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Abstract. We prove a fixed point theorem for nonlinear operators, act-
ing on some function spaces (of set-valued maps), which satisfy suitable
inclusions. We also show some applications of it in the Ulam type sta-
bility.
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1. Introduction

The question when we can replace an approximate solution to an equation by
an exact solution to it (or conversely) and what error we thus commit seems
to be very natural. Some convenient tools to study such issues are provided
by the theory of Ulam’s (often also called the Hyers–Ulam) type stability.
For some updated information and further references concerning the Ulam
stability, we refer to [1,4,5]. Let us only mention that the investigation of
that problem started with a question raised by Ulam in 1940 and an answer
to it given by Hyers in [3].

It has been noticed in numerous papers that there are strict connections
between some fixed point theorems and the results concerning the Ulam sta-
bility of various (differential, difference, functional, and integral) equations;
for a suitable survey we refer to [2]. In this paper we continue those inves-
tigations by proving a fixed point result for a class of nonlinear operators
acting on some spaces of set-valued mappings and showing several of its con-
sequences.

Through this paper, we assume that K is a nonempty set and (Y, d)
is a complete metric space. We denote by n(Y ) the family of all nonempty
subsets of Y , by bd(Y ) the family of all nonempty and bounded subsets of
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Y , and by bcl(Y ) the family of all closed sets from bd(Y ). Moreover, h is the
Hausdorff distance induced by the metric in Y and given by

h(A,B) := max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}

, A,B ∈ n(Y ).

It is well known that h is a metric if restricted to bcl(Y ).
The number (possibly also ∞)

δ(A) = sup{d(x, y) : x, y ∈ A}
is said to be the diameter of A ∈ n(Y ). For F : K → n(Y ) and g : K → Y ,
we denote by cl F and ĝ the multifunctions defined by

(cl F )(x) = clF (x), ĝ(x) := {g(x)}, x ∈ K.

We write a0(x) = x for x ∈ K and an+1 = an ◦ a for a : K → K, n ∈ N0 (N0

stands for the set of nonnegative integers).
We present a theorem, concerning fixed points of some operators acting

on set-valued functions, and several of its consequences. To do this, we need
to introduce some notations. Namely, given functions a, b ∈ R

K (as usually,
BA denotes the family of all functions mapping a set A �= ∅ into a set B �= ∅)
and F,G ∈ n(Y )K , we write a ≤ b provided

a(x) ≤ b(x), x ∈ K,

and F ⊂ G provided

F (x) ⊂ G(x), x ∈ K;

moreover, we define F ∪G ∈ n(Y )K by (F ∪G)(x) := F (x)∪G(x) for x ∈ K.
We say that Λ: R+

K → R+
K (where R+ := [0,+∞)) is non-decreasing

if

Λa ≤ Λb, a, b ∈ R+
K , a ≤ b.

We always assume the Tichonoff topology (of pointwise convergence) in
bcl(Y )K , with the Hausdorff metric in bcl(Y ).

We write (
lim

n→∞ Hn

)
(x) := lim

n→∞ Hn(x), x ∈ K,

for each sequence (Hn)n∈N in bcl(Y )K that is convergent in bcl(Y )K . Next,
an operator α : n(Y )K → n(Y )K is i.p. (inclusion preserving) if

αF ⊂ αG, F,G ∈ n(Y )K , F ⊂ G;

α is l.p. (limit preserving) if

α
(

lim
n→∞ cl Hn

)
⊂ lim

n→∞ cl (αHn) (1)

for each sequence (Hn)n∈N in bd(Y )K , such that the sequences (cl Hn)n∈N

and (cl (αHn))n∈N are convergent in bcl(Y )K .
We also need the following hypothesis for operators α : bd(Y )K →

bd(Y )K .
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(H) αf̂ is single valued for each f ∈ Y K and

lim
n→∞ cl (αHn) ⊂ cl α

(
lim
n→∞ cl Hn

)

for each sequence (Hn)n∈N ⊂ bd(Y )K , such that the sequences
(cl Hn)n∈N and (cl (αHn))n∈N are convergent in bcl(Y )K .

Clearly, (H) is somewhat complementary to (1).
Finally, δ̃ : bd(Y )K → R+

K is given by the formula

δ̃F (x) = δ(F (x)), F ∈ bd(Y )K , x ∈ K,

and, for every t ∈ R+ and a ∈ R
K
+ , we define the mapping ta ∈ R

K
+ by

(ta)(x) := ta(x) for x ∈ K.

2. Main results
In the sequel α : bd(Y )K → bd(Y )K , G : bd(Y )K → bd(Y )K and Λ: RK

+ → R
K
+

are given. We consider functions F ∈ bd(Y )K that satisfy the equation:

αF = F

G–approximately, i.e., such that

αF ∪ F ⊂ GF. (2)

We use the following contraction condition on α:

δ̃(αH) ≤ Λ(δ̃H), H ∈ bd(Y )K . (3)

Now, we are in a position to present the main result of this paper.

Theorem 1. Assume that Λ is non-decreasing, α is i.p. and satisfies (3), F ∈
bd(Y )K , G : bd(Y )K → bd(Y )K , (2) holds, and

κ(x) =
∞∑

n=0

Λn(δ̃(GF ))(x) < ∞, x ∈ K. (4)

Suppose that α is l.p. or (H) is valid. Then, there exists a function f : K → Y ,
such that f̂ is a fixed point of the operator α (i.e., αf̂ = f̂) and

h
(
f̂(x), F (x)

) ≤ κ(x), x ∈ K.

Moreover, if G ∈ bd(Y )K satisfies the conditions

G ⊂ αG,

h
(
G(x), F (x)

) ≤ μ(x), x ∈ K,

with some μ : K → R+ such that

lim inf
n→∞ Λn(κ + 2μ)(x) = 0, x ∈ K, (5)

then G = f̂ .



2444 J. Brzdęk and M. Piszczek JFPTA

Proof. Fix x ∈ K. Since α is i.p., by (2), we get

αn+1F (x) ⊂ αn(GF )(x), αnF (x) ⊂ αn(GF )(x)

for every n ∈ N0 (nonnegative integers). Hence

h(αn+1F (x), αnF (x)) ≤ δ̃(αn(GF ))(x)

≤ Λn(δ̃(GF ))(x), n ∈ N0.

Therefore, for k ∈ N, n ∈ N0, we have

h(αn+kF (x), αnF (x)) ≤
k−1∑
i=0

h(αn+i+1F (x), αn+iF (x))

≤
k−1∑
i=0

Λn+i(δ̃(GF ))(x) =
n+k−1∑
i=n

Λi(δ̃(GF ))(x). (6)

Furthermore, by (4), we get

lim
n→∞

n+k−1∑
i=n

Λi(δ̃(GF ))(x) = 0, k ∈ N.

Moreover,

δ̃(cl αnF (x)) = δ̃(αnF (x)), (7)

whence (cl αnF (x))n∈N0 is a Cauchy sequence of closed and bounded sets
and, as the space (bcl(Y ), h) is complete, there exists the limit

ρ(x) := lim
n→∞ cl αnF (x) ∈ bcl(Y ).

Furthermore, by (3) and (7), we have

δ̃(cl αnF )(x) ≤ Λn(δ̃F )(x)

and (Λn(δ̃F )(x))n∈N0 is convergent to 0 as n → ∞. Therefore, the set ρ(x)
has exactly one element for each x ∈ K and we denote that element by f(x).

If α is l.p., it is clear that

αf̂(x) = α
(

lim
n→∞ cl αnF

)
(x) ⊂ lim

n→∞ cl αn+1F (x) = {f(x)}.

Thus, αf̂ = f̂ .
If (H) holds, then

{f(x)} = lim
n→∞ cl αn+1F (x)

⊂ cl α
(

lim
n→∞ cl αnF

)
(x) = cl αf̂(x) = αf̂(x),

whence again, αf̂ = f̂ . Next, by (6), we have

h
(
cl αnF (x), F (x)

)
= h

(
αnF (x), F (x)

) ≤
n−1∑
i=0

Λi
(
δ̃(GF )

)
(x)

for n ∈ N, and consequently, with n → ∞, we obtain h(f̂(x), F (x)) ≤ κ(x).
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It remains to show the statement on the uniqueness of f̂ . Therefore, fix
G ∈ bd(Y )K and μ ∈ R

K
+ , such that (5) holds, G ⊂ αG, and h(G(x), F (x)) ≤

μ(x) for x ∈ K. Define the multifunction BF : K → n(Y ) by

BF (x) := {y ∈ Y : d(y, F (x)) ≤ μ(x)}, x ∈ K.

Then, it is easily seen that F,G ⊂ BF , and consequently

αnF, αnG ⊂ αnBF , n ∈ N.

Next, for each n ∈ N, we have G ⊂ αnG, whence

h(f̂(x), G(x)) ≤ h(f̂(x), αnG(x))

≤ h(f̂(x), αnF (x)) + h(αnF (x), αnG(x))

≤ h(f̂(x), cl αnF (x)) + δ̃(αnBF )(x)

≤ h(f̂(x), cl αnF (x)) + Λn(δ̃BF )(x), x ∈ K.

Note that for every x ∈ K, y, z ∈ BF (x) and w1, w2 ∈ F (x), we have

d(y, z) ≤ d(y, w1) + d(w1, w2) + d(w2, z)

≤ d(y, w1) + δ(F (x)) + d(w2, z).

This means that δ(BF (x)) ≤ κ(x) + 2μ(x) for each x ∈ K. Therefore, we get

h(f̂(x), G(x)) ≤ h(f̂(x), cl αnF (x)) + Λn(κ + 2μ)(x), x ∈ K.

This completes the proof in view of (5). �

3. Some consequences
The next simple theorems show some direct applications of Theorem 1; they
correspond to the results on stability of functional equations (for the set-
valued mappings) in [6–10].

Theorem 2. Let F,G : K → bd(Y ), Ψ: Y → Y , ξ : K → K, λ ∈ R+,

κ(x) :=
∞∑

n=0

λnδ(F (ξn(x)) ∪ G(ξn(x))) < ∞, x ∈ K, (8)

d(Ψ(x),Ψ(y)) ≤ λd(x, y), x, y ∈ Y, (9)

Ψ(F (ξ(x))) ⊂ F (x) ∪ G(x), x ∈ K. (10)
Then, there exists a unique function f : K → Y , such that Ψ ◦ f ◦ ξ = f and

h(f̂(x), F (x)) ≤ κ(x), x ∈ K.

Proof. Define α : bd(Y )K → bd(Y )K by

αH(x) := Ψ(H(ξ(x))), H ∈ bd(Y )K .

Then, it is easily seen that it is i.p. Next, let (Hn)n∈N be a sequence in bd(Y )K ,
such that there exist HL := limn→∞ cl Hn ∈ bcl(Y )K and limn→∞ cl (αHn) ∈
bcl(Y )K . Clearly, on account of (9),
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h(cl (αHL(x)), cl (αHn(x))) = h(αHL(x), αHn(x))

= h(Ψ(HL(ξ(x))),Ψ(Hn(ξ(x))))

≤ λh(HL(ξ(x)),Hn(ξ(x)))

= λh(HL(ξ(x)), cl Hn(ξ(x)))

for every x ∈ K and n ∈ N, which implies that

cl (αHL(x)) = lim
n→∞ cl (αHn(x)).

Consequently α is l.p. Let Λ: RK
+ → R

K
+ be given by

Λa(x) := λa(ξ(x)), a ∈ R
K
+ , x ∈ K.

Then, it is non-decreasing and (3) holds. Define G : bd(Y )K → bd(Y )K by

GH(x) := H(x) ∪ G(x), x ∈ K, H ∈ bd(Y )K .

Then, in view of (10), (2) is valid, too. Hence, according to Theorem 1, there
exists a function f : K → Y , such that f̂ is a fixed point of the operator α
(i.e., Ψ ◦ f ◦ ξ = f) and

h
(
f̂(x), F (x)

) ≤ κ(x), x ∈ K.

Moreover, by (8)

lim
n→∞ λnκ(ξn(x)) = 0, x ∈ K,

thus (5) holds with μ = κ, and consequently, such f must be unique. �

Theorem 3. Assume that (Y, ·) is a group with the neutral element e and
d is invariant (i.e., d(xz, yz) = d(x, y) = d(zx, zy) for x, y, z ∈ Y ). Let
F,G : K → bd(Y ), e ∈ G(x) for x ∈ K, Ψ: Y → Y , ξ : K → K, λ ∈ R+, (9)
holds,

γ(x) :=
∞∑

n=0

λnδ(G(ξn(x))) < ∞, x ∈ K, (11)

ν(x) :=
∞∑

n=0

λnδ(F (ξn(x))) < ∞, x ∈ K, (12)

Ψ(F (ξ(x))) ⊂ F (x)G(x), x ∈ K, (13)
where AB := {ab : a ∈ A, b ∈ B} for nonempty A,B ⊂ Y . Then, there
exists a unique function f : K → Y , such that Ψ ◦ f ◦ ξ = f and

h(f̂(x), F (x)) ≤ ν(x) + γ(x), x ∈ K. (14)

Proof. It is sufficient to argue analogously as in the proof of Theorem 2 with
function G : bd(Y )K → bd(Y )K given by

GH(x) := H(x)G(x), x ∈ K, H ∈ bd(Y )K .

Then, in view of (13), (2) is valid and, according to Theorem 1, there exists
a function f : K → Y , such that f̂ is a fixed point of α and

h
(
f̂(x), F (x)

) ≤ κ(x) :=
∞∑

n=0

Λn(δ̃(GF ))(x), x ∈ K.
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Since

Λn(δ̃(GF ))(x) ≤ λnδ
(
F (ξn(x)) + G(ξn(x))

)
, x ∈ K, n ∈ N,

and

δ(F (x)G(x)) ≤ δ(F (x)) + δ(G(x)), x ∈ K,

we get (14). Furthermore, since κ(x) ≤ μ(x) := ν(x) + γ(x) for x ∈ K, (11)
and (12) imply that

lim
n→∞ 2λn(μ(ξn(x)) + κ(ξn(x))) = 0, x ∈ K.

Therefore, (5) is valid whence f is unique in view of Theorem 1. �

Clearly, in the particular case where λ ∈ (0, 1) and

M := sup
x∈K

δ(F (x)) < ∞,

estimation (14) can be replaced by the following one:

h(f̂(x), F (x)) ≤ M

1 − λ
+ γ(x), x ∈ K.
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