

= +∞, so Γ is a Waterman sequence. Obviously, Γ < Λ. �

Theorem 19. If K is σ-compact and K ⊆ ΛBVc(I), then there exists Γ < Λ
such that K ⊆ ΓBV (I).

Proof. Let K =
⋃

n∈N
Kn, where Kn is compact for every positive inte-

ger n. By Theorem 18, for every n ∈ N there exists a Waterman sequence
Λn < Λ such that Kn ⊆ ΛnBV (I). We shall define a sequence (Γk)k of
Waterman sequences, fulfilling the assumptions of the Lemma 8 and such
that ΛkBV (I) ⊆ ΓkBV (I) for k ∈ N. Let Γ1 = Λ1. Assume that Γk is a
Waterman sequence such that Γk < Λ. Applying Lemma 9 to the sequences
Λk+1,Γk < Λ we obtain a Waterman sequence Γk+1, such that γk

n ≤ γk+1
n

and λk+1
n ≤ γk+1

n for every n ∈ N. Moreover, Λk+1BV (I) ⊆ Γk+1BV (I) for
every k ∈ N ∪ {0}. This completes the construction.

Finally, applying Lemma 8 to the sequence (Γk)k∈N we get the desired
Waterman sequence Γ. �
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Góra 1989, , 33–39 (1989)

[18] Waterman, D.: On convergence of Fourier series of functions of generalized
bounded variation. Studia Math. 44, 107–117 (1972)

[19] Waterman, D.: On Λ-bounded variation. Studia Math. 57, 33–45 (1976)

[20] Waterman, D.: On the summability of Fourier series of functions of Λ-bounded
variation. Studia Math. 55, 97–109 (1976)

[21] Waterman, D.: Bounded variation and Fourier series. Real Anal. Exchange 3,
61–85 (1977)



2818 D. Bugajewski et al. JFPTA

Dariusz Bugajewski and Jȩdrzej Sadowski
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