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Abstract. In this paper, we present relative retracts and we can say that
these are multilevel retracts which either retain given properties depend-
ing on the level or not. Some properties are constant and are present on
every level. These properties are especially important in regard to the
theory of coincidence. The class of relative retracts consists of retracts
in the sense of Borsuk, multiretracts and many fundamental retracts.
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1. Introduction

The class of retracts in the sense of Borsuk is vast (see [1]). It is proven that
the class of multiretracts, although essentially wider (see [11]), differs from
the class of retracts only by some spaces that are infinitely and uncountably
dimensional so that it could be said that the differences are pathological.
In this paper the notion of “relative retract” is introduced. A few levels of
retracts were achieved. The first level is obviously the retracts in the sense of
Borsuk, the second level is multiretracts and the next levels are relative re-
tracts that lose some properties but retain other important properties. These
properties that are present on all levels are particularly important due to
their applications (Theorem 3.5).

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be metrizable.
A continuous mapping f : X → Y is called proper if for every compact set
K ⊂ Y , the set f−1(K) is nonempty and compact. Let X and Y be two
spaces and assume that for every x ∈ X, a nonempty and compact subset
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φ(x) of Y is given. In such a case we say that φ : X � Y is a multivalued
mapping. For a multivalued mapping φ : X � Y and a subset A ⊂ Y , we let

φ−1(A) = {x ∈ X; φ(x) ⊂ A}.

If for every open set U ⊂ Y , the set φ−1(U) is open, then φ is called an
upper semicontinuous mapping; we shall write that φ is u.s.c. Let H∗ be the
Čech homology functor with compact carriers and coefficients in the field of
rational numbers Q from the category of Hausdorff topological spaces and
continuous maps to the category of graded vector spaces and linear maps
of degree zero. Thus H∗(X) = {Hk(X)} is a graded vector space, Hk(X)
being a k-dimensional Čech homology group with compact carriers of X. For
a continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fk∗},
where fk∗ : Hk(X) → Hk(Y ) (see [5]). A space X is acyclic if

(i) X is nonempty,
(ii) Hk(X) = 0 for every k ≥ 1,
(iii) H0(X) ≈ Q.

Proposition 2.1 (See [5]). Assume that, in the category of graded vector
spaces, the following diagram commutes:

E′ u �� E′′

E′ u ��

u′

��

E′′.

u′′

��

v

�������������

Then, if u′ or u′′ is a Leray endomorphism, so is the other; and, in that case,

Λ(u′) = Λ(u′′).

A proper map p : X → Y is called Vietoris provided that for every
y ∈ Y , the set p−1(y) is acyclic. A proper map p : X → Y is called cell-like
provided that for each y ∈ Y , the set p−1(y) has a trivial shape (in the sense
of Borsuk [2]). We know that a compact set of trivial shape is acyclic. Hence
if p : X → Y is a cell-like map, then it is a Vietoris map. The symbol D(X,Y )
will denote the set of all diagrams of the form

X Z
q

��
p

�� Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a contin-
uous map. Each such diagram will be denoted by (p, q). We recall that the
composition of two Vietoris mappings is a Vietoris mapping and if p : X → Y
is a Vietoris map, then p∗ : H∗(X) → H∗(Y ) is an isomorphism (see [5]).

Definition 2.2 (See [5]). Let (p, q) ∈ D(X,Y ) and (r, s) ∈ D(Y, T ). The
composition of the diagrams

X Z1
p

��
q

�� Y Z2
s ��r�� T
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is called the diagram (u, v) ∈ D(X,T )

X Z1 △qr Z2
u�� v �� T,

where

Z1 △qr Z2 = {(z1, z2) ∈ Z1 × Z2 : q(z1) = r(z2)},

u = p ◦ f1, v = s ◦ f2,

Z1 Z1 △qr Z2
f1��

f2 �� Z2,

f1(z1, z2) = z1 (Vietoris map),

f2(z1, z2) = z2 for each (z1, z2) ∈ Z1 △qr Z2.

It shall be written as
(u, v) = (r, s) ◦ (p, q).

In the set of all diagrams D(X,Y ), the following relation is introduced.

Definition 2.3. Let (p1, q1), (p2, q2) ∈ D(X,Y ). Then

(p1, q1) ∼m (p2, q2)

if and only if there exist spaces Z, Z1, Z2 and Vietoris maps p3 : Z → Z1,
p4 : Z → Z2 such that the following diagram is commutative:

X Z1
p1��

q1 �� Y

X

IdX

��

IdX

��

Z

p3

��

q
��

p
��

p4

��

Y

IdY

��

IdY

��

X Z2
q2 ��

p2�� Y,

that is,
p = p1 ◦ p3 = p2 ◦ p4, q = q1 ◦ p3 = q2 ◦ p4.

Proposition 2.4 (See [15]). The relation in the set D(X,Y ) introduced in
Definition 2.3 is an equivalence relation.

The set of the equivalence classes of the above relation will be denoted
by

Mm(X,Y ) = D(X,Y )/∼m
.

The elements of the space Mm(X,Y ) will be called multimorphisms and will
be denoted by

φm = [(p, q)]m,

where

X Z
q

��
p

�� Y.

Proposition 2.5 (See [13, 15]). Let [(p, q)]m = φm ∈ Mm(X,Y ). Then the fol-
lowing conditions are satisfied:
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(1) ((p1, q1), (p2, q2) ∈ φm) ⇒ (q1(p
−1
1 (x)) = q2(p

−1
2 (x)) for each x ∈ X).

(2) ((p1, q1), (p2, q2) ∈ φm) ⇒ (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ).
(3) Let ψm = [(r, s)]m ∈ Mm(Y, T ) and let

ψm ◦ φm = [(r, s) ◦ (p, q)]m ∈ Mm(X,T )

(see Definition 2.2). Then for any (p1, q1) ∈ φm and (r1, s1) ∈ ψm we
have

((r1, s1) ◦ (p1, q1)) ∈ (ψm ◦ φm).

From Proposition 2.5(1) we get the following definition.

Definition 2.6. For any φm ∈ Mm(X,Y ), the set φ(x) = q(p−1(x)), where
φm = [(p, q)]m, is called the image of the point x in a multimorphism φm.

Let φm ∈ Mm(X,Y ). The symbol φ : X →m Y will denote a multival-
ued mapping determined by a multimorphism φm (see Definition 2.6). We
define (see Proposition 2.5(2))

φ∗ = q∗ ◦ p−1
∗ , (2.1)

where (p, q) ∈ φm; and if ψ : Y →m T , then ψ ◦φ : X →m T is a multivalued
map determined by ψm ◦ φm (see Proposition 2.5(3)) and we have (see [15])

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗. (2.2)

Let f : X → Y be a continuous map and let IdX : X → X be an identity
map. Then

fm =
[
(IdX , f)

]
m

∈ Mm(X,Y )

and for each (p, q) ∈ fm (see [15]),

q∗ ◦ p−1
∗ = f∗. (2.3)

Let A ⊂ X be a nonempty set and φ : X →m Y . Then the map φA : A � Y
given by the formula

φA(x) = φ(x) for each x ∈ A (2.4)

is determined by a multimorphism (φA)m = [(�p, �q)]m (see [15]), where

A
p̃←−−−− p−1(A)

q̃−−−−→ Y

and (�p, �q ) ∈ D(A, Y ) is a restriction of some (p, q) ∈ φm. Hence φA : A →m Y
is a multivalued map determined by (φA)m = [(�p, �q )]m.

Definition 2.7. Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

We say that the diagrams (p1, q1) and (p2, q2) are homotopic, denoted by

(p1, q1) ∼HD (p2, q2),

if there exist a space Z and Vietoris maps p3 : Z → Z1 and p4 : Z → Z2 such
that the following conditions are satisfied:

(1) p1 ◦ p3 = p2 ◦ p4;
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(2) q1 ◦ p3 ∼ q2 ◦ p4, that is, the mappings q1 ◦ p3, q2 ◦ p4 : Z → Y are
homotopic.

Definition 2.8. Let φm, ψm ∈ Mm(X,Y ) be multimorphisms. We say that
φm and ψm are homotopic (written φm ∼HM ψm) if there exist diagrams
(p1, q1) ∈ φm and (p2, q2) ∈ ψm such that

(p1, q1) ∼HD (p2, q2).

Proposition 2.9 (See [15]). The homotopy relation introduced in Definition 2.8
is an equivalence relation in the set of all multimorphisms Mm(X,Y ).

The following definition is obvious.

Definition 2.10. Let φ,ψ : X →m Y . We say that φ and ψ are homotopic
(written φ ∼HMF ψ) if φm ∼HM ψm.

Proposition 2.11 (See [15]). Let f, g : X → Y be continuous maps. Then[
(IdX , f)

]
m

= fm ∼HM gm =
[
(IdX , g)

]
m

if and only if there exist a space Z and a Vietoris mapping p : Z → X such
that

f ◦ p ∼ g ◦ p.

Definition 2.12. Let X be a metrizable space and x0 ∈ X. Let Cx0 : X → X
be a constant map such that Cx0(x) = x0 for each x ∈ X. We say that a
space X is multicontractible to a point x0 in the context of multimorphisms
(written X ∈ MCNm) if[

(IdX , IdX)
]
m

= Idm ∼HM Cx0
m =

[
(IdX , Cx0)

]
m
.

From Proposition 2.11 we get the following fact.

Proposition 2.13 (See [15]). A space X ∈ MCNm if and only if there exist a
metrizable space Z and a Vietoris map p : Z → X such that p ∼ Cx0

1 , where
Cx0

1 : Z → X is a constant map, that is, Cx0
1 (z) = x0 for each z ∈ Z.

Multicontractibility to a point in the context of multimorphisms is es-
sentially more general than regular contractibility to a point (see [12, 15]).

Proposition 2.14 (See [15]). If X ∈ MCNm, then X is path connected.

Definition 2.15. Let X be an ANR and let X0 ⊂ X be a closed subset. We say
that X0 is movable in X provided that every neighborhood U of X0 admits a
neighborhood U ′ of X0, U

′ ⊂ U , such that for every neighborhood U ′′ of X0,
U ′′ ⊂ U , there exists a homotopy H : U ′ × [0, 1] → U with H(x, 0) = x and
H(x, 1) ∈ U ′′, for any x ∈ U ′.

Definition 2.16. Let X be a compact metric space. We say that X is movable
provided that there exist Z ∈ ANR and an embedding e : X → Z such that
e(X) is movable in Z.

Let us notice that the property of being movable is an absolute property;
that is, if A is a movable set in some ANR X and j : A → X ′ is an embedding
into an ANR X ′, then j(A) is movable in X ′ (see [2]).
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Remark 2.17. We know that movable spaces are of the following types, among
others: AR, ANR, AANR (in the sense of Clapp, see [3]), FAR (of trivial
shape) and FANR (see [2]).

Definition 2.18. A map r : Y → X from a space Y onto a space X is said to
be an mr-map if there is a map φ : X →m Y such that r ◦ φ = IdX .

Definition 2.19. A metric space X is called an absolute multiretract (denoted
X ∈ AMR) provided that there exist a normed space E and an mr-map
r : E → X from E onto X.

Definition 2.20. A metric space X is called an absolute neighborhood multi-
retract (denoted X ∈ ANMR) provided that there exist an open subset U of
some normed space E and an mr-map r : U → X from U onto X.

The classes of metric spaces of types AMR and ANMR are substantially
wider than the classes AR and ANR, respectively (see [11]).

Theorem 2.21 (See [5]). Let U be an open subset of a normed space E and
let X be a compact subset of U . Then for every ε > 0 there exist a finite
polyhedron Kε ⊂ U and a mapping iε : X → U such that

(1) ∥x− iε(x)∥ < ε for all x ∈ X,
(2) iε(X) ⊂ Kε,
(3) iε is homotopic to i, where i : X �→ U is an inclusion.

We recall that a metrizable space X is of finite type if almost all the
homologies of X are trivial and for each k ≥ 0,

dimHk(X) < ∞.

Proposition 2.22. Let U be an open subset of a normed space E and let X be
a compact subset of U . If an inclusion i : X �→ U induces a monomorphism
i∗ : H∗(X) → H∗(U), then X is of finite type.

Proof. Let ε > 0 and let iε : X → U be as in Theorem 2.21. Let d : X → Kε

be a map given by the formula d(x) = iε(x) for each x ∈ X, where Kε is a
finite polyhedron (Theorem 2.21(2)). Then we have the following diagram:

X
i �� U

X

IdX

��

d �� Kε,

j

��

where i : X �→ U and j : Kε �→ U are inclusions. We observe that from
Theorem 2.21(3) we get

i∗ = iε∗ = (j ◦ d)∗ = j∗ ◦ d∗.

From the assumption, the map i∗ is a monomorphism, so d∗ is a monomor-
phism. Hence X is of finite type and the proof is complete. �
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A map φ : X →m Y , determined by φm = [(p, q)]m, is called compact if

q : Z → Y is a compact map (i.e., q(Z) ⊂ Y is compact). A map φ : X →m X
has a fixed point (written Fix(φ) ̸= ∅) if there exists a point x ∈ X such that
x ∈ φ(x). We recall that a metrizable space X has a fixed point property (i.e.,
it is a Lefschetz space) if for each compact map φ : X →m X, the following
condition is satisfied:

(Λ(φ∗) ̸= 0) =⇒ (Fix(φ) ̸= ∅)

provided that the generalized Lefschetz number Λ(φ∗) of φ∗ (see (2.1)) is
well defined.

Proposition 2.23 (See [11]). Let X ∈ ANMR (resp., X ∈ AMR). Then X has
a fixed point property.

Proposition 2.24 (See [5]). Let g : X → Y be a proper map and let φg : Y →
X be a multivalued map given by φg(y) = g−1(y) for each y ∈ Y . Then φg is
a u.s.c. map.

Proposition 2.25 (See [5]). Let X be a compact set in a Hilbert cube Q.
For any open neighborhood U of X in Q there exists a compact and locally
connected set K (where K ∈ ANR) such that X ⊂ K ⊂ U .

Proposition 2.26 (See [4]). Let X be a compact and locally connected space
and let f : X → Y be a continuous map from X onto Y . Then Y is compact
and locally connected.

3. Relative retracts

In this section, maps determined by multimorphisms φm ∈ Mm(X,Y ) will
be denoted by φ : X →m Y and will be called multifunctions, while for the
single-valued mappings the letters f , g, h, . . . are reserved.

Definition 3.1. Let Z ⊂ Y and let g : Z → X be a continuous map. A space X
is called a g-retract of a space Y (is a retract relative to g) if there exists a
continuous map r : Y → X such that the diagram

Y
r �� X

Z
g

��

i

��

X

IdX

��

is commutative with r ◦ i = g, where i : Z �→ Y is an inclusion and IdX is an
identity mapping. The map r will be called a g-retraction.

Let h : Z → X be a homeomorphism and let Z ⊂ Y . We observe that
if X is h-retract of Y , then Z is a retract of Y in the sense of Borsuk. In
particular, if h = IdX , then X ⊂ Y is a retract of Y in the sense of Borsuk [1].
We observe also that if g : Z → X is a constant map, then X is a g-retract
of Y for each metrizable space Y such that Z ⊂ Y .
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Proposition 3.2. Let g : Z → X be a proper map and let Z ⊂ Y . If X is a
g-retract of Y , then Z is a closed set in Y .

Proof. Let (zn) ⊂ Z ⊂ Y be a sequence such that limn→∞ zn = z0. We show
that z0 ∈ Z. It is obvious that

lim
n→∞

g(zn) = lim
n→∞

r(zn) = r(z0),

where r : Y → X is a g-retraction. From the assumption,

g−1
(
(g(zn)) ∪ {r(z0)}

)
⊂ Z

is a nonempty and compact set and

(zn) ⊂ g−1
(
(g(zn)) ∪ {r(z0)}

)
.

Hence z0 ∈ Z and the proof is complete. �

Definition 3.3. Let g : Z → X and f1, f2 : X → Y be continuous mappings.
We say that f1 and f2 are g-homotopic (i.e., are homotopic relative to g,
written f1 ∼g f2, see Proposition 2.11) if there exists a homotopy

h : Z × [0, 1] → Y

such that
h(·, 0) = f1 ◦ g and h(·, 1) = f2 ◦ g.

We observe that if g is a homeomorphism, then

(f1 ∼g f2) ⇐⇒ (f1 ∼ f2);

and if f1 ∼ f2, then for each continuous map g : Z → X,

f1 ∼g f2.

Definition 3.4. Let g : Z → X be a continuous map. A space X is called
g-contractible to a point (i.e., is contractible to a point relative to g) if there
exists a point x0 ∈ X such that

IdX ∼g Cx0 ,

where Cx0 : X → X is a constant map given by the formula Cx0(x) = x0 for
each x ∈ X.

From Definition 3.3 we get (see Proposition 2.13)

(IdX ∼g Cx0) ⇐⇒ (g ∼ Cx0
1 ),

where Cx0
1 : Z → X is a constant map. Let Rn+1 be a Euclidean space, let

Kn+1 ⊂ Rn+1 be a closed ball with center 0 and radius 1 and let Sn ⊂ Kn+1

be a sphere. Let f, g : X → Y . We say that f and g have a point of coincidence
if there exists a point x ∈ X such that f(x) = g(x).

In the following three facts we will assume that n ≥ 1. Firstly, we prove
the following theorem (see [6]).

Theorem 3.5. Let Y be a contractible space and let g : Z → Sn be a continuous
map, where Z ⊂ Y is a closed and nonempty set. The following conditions
are equivalent:
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(1) Sn is not g-contractible to a point;
(2) let G : Y → Rn+1 be a continuous extension of g. Every continuous

map F : Y → Rn+1 has at least one of the following properties:
(i) F and G have a point of coincidence,
(ii) there is a point z ∈ Z such that G(z) = λF (z) for some 0 < λ < 1;

(3) let F : Y → Rn+1 be a continuous map such that F (Z) ⊂ Kn+1 and let
G : Y → Rn+1 be a continuous extension of g, then F and G have a
point of coincidence;

(4) Sn is not a g-retract of Y .

Proof. (1)⇒(2). Suppose that G(y) ̸= F (y) for each y ∈ Y and G(z) ̸= tF (z)
for all 0 < t < 1, z ∈ Z. Then G(z) ̸= tF (z) also for t = 0 and, by our first
hypothesis, for t = 1. Let r : Rn+1\{0} → Sn be a retraction. We define a
homotopy H : Z × [0, 1] → Sn by the formula

H(x, t) =

{
r
(
G(x)− 2tF (x)

)
for 0 ≤ t ≤ 1/2,

r
(
G(h(x, t))− F (h(x, t))

)
for 1/2 ≤ t ≤ 1,

where h : Y × [1/2, 1] → Y is a homotopy such that

h(x, 1/2) = x and h(x, 1) = y0

for any x ∈ Y . We observe that

H(x, 0) = r(G(x)) = r(g(x)) = g(x),

H(x, 1) = r
(
G(y0)− F (y0)

)
∈ Sn.

Hence Sn is g-contractible to a point, but this contradicts the assumption.

(2)⇒(3). The second possibility in (2) cannot occur since F (Z) ⊂ Kn+1.

(3)⇒(4). Assume that there exists a g-retraction r : Y → Sn. Then from the
definition, r is an extension of g. Let G = r and let F : Y → Sn ⊂ Kn+1 be
a map given by the formula F (y) = −G(y) for each y ∈ Y . Then G and F
have no point of coincidence.

(4)⇒(1). Assume that Sn is g-contractible to a point. Then there exists a
homotopy h : Z × [0, 1] → Sn, h(z, 0) = g(z) and h(z, 1) = d0 ∈ Sn for each
z ∈ Z. From the theorem on extension of homotopy (see [1]) there exists a
continuous extension H : Y × [0, 1] → Sn of h such that H(y, 1) = d0 for any
y ∈ Y . Let U ⊂ Y be an open set such that Z ⊂ U . We define an Urysohn
function λ : Y → [0, 1] such that λ(y) = 1 for y ∈ Y \U and λ(y) = 0 for
y ∈ Z. Let r : Y → Sn be a map given by the formula

r(y) = H(y, λ(y)) for each y ∈ Y.

Then r is a g-retraction and the proof is complete. �

Proposition 3.6. Let Y be an acyclic space (in particular, a contractible space)
and let g : Z → Sn be a continuous map such that g∗ : H∗(Z) → H∗(Sn) is
an epimorphism, where Z ⊂ Y is a nonempty set. Then Sn is not a g-retract
of Y .
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Proof. Assume to the contrary that Sn is a g-retract of Y . Then there exists
a g-retraction r : Y → Sn such that r◦i = g, where i : Z �→ Y is an inclusion.
We have

H∗(Z)
i∗−−−−→ H∗(Y )

r∗−−−−→ H∗(Sn).
Hence for k ≥ 1, the map rk∗ ◦ ik∗ = gk∗ is a zero homomorphism, but this
is a contradiction. �

We recall that a continuous map f : X → Y is universal if for each
continuous map g : X → Y , f and g have a point of coincidence (see [7, 8]).
Due to Proposition 3.6, Theorem 3.5 is true for a wide class of continuous
mappings g : Z → Sn inducing epimorphisms on homologies. From Theo-
rem 3.5(3) and Proposition 3.6, the following fact results.

Proposition 3.7. Let Y be a contractible space and let G : Y → Kn+1 be a
continuous map. Assume that there exists a closed and nonempty set Z ⊂ Y
such that G(Z) ⊂ Sn and the map g : Z → Sn, given by the formula g(x) =
G(x) for each x ∈ Z, induces an epimorphism g∗ : H∗(Z) → H∗(Sn). Then G
is a universal map.

We will introduce some definitions. Let ℜ denote the set of all metric
spaces and let

C(ℜ) = {g : Y → X; g is continuous, X, Y ∈ ℜ},
Φ(Y,X) = {g : Y → X; g is continuous},
H(Y,X) = {g : Y → X; g is a homeomorphism}.

Let Θ ⊂ C(ℜ) be a set such that for any X,Y, Z ∈ ℜ the following conditions
are satisfied:

H(Y,X) ⊂ Θ(Y,X), (3.1)

(h ∈ H(Y,X) and g ∈ Θ(X,Z)) =⇒ ((g ◦ h) ∈ Θ(Y, Z)). (3.2)

If condition (3.2) replaces the following, stronger, condition:

(f ∈ Θ(Y,X) and g ∈ Θ(X,Z)) =⇒ ((g ◦ f) ∈ Θ(Y, Z)), (3.3)

then instead of Θ we write ΘS . But if the set Θ in addition to conditions (3.1)
and (3.2), satisfy the following condition:

for each g ∈ Θ(Z,X) and for each open set U ⊂ X there exists ZU ⊂ Z
(3.4)

such that g(ZU ) ⊂ U , gZU ∈ Θ(ZU , U), where gZU (z) = g(z) for each z ∈ ZU ,
then instead of Θ we write ΘL. Let X,Y ∈ ℜ. Let us denote

Θ(X) = {g ∈ Φ(Z,X); Z ∈ ℜ},
ΘY (X) = {g ∈ Φ(Z,X); Z ⊂ Y }.

We can now introduce the following concepts.

Definition 3.8. Let Z ⊂ Y and let g : Z → X be a continuous map. A space Z
will be called a g-carrier of X in Y (written Z ∈ CY (X, g)) if X is a g-retract
of Y .
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It is easy to observe that X is a g-retract of Y (see Definition 3.1) if
and only if there exists Z ∈ CY (X, g). It is obvious that X ⊂ Y is a retract
of Y if and only if X ∈ CY (X, IdX).

Definition 3.9. A space X is called a ΘY (X)-retract of a space Y (i.e., is a
retract relative to the set ΘY (X)) if there exist a space Z ⊂ Y and a map
g : Z → X, g ∈ ΘY (X), such that Z ∈ CY (X, g).

Definition 3.10. We say that X is an absolute relative retract (written X ∈
ARR(Θ)) if there exists a space Z such that for each space T and for each
closed embedding h : Z → T there exists g ∈ ΘT (X) such that h(Z) ∈
CT (X, g). The space Z will be called an absolute carrier of X relative to the
set Θ (written Z ∈ AC(X,Θ)).

Let

H = {g ∈ C(ℜ); g is a homeomorphism}.
It is clear that

X ∈ ARR(H) ⇐⇒ X ∈ AR

and

X ∈ ARR(Θ) ⇐⇒ AC(X,Θ) ̸= ∅.

Definition 3.11. We say that X is an absolute neighborhood relative retract
(written X ∈ ANRR(Θ)) if there exists a space Z such that for each space T
and for each closed embedding h : Z → T there exist an open set V ⊂ T and
g ∈ ΘV (X) such that h(Z) ⊂ V and h(Z) ∈ CV (X, g). The space Z will be
called an absolute neighborhood carrier of X relative to the set Θ (written
Z ∈ ANC(X,Θ)).

We observe that

X ∈ ANRR(H) ⇐⇒ X ∈ ANR

and

X ∈ ANRR(Θ) ⇐⇒ ANC(X,Θ) ̸= ∅.

Definition 3.12. Let f1, f2 : X → Y be continuous maps. We say that f1 and
f2 are Θ-homotopic (i.e., are homotopic relative to the set Θ(X), written
f1 ∼Θ f2, see Definition 3.3) if there exists a map g ∈ Θ(X), g : Z → X such
that

f1 ∼g f2.

Let Θ(X) = H(X). Then

(f1 ∼Θ f2) ⇐⇒ (f1 ∼ f2).

Let

V = {g ∈ C(ℜ); g is a Vietoris map}.
From Propositions 2.9 and 2.11 it results that a homotopy ∼V is an equiva-
lence relation.
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Definition 3.13. We say that X is Θ-contractible to a point (i.e., is con-
tractible to a point relative to the set Θ(X), see Definition 3.4) if there exists
g ∈ Θ(X), g : Z → X such that X is g-contractible to a point.

We observe that X is H-contractible to a point if and only if it is con-
tractible to this point. We shall give an example of X such that it is V-
contractible and not contractible to a point. Recall that if X is contractible
to a point, then X is movable (see Definition 2.15).

Example 3.14. Let X be a nonmovable and compact space such that there
exists a Vietoris map p : Q → X, where Q is a Hilbert cube (see [9]). The
space X is nonmovable, so X is not contractible to a point. Let x0 ∈ X and
let p(z0) = x0. We define a homotopy h : Q× [0, 1] → X by the formula

h(z, t) = p
(
(1− t)z + tz0

)

for each (z, t) ∈ Q× [0, 1]. Hence X is V-contractible to a point.

Definition 3.15 (See [14]). We say that a space X is locally Θ-contractible if
for each x ∈ X and for each open neighborhood U ⊂ X of x there exist an
open neighborhood V ⊂ U of x and a map gV : ZV → V , gV ∈ Θ(V ) such
that for each open neighborhood W ⊂ U of x there exists a continuous map
CW : ZV → W such that

(iV ◦ gV ) ∼
(
iW ◦ CW

)
,

where

ZV
gV−−−−→ V

iV−−−−→ U, ZV
CW

−−−−→ W
iW−−−−→ U

and iV : V �→ U , iW : W �→ U are inclusions.

It should be noticed that if it is assumed in Definition 3.15 that for some
W the map CW is constant, i.e., CW (z) = x ∈ W ⊂ U for every z ∈ ZV , then(

(iV ◦ gV ) ∼
(
iW ◦ CW

))
⇐⇒

(
iV ∼Θ Cx

)
,

where Cx : V → U is a constant map such that Cx(y) = x for each y ∈ V .
If in addition we assume that ZV = V and gV = IdV , then we get a local
contractibility. We show the following facts.

Proposition 3.16. Let X be a metrizable space. Then the following conditions
are satisfied:

(1) (X∈ARR(Θ))⇔(X is a ΘE(X)-retract of E), where E is some normed
space,

(2) (X∈ANRR(Θ))⇔(X is a ΘU (X)-retract of U), where U is some open
set in some normed space E.

Proof. We show condition (2). The proof of condition (1) is analogous. It is
obvious that if X ∈ ANRR(Θ), then X in particular is a ΘU (X)-retract of
some open set U ⊂ E in some normed space E (see Definition 3.11). Assume
now that there exist a normed space E and an open set U ⊂ E such that X
is a ΘU (X)-retract of U . Then we get a space Z ⊂ U , a map g : Z → X,
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g ∈ ΘU (X), and a map r : U → X such that r ◦ i = g, where i : Z �→ U is an
inclusion. We have the following diagram:

X
g←−−−− Z

i−−−−→ U
r−−−−→ X.

Let h : Z → T be a closed embedding, where T is some metrizable space,
and let f : h(Z) → U be a map given by the formula

f = i ◦ h−1.

Since U ∈ ANR, then f has a continuous extension F : V → U , where V ⊂ T
is an open set such that h(Z) ⊂ V . Let R = r ◦F . Then we have the diagram

X
g←−−−− Z

h−1

←−−−− h(Z)
j−−−−→ V

R−−−−→ X,

where j is an inclusion. We observe that

R ◦ j = (r ◦ F ) ◦ j = r ◦ (F ◦ j) = r ◦
(
i ◦ h−1

)
= (r ◦ i) ◦ h−1 = g ◦ h−1.

Hence h(Z) ∈ CV (X, g ◦h−1) (see Definition 3.11), where (g ◦h−1) ∈ ΘV (X)
and the proof is complete. �

Proposition 3.17. Let g ∈ Θ(X) and g : Z → X. Then the following condi-
tions are satisfied:

(1) (Z ∈ AR) ⇒ (X ∈ ARR(Θ)),
(2) (Z ∈ ANR) ⇒ (X ∈ ANRR(Θ)).

Proof. We show condition (2). The proof of condition (1) is analogous. Let
Z ∈ ANR. Then there exist a normed space E, an open set U ⊂ E, a
closed embedding h : Z → E such that h(Z) ⊂ U and a continuous map
r′ : U → h(Z) such that r′(y) = y for each y ∈ h(Z). Let r : U → X be a
map given by the formula

r = g ◦ h−1 ◦ r′.
The map r is a (g ◦ h−1)-retraction, where (g ◦ h−1) ∈ ΘU (X). From Propo-
sition 3.16, X ∈ ANRR(Θ) and the proof is complete. �

Proposition 3.18. Let X ∈ ARR(Θ). Then X is Θ-contractible to a point.

Proof. Let X ∈ ARR(Θ). From Proposition 3.16 and Definition 3.10 there
exist a normed space E, a space Z ⊂ E, a continuous map r : E → X such
that r ◦ i = g, where i : Z �→ E is an inclusion, and g : Z → X, g ∈ ΘE(X).
Let z0 ∈ E. We define a homotopy h : Z × [0, 1] → X by the formula

h(z, t) = r
(
(1− t)z + tz0

)
for each z ∈ Z,

and the proof is complete. �

Proposition 3.19. Let X ∈ ANRR(ΘS). Assume that there exists

Z ∈ ANC
(
X,ΘS

)

(see Definition 3.11) such that Z is ΘS-contractible to a point. Then

X ∈ ARR
(
ΘS

)
.
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Proof. From Proposition 3.16 we get

X
g←−−−− Z

i−−−−→ U
r′−−−−→ X,

where g : Z → X, g ∈ ΘS
U (X), E is a normed space, U ⊂ E is open in E

and r′ ◦ i = g. The space Z is ΘS-contractible, so there exists a homotopy
h : P × [0, 1] → Z ⊂ U such that

h(x, 0) = g′(x) and h(x, 1) = z0

for each x ∈ P and for some point z0 ∈ Z, where g′ ∈ ΘS(Z). The homotopy h
has a continuous extension H : E′ × [0, 1] → U (since U ∈ ANR, see [1]),
where H(x, 1) = z0 for all x ∈ E′ and E′ is a normed space such that P ⊂ E′.
We define a map r : E′ → X by the formula

r(x) = r′
(
H(x, 0)

)
for each x ∈ E′.

We observe that if x ∈ P , then

r(x) = r′
(
h(x, 0)

)
= r′

(
g′(x)

)
= g

(
g′(x)

)
.

From Proposition 3.16, X ∈ ARR(ΘS), because (g ◦ g′) ∈ ΘS
E′(X) and the

proof is complete. �
Let f : X → Y be a map and let A ⊂ X be a nonempty set. We denote

by fA : A → Y a map given by the formula

fA(x) = f(x) for all x ∈ A.

Proposition 3.20. Let X ∈ ANRR(ΘL) and let U ⊂ X be an open and non-
empty set. Then U ∈ ANRR(ΘL).

Proof. From Proposition 3.16 there exist a normed space E and an open
set V ⊂ E such that X is a (ΘL)V (X)-retract of V . We have the following
diagram:

X
g←−−−− Z

i−−−−→ V
r−−−−→ X,

where g ∈ (ΘL)V (X), i : Z �→ V is an inclusion and r is a g-retraction, that
is, r ◦ i = g. Let U ⊂ X be an open and nonempty set. From (3.4), it results
that there exists ZU ⊂ Z such that g(ZU ) ⊂ U and gZU ∈ ΘL(ZU , U). We
observe that gZU

∈ (ΘL)r−1(U)(U). We have

U
gZU←−−−− ZU

iZU−−−−→ r−1(U)
rr−1(U)−−−−−→ U,

where rr−1(U) ◦ iZU
= gZU

, because for each x ∈ X, g−1(x) ⊂ r−1(x), and
the proof is complete. �

Analyzing the properties contained in Propositions 3.16–3.20 we get a
similar property to the properties of Borsuk retracts.

We recall that if p : X → Y is a Vietoris map, then p∗ : H∗(X) → H∗(Y )
is an isomorphism. We say that a proper map g : X → Y is movable if for
each y ∈ Y , the set g−1(y) is movable (see Definition 2.15). We recall that
a proper map f : X → Y is cell-like if for each y ∈ Y , the set f−1(y) has
a trivial shape in the sense of Borsuk [2]. We know that if f : X → Y is a
cell-like map, then it is a Vietoris and movable map. A continuous mapping
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f : X → Y will be called multi-right-invertible if there exists a multivalued
u.s.c. map φ : Y � X (a multi-right-inverse map) such that

x ∈ φ
(
f(x)

)
for each x ∈ X. (3.5)

Remark 3.21. We observe that if f : X → Y is multi-right-invertible and
the space Y is compact, then the space X is compact. A multi-right-inverse
map φ : Y → X is u.s.c, so φ(Y ) = X is a compact space. Let X and Y
be compact spaces and let f : X → Y be a continuous map. Then f is
multi-right-invertible. Indeed, let φ : Y � X be a map given by the formula
φ(y) = X for all y ∈ Y , then it is obvious that condition (3.5) is satisfied.

We will need the following two facts.

Proposition 3.22. Let f : X → Y be a proper map. Then f is multi-right-
invertible.

Proof. Let φ : Y � X be a multivalued map given by the formula

φ(y) = f−1(y) for each y ∈ Y.

Then from Proposition 2.24, φ is u.s.c. and condition (3.5) is satisfied. �
Proposition 3.23. Let f : X → Y and g : Y → Z be multi-right-invertible
maps. Then g ◦ f : X → Z is a multi-right-invertible map.

Proof. There exist multi-right-inverse maps φ : Y � X and ψ : Z � Y
such that x ∈ φ(f(x)) for each x ∈ X and y ∈ ψ(g(y)) for each y ∈ Y . Let
η : Z � X be a multivalued map given by the formula

η = φ ◦ ψ.
Then f(x) ∈ ψ(g(f(x))) for each x ∈ X. Hence for each x ∈ X,

x ∈ φ
(
f(x)

)
⊂ φ

(
ψ(g(f(x)))

)
= η

(
g(f(x))

)
,

and the proof is complete. �
We will denote

I = {g ∈ C(ℜ); g is multi-right-invertible and g∗ is an isomorphism},
P = {g ∈ C(ℜ); g is proper},
M = {g ∈ C(ℜ); g is movable},
V = {g ∈ C(ℜ); g is a Vietoris map},
H = {g ∈ C(ℜ); g is a homeomorphism},

CE = {g ∈ C(ℜ); g is a cell-like map},
IP = I ∩ P, IM = I ∩M, MV = M ∩ V.

We observe that the sets H, V, P, I and IP satisfy conditions (3.1) and (3.3)
(see Propositions 3.22 and 3.23), whereas the sets M and CE satisfy condi-
tions (3.1) and (3.2). Note also that the sets H, V, P, M, MV and CE satisfy
conditions (3.4) and

H ⊂ CE ⊂ MV ⊂ IM ⊂ IP ⊂ I, V ⊂ IP, M ⊂ P. (3.6)
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Now a few interesting properties of retracts relative to the sets (3.6) will be
proven. Let Q be a Hilbert cube. In a similar way as Proposition 3.16 one
can prove the following fact (see Remark 3.21).

Proposition 3.24. Let X be a compact space. Then the following conditions
are satisfied:

(1) (X∈ARR(I))⇔(X is an IQ(X)-retract of Q),
(2) (X∈ANRR(I))⇔ (X is an IU (X)-retract of U), where U is some open

set in Q.

Proposition 3.25. Let Y be a compact space. Then

(Y ∈ ARR(I)) ⇐⇒ (Y is an acyclic space).

Proof. Let Y ∈ ARR(I). Then Y is an IQ(Y )-retract of Q (see Proposi-
tion 3.24), where Q is a Hilbert cube. Hence there exist a map g ∈ IQ(Y ),
g : Z → Y , and a g-retraction r : Q → Y such that r◦ i = g, where i : Z �→ Q
is an inclusion. We have

r∗ ◦ i∗ = g∗

and from the assumption, g∗ is an isomorphism. Hence i∗ : H∗(Z) → H∗(Q)
is a monomorphism. The space Q is acyclic, so Z is an acyclic space. The
map g∗ is an isomorphism, hence Y is acyclic. Assume now that Y is an
acyclic space. Let Z = Y and let T be a metrizable space. Assume that
h : Z → T is a closed embedding. Let g : Z → Y be a constant map,
g(x) = y0 for any x ∈ Z, where y0 ∈ Y is an arbitrary point. The map g
induces an isomorphism g∗ : H∗(Z) → H∗(Y ), so g ∈ I(Y ) (see Remark 3.21).
We define a g ◦h−1-retraction r : T → Y (where (g ◦h−1) ∈ IT (Y ), h−1 is an
inverse homeomorphism) by the formula r(x) = y0 for each x ∈ T , and the
proof is complete. �

From Proposition 3.18 it results that if X ∈ ARR(P), then X is P-
contractible.

Proposition 3.26. Let X be P-contractible. Then X is path connected.

Proof. Let x1 ∈ X. By Definition 3.13 we get a map g ∈ P(X), g : Z → X,
a homotopy h : Z × [0, 1] → X such that h(z, 0) = g(z) and h(z, 1) = x0 for
each z ∈ Z and for some point x0 ∈ X. We can assume that x0 ̸= x1. Define
a path d : [0, 1] → X by the formula

d(t) = h(z1, t),

where z1 ∈ Z is such that g(z1) = x1 and the proof is complete. �

Proposition 3.27 (See [14]). Let X ∈ ANRR(M). Then X is locally M-
contractible.

Proof. From the assumption, we have the following diagram:

X
g←−−−− Z

i−−−−→ U
r−−−−→ X,
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where U ⊂ E is an open set in a normed space E, g ∈ MU (X), i : Z �→ U is
an inclusion, r is continuous such that r ◦ i = g. Let x0 ∈ X and let V ⊂ X
be an open set such that x0 ∈ V . Then we get

g−1(x0) ⊂ V1 = r−1(V ).

From the assumption, the set g−1(x0) (see Definitions 2.15 and 2.16) is mov-
able, so there exists an open set V2 ⊂ X such that

g−1(x0) ⊂ V2 ⊂ V1

and for any open set V3 ⊂ X such that

g−1(x0) ⊂ V3 ⊂ V1

there exists a homotopy HV3 : V2 × [0, 1] → V1 such that

HV3(x, 0) = x, HV3(x, 1) ∈ V3 for each x ∈ V2.

From Proposition 2.24 there exists an open set W ⊂ X such that

x0 ∈ W ⊂ V and g−1(W ) ⊂ V2.

Take any open set W1 ⊂ X such that x0 ∈ W1 ⊂ V . Let W2 = r−1(W1). It is
obvious that g−1(x0) ⊂ W2. Let ZW = g−1(W ). We denote by gW : ZW → W
the map given by the formula

gW (z) = g(z) for each z ∈ ZW .

It is clear that gW ∈ M(W ). We define a homotopy H : ZW × [0, 1] → V by
the formula

H(z, t) = r
(
HW2(z, t)

)
for each (z, t) ∈ ZW × [0, 1].

We have

H(z, 0) = r
(
HW2(z, 0)

)
= r(z) = g(z) = (iW ◦ gW )(z) for all z ∈ ZW ,

where iW : W �→ V is an inclusion and

H(z, 1) = r
(
HW2(z, 1)

)
∈ r(W2) = W1.

Let CW1 : ZW → W1 be a map given by the formula

CW1(z) = H(z, 1) for each z ∈ ZW .

Let iW1 : W1 �→ V be an inclusion. We have the following diagrams:

ZW
gW−−−−→ W

iW−−−−→ V, ZW
CW1

−−−−→ W1

iW1−−−−→ V.

Hence the proof is complete. �

Proposition 3.28 (See [14]). If X is locally P-contractible (in particular, locally
M-contractible), then X is locally path connected.
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Proof. Let x0 ∈ X and let (tn) ⊂ R be an increasing sequence such that
limn→∞ tn = 1 and 0 ≤ tn < 1 for each n ≥ 1. Let (rn) ⊂ R be a decreasing
sequence such that limn→∞ rn = 0 and 1 ≥ rn > 0 for each n ≥ 1. Let r0 = 1
and t0 = 0. From the assumption, we can construct a family of open balls
{Bn−1 = B(y0, rn−1)}n≥1 with center x0 ∈ X and radius rn−1 such that for
n ≥ 1 there exists a homotopy

Hn : Zn × [tn−1, tn] → Bn−1

such that

Hn(z, tn−1) = gn(z), Hn(z, tn) ∈ Bn+1 for all z ∈ Zn,

where gn : Zn → Bn, gn ∈ P(Bn). We take a sequence (zn) ⊂ Zn such that

gn(zn) = yn = Hn−1(zn−1, tn−1)

for any n ≥ 2 and g1(z1) = x1, where x1 ∈ B1 is an arbitrary point. We
define a path d : [0, 1] → Y joining the points x1 and x0 by the formula

d(t) =

{
Hn(zn, t) if t ∈ [tn−1, tn], n ≥ 1,

x0 if t = 1.

It is clear that the path d is well defined. We observe that for each n ≥ 1,

Hn

(
{zn} × [tn−1, tn]

)
⊂ Bn−1 (3.7)

and
Hn(zn, tn) = Hn+1(zn+1, tn). (3.8)

For points t ∈ [0, 1) the continuity of d follows from (3.8) and for t = 1 the
continuity of d follows from (3.7). Hence the path d is continuous, and the
proof is complete. �

We recall that a metrizable space X is of finite type if almost all the
homologies of X are trivial and for each k ≥ 0,

dimHk(X) < ∞.

Proposition 3.29. Let X be a compact space. Assume that X ∈ ANRR(I).
Then X is of finite type.

Proof. From Proposition 3.16 there exist a normed space E and an open
set U ⊂ E such that X is an IU (X)-retract of U . Hence there exist a map
g ∈ IU (X), g : Z → X, and a g-retraction r : U → X such that r ◦ i = g,
where i : Z �→ U is an inclusion. From Remark 3.21, Z is a compact space.
We have

r∗ ◦ i∗ = g∗.

From the assumption, g∗ is an isomorphism, so i∗ is a monomorphism. By
Proposition 2.22, Z is of finite type, so X is also of finite type. �
Proposition 3.30. Let X be a metrizable space. Then the following conditions
are satisfied:

(1) (X∈AMR)⇔(X ∈ ARR(V)),
(2) (X∈ANMR)⇔(X ∈ ANRR(V)).
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Proof. We show condition (2). The proof of condition (1) is analogous. Let
X ∈ ANMR. Then from Definitions 2.18 and 2.20 there exist a normed
space E, an open set U ⊂ E, a multifunction φ : X →m U determined by
φm = [(p, q)]m (see Definition 2.6) and a continuous map r : U → X such
that

r
(
φ(x)

)
= r

(
q(p−1(x))

)
= {x} for each x ∈ X. (3.9)

We have the following diagram:

X
p←−−−− Z

q−−−−→ U
r−−−−→ X.

It is clear that r ◦ q = p (see (3.9)). Let T be a metrizable space and let
h : Z → T be a closed embedding. The map f : h(Z) → U given by the
formula f = q◦h−1 has a continuous extension F : U ′ → U (since U ∈ ANR),
where U ′ ⊂ T is an open set such that h(Z) ⊂ U ′ and h−1 is an inverse
homeomorphism. We define a map R : U ′ → X by the formula R = r ◦ F .
Then we get the diagram

X
p←−−−− Z

h−1

←−−−− h(Z)
i−−−−→ U ′ R−−−−→ X,

where i is an inclusion. We have

R ◦ i = (r ◦ F ) ◦ i = r ◦ (F ◦ i) = r ◦
(
q ◦ h−1

)
= (r ◦ q) ◦ h−1 = p ◦ h−1.

Hence X ∈ ANRR(V), because h(Z) ∈ CU ′(X, p ◦ h−1) (see Definition 3.11),
where (p ◦ h−1) ∈ VU ′(X). Assume now that X ∈ ANRR(V). Let Z ∈
ANC(X,V) (see Definition 3.11). From the Arens–Eels theorem there exist a
normed space E and closed embedding h : Z → E. Then there exist an open
set U ′ ⊂ E such that h(Z) ⊂ U ′, a Vietoris map p′ : h(Z) → X, p′ ∈ VU ′(X),
and a continuous map r′ : U ′ → X such that r′ ◦ i = p′, where i : h(Z) �→ U ′

is an inclusion. We define

p = p′ ◦ h, q = i ◦ h, r = r′.

Then we get r ◦ q = p. Hence r(φ(x)) = {x} for each x ∈ X, where φ :
X →m U ′ is a multifunction determined by φm = [(p, q)]m, and the proof is
complete. �

From Propositions 2.23 and 3.30 we get the following fact.

Proposition 3.31. Let X ∈ ANRR(V). Then X has a fixed point property.

Let Q be a Hilbert cube. At the end, let us analyze the following exam-
ples.

Example 3.32. Let p : Q → X be a cell-like map (in particular, a Vietoris
map), where X is a nonmovable space (see [9]). From Proposition 3.17, X ∈
ARR(CE) ⊂ ARR(MV), but from Remark 2.17, X /∈ ANR and X /∈ FANR.

Let R2 be a plane and let S1 ⊂ R2 be a circle with center (0, 0) and
radius 1.



820	 M. Ślosarski� JFPTA20 M. Ślosarski

Example 3.33. Let f : [1,∞] → R2 be a map given by the formula

f(t) =
((
1 + e−t

)
cos(t),

(
1 + e−t

)
sin(t)

)
for all t ∈ [1,∞],

and let

X = f([1,∞]) ∪ S1.
We know that the set X ⊂ R2 is compact, connected and X ∈ FANR. We
show that X ∈ ANRR(I). Let i : S1 �→ X be an inclusion and let

Xn = f([1,∞]) ∪O1/n(S1) for each n,

where

O1/n(S1) =
{
x ∈ R2; there exists y ∈ S1 such that ∥x− y∥ ≤ 1/n

}
.

It is obvious that
∞∩

n=1

Xn = X.

We observe that for each n, the inclusion in : S1 �→ Xn induces an isomor-
phism

in∗ : H∗(S1) → H∗(Xn).

Indeed, for any n, let rn : Xn → S1 be a map given by the formula rn(x) =
x/∥x∥ for each x ∈ Xn. Then for each n we have

rn ◦ in = IdS1 , in ◦ rn ∼ IdXn .

Let {H∗(S1), IdH∗(S1)} and {H∗(Xn), j
n
(n+1)∗} be inverse systems, where

jnn+1 : Xn+1 �→ Xn

is an inclusion for each n. For any n we have a commutative diagram

H∗(S1)
in∗ �� H∗(Xn)

H∗(S1)

IdH∗(S1)

��

i(n+1)∗
�� H∗(Xn+1).

jn(n+1)∗

��

Hence and from the continuity of Čech homology we get(
lim
←

in

)
∗
= i∗ : H∗(S1) ≈ lim

←
H∗(Xn) ≈ H∗(X),

so X is an i-retract of S1. From Proposition 3.17, X ∈ ANRR(I). We prove
that X /∈ ANRR(P) (in particular, X /∈ ANRR(IP)). The space X is not
locally connected for points x ∈ S1. Assume to the contrary that X ∈
ANRR(P). Then there exist a proper map g : Z → X (where Z is a com-
pact set and Z ⊂ Q), an open neighborhood U of Z in Q and a g-retraction
r : U → X. There exists a compact and locally connected set K such that
Z ⊂ K ⊂ U (see Proposition 2.25). The map rK : K → X given by the
formula rK(x) = r(x) for each x ∈ K is a surjection (since r ◦ i = g and g
is a surjection, where i : Z �→ K is an inclusion). From Proposition 2.26, X
must be locally connected, but this is a contradiction.
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Example 3.34. Let

S =

( ∞∪
n=1

{1/n} × [0, 1]

)
∪ ({0} × [0, 1]) ∪ ([0, 1]× {0}),

T = bd
(
[−1, 0]× [0, 1]

)
,

and let X = T ∪ S, where T denotes a boundary square. We know that
X ⊂ R2 is an AANR in the sense of Noguchi (see [10]) and it is not locally
connected. It is clear that the set S is compact and contractible. Similarly as
in Example 3.33, it can be shown that X ∈ ANRR(I) and X /∈ ANRR(P).

Based on Propositions 3.25–3.30, a few levels of relative retracts can be
differentiated. The first level is H-retracts, i.e., the retracts in the sense of
Borsuk. The second level is MV-retracts, i.e., multiretracts (Proposition 3.30)
that retain the finite type, acyclicity, the fixed point property, path connect-
edness and locally path connectedness, but cannot be movable spaces (Ex-
ample 3.32). On the next, third, level IM-retracts can be distinguished. They
retain the finite type, acyclicity, path connectedness and locally path connect-
edness. The fourth level is IP-retracts that retain the finite type, acyclicity
and path connectedness. On the final level, there are I-retracts that retain
acyclicity. Obviously, the number of levels of relative retracts is conventional
but the level of I-retracts should be final, because a sphere is not a relative re-
tract of a ball (Proposition 3.6) and a compact space X ∈ ARR(I) if and only
if X is an acyclic space (Proposition 3.25). Theorem 3.5 deserves a scrutiny
on its own as it is important in regard to the application of coincidence the-
ory (Proposition 3.7). Finally, it shall be noticed that I-retracts encompass
the class of retracts in the sense of Borsuk, multiretracts (Proposition 3.30),
the space of FAR type (see Proposition 3.25) and all the spaces of FANR
(AANR) type that have the homologies of space of ANR type (isomorphisms
determined by continuous mappings, see Proposition 3.17 and Examples 3.33
and 3.34).
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[12] M. Ślosarski, The properties of the multi-valued domination of metric spaces.
Topology Appl. 160 (2013), 730–738.
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