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Abstract. Applying the classical Banach fixed point theorem we prove
that a set-valued function satisfying a general linear functional inclusion
admits a unique selection fulfilling the corresponding functional equa-
tion. We also adopt the method of the proof for investigating the Rassias
stability of general linear equation.
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1. Introduction

Let (Y, ∥ · ∥) be a real normed space. We denote by n(Y ) the family of all
nonempty subsets of Y and by cl(Y ), ccl(Y ), c(Y ) and cp(Y ) we denote col-
lections of all closed, convex closed, compact and complete members of n(Y ),
respectively.

The number

diamA := sup{∥a− b∥ : a, b ∈ A}
is said to be the diameter of A ∈ n(Y ). We say that a set-valued function
F : K → n(Y ) (an “s.v. function” for abbreviation) is with bounded diameter
if the function K ∋ x �→ diamF (x) ∈ R is bounded.

In [5], the authors proved that if S is a commutative semigroup with
zero and (Y, ∥ · ∥) is a real Banach space, then F : S → ccl(Y ) is a subadditive
s.v. function; i.e.,

F (x+ y) ⊂ F (x) + F (y), x, y ∈ S,

with bounded diameter admits a unique additive selection. Popa in [11] proved
that if ∅ ≠ K is a convex cone in a real vector space X (i.e., t1K + t2K ⊂ K
for all t1, t2 ≥ 0) and F : K → ccl(Y ) (where (Y, ∥ · ∥) is a real Banach space)
is an s.v. function with bounded diameter fulfilling the inclusion

F (αx+ βy) ⊂ αF (x) + βF (y), x, y ∈ K,

for α, β > 0, α+ β ̸= 1, then there exists exactly one additive selection of F .
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Nikodem and Popa in [9] and Piszczek in [10] proved the following the-
orem.

Theorem 1.1. Let K be a convex cone in a real vector space X, (Y, ∥·∥) a real
Banach space and α, β, p, q > 0. Consider an s.v. function F : K → ccl(Y )
with bounded diameter fulfilling the inclusion

αF (x) + βF (y) ⊂ F (px+ qy), x, y ∈ K.

If α+β < 1, then there exists a unique selection f : K → Y of F satisfying the
equation

αf(x) + βf(y) = f(px+ qy), x, y ∈ K.

If α+ β > 1, then F is single valued.

The case of p+ q = 1 was investigated by Popa in [13], Inoan and Popa
in [7] and recently, by Smajdor and Szczawińska in [14].

In this paper, we determine the conditions for which an s.v. function
F : K → n(Y ) satisfying the inclusion

αF (x) + βF (y) ⊂ F (px+ qy), x, y ∈ K, (1.1)

where |α| < p and diamF (x) ≤ M∥x∥, x ∈ K (for some M > 0) admits a
selection satisfying the corresponding functional equation. It is easy to check
that if F satisfies the opposite inclusion, then it is single valued. Theorem 2.1
and also the method of its proof are used for the investigation of the Rassias
stability of general linear functional equation.

2. The main theorem

Let (X, ∥ · ∥) and (Y, ∥ · ∥) be real normed spaces and let K be a nonempty
subset of X. Consider an s.v. function F : K → n(Y ). A function f : K → Y
is a selection of the s.v. function F if and only if f(x) ∈ F (x), x ∈ K. Let

Sel(F ) := {f : K → Y : f(x) ∈ F (x), x ∈ K}.

It is easy to check that if there exists a constantM > 0 such that diamF (x) ≤
M∥x∥ for all x ∈ K, then the function

d(f, g) := sup

{
∥f(x)− g(x)∥

∥x∥
, x ∈ K \ {0}

}
, f, g ∈ Sel(F ),

is a metric in Sel(F ). Moreover, if F (x) is complete for every x ∈ K, the
metric space (Sel(F ), d) is complete. Obviously, the convergence in the space
(Sel(F ), d) implies the pointwise convergence on the set K.

Theorem 2.1. Let (X, ∥·∥) and (Y, ∥·∥) be real normed spaces and let K ⊂ X
be such that 0 ∈ K. Assume that p, q > 0 and α, β ∈ R are fixed and one of
the following conditions holds:

(i) |α| < p and K ⊂ pK,
(ii) |β| < q and K ⊂ qK.
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Consider an s.v. function F : K → cp(Y ) such that 0 ∈ F (0) and

diamF (x) ≤ M∥x∥, x ∈ K,

for some positive constant M . If

αF (x) + βF (y) ⊂ F (px+ qy), x, y ∈ K, px+ qy ∈ K, (2.1)

then there exists a unique selection f : K → Y of F such that

αf(x) + βf(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K.

Proof. Assume that |α| < p and K ⊂ pK. Since diamF (0) = 0 and 0 ∈ F (0),
F (0) = {0}. Putting y = 0 in (2.1), we obtain

αF

(
x

p

)
⊂ F (x), x ∈ K. (2.2)

Let

T (g)(x) := αg

(
x

p

)
, x ∈ K, g ∈ Sel(G).

By (2.2), T (g) ∈ Sel(F ), g ∈ Sel(F ). Moreover, for every g1, g2 ∈ Sel(F ),

d
(
T (g1), T (g2)

)
= |α| sup

{
∥g1

(
x
p

)
− g2

(
x
p

)
∥

∥x∥
, x ∈ K \ {0}

}

=
|α|
p

sup

{
∥g1

(
x
p

)
− g2

(
x
p

)
∥

∥x
p∥

, x ∈ K \ {0}

}

≤ |α|
p

d(g1, g2).

Since |α| < p, the map T : Sel(F ) → Sel(F ) is contractive in the com-
plete metric space (Sel(F ), d), so by the Banach theorem, it has a unique
fixed point f and limn→∞ Tn(g) = f for each g ∈ Sel(F ). Hence f : K → Y
is the unique selection of the s.v. function F such that

f(x) = αf

(
x

p

)
, x ∈ K.

Fix g ∈ Sel(F ) and x, y ∈ K such that px+ qy ∈ K. Then

x

p
,
y

p
,
px+ qy

p
∈ K.

By (2.1),

αg

(
x

p

)
+ βg

(
y

p

)
, g

(
px+ qy

p

)
∈ F

(
px+ qy

p

)
.

Hence ����αg
(
x

p

)
+ βg

(
y

p

)
− g

(
px+ qy

p

)���� ≤ diamF

(
px+ qy

p

)

≤ M

����
px+ qy

p

���� .
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Thus

��αT (g)(x) + βT (g)(y)− T (g)(px+ qy)
�� ≤ |α|

p
M∥px+ qy∥

for every x, y ∈ K such that px+ qy ∈ K. Proceeding by induction, we get

��αT n(g)(x) + βT n(g)(y)− T n(g)(px+ qy)
�� ≤

(
|α|
p

)n

M ∥px+ qy∥

for every n ∈ N and all x, y ∈ K with px+qy ∈ K. Letting n → ∞, we obtain

αf(x) + βf(y) = f(px+ qy), x, y ∈ K, px+ qy ∈ K. �

Let X and Y be real vector spaces and K a convex cone in X. It is easy
to check that if f : K → Y satisfies the equation

αf(x) + βf(y) = f(px+ qy), x, y ∈ K,

and f(0) = 0, then f is additive; i.e.,

f(x) + f(y) = f(x+ y), x, y ∈ K.

Corollary 2.2. Let p, q > 0 and |α| < p (or |β| < q). Assume that (X, ∥ · ∥)
and (Y, ∥ · ∥) are normed spaces, K a convex cone in X and F : K → cp(Y )
an s.v. function such that 0 ∈ F (0) and

diamF (x) ≤ M∥x∥, x ∈ K,

for some constant M > 0. If

αF (x) + βF (y) ⊂ F (px+ qy), x, y ∈ K,

then the unique selection f : K → Y of F fulfilling the equation

αf(x) + βf(y) = f(px+ qy), x, y ∈ K,

is additive.

Remark 2.3. If |α| = p and |β| = q, the above corollary is not true.

Proof. Let K = [0,+∞) and let F : K → c(R) be an s.v. function defined by

F (x) = [0, x], x ∈ K,

and diamF (x) = |x|, x ∈ K. Then

F (x+ y) = F (x) + F (y), x, y ∈ K,

and for every a ∈ [0, 1], the function f(x) = ax, x ∈ K, is an additive selection
of F . �



Vol. 18 (2016) Selections of set-valued functions 137Selections of set-valued functions 5

3. Stability results

In the first part of this section we present an application of Theorem 2.1
to the investigation of the Rassias stability of the general linear functional
equation

αf(x) + βf(y) = f(px+ qy). (3.1)

For definition and more results in the Rassias stability theory see, for instance,
[6, 8]. The general linear equation was considered by several authors (for
example, [1, 2, 12]). A set-valued approach can be found in [3].

Gajda showed in [4] (see also [8, Theorem 2.6]) that for ε > 0 there is a
function f : R → R satisfying the inequality

∣∣f(x) + f(y)− f(x+ y)
∣∣ ≤ ε(|x|+ |y|), x, y ∈ R,

while there is no constant M ≥ 0 and no additive function f0 : R → R such
that ∣∣f(x)− f0(x)

∣∣ ≤ M |x|, x ∈ R.
We apply the method used in the proof of Theorem 2.1 to obtain the

stability result for equation (3.1). We will denote by R+ and Q+ the set of
all nonnegative real and rational numbers, respectively.

Theorem 3.1. Let K be a convex cone in a real normed space (X, ∥ · ∥),
(Y, ∥ · ∥) a real Banach space and ε : R+ × R+ → R+ an R+-homogenous
function. Assume that p, q > 0, α, β ∈ R are fixed and |α| < p. If a function
f : K → Y satisfies

∥αf(x) + βf(y)− f(px+ qy)∥ ≤ ε(∥x∥, ∥y∥), x, y ∈ K,

then there exists a unique function f0 : K → Y fulfilling the functional equa-
tion

αf0(x) + βf0(y) = f0(px+ qy), x, y ∈ K,

and such that

∥f(x)− f0(x)− f(0)∥ ≤ M∥x∥, x ∈ K,

for some M > 0. Moreover,

∥f(x)− f0(x)− f(0)∥ ≤ ε(1, 0)

p− α
∥x∥, x ∈ K,

and f0 is an additive function. In particular, if ε(1, 0) = 0, then

f(x) = f0(x)− f(0), x ∈ K.

Proof. Let g : K → Y be given by g(x) = f(x) − f(0), x ∈ K. It is easy to
check that g(0) = 0 and

∥αg(x) + βg(y)− g(px+ qy)∥ ≤ ε(∥x∥, ∥y∥), x, y ∈ K. (3.2)

Hence, for all x, y ∈ K,

αg(x) + βg(y) ∈ g(px+ qy) + ε(∥x∥, ∥y∥)B, (3.3)
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where B denotes the unit closed ball in the space Y . Setting y = 0 and re-
placing x by x/p in (3.3), we obtain

αg

(
x

p

)
∈ g(x) + ε

(
∥x∥
p

, 0

)
B = g(x) +

ε(1, 0)

p
∥x∥B, x ∈ K.

Consider an s.v. function G : K → cl(Y ) given by

G(x) = g(x) +
ε(1, 0)

p− α
∥x∥B, x ∈ K.

Then

diamG(x) =
2ε(1, 0)

p− α
∥x∥, x ∈ K,

and

αG

(
x

p

)
= αg

(
x

p

)
+ α

ε(1, 0)

p− α

����
x

p

����B

⊂ g(x) +
ε(1, 0)

p

(
1 +

α

p− α

)
∥x∥B = G(x)

for all x ∈ K. The idea of the proof is the same as before so we only give a
sketch. The function T : Sel(G) → Sel(G), given by

T (h)(x) := αh

(
x

p

)
, x ∈ K, h ∈ Sel(G),

is contraction with the constant |α|/p. By the Banach theorem, there exists
a unique function f0 ∈ Sel(G) such that

f0(px) = αf0(x), x ∈ K,

and limn→∞ Tn(g) = f0. By the definition of G,

∥f0(x)− g(x)∥ ≤ ε(1, 0)

p− α
∥x∥, x ∈ K.

Since g satisfies (3.2) and ε is positively homogeneous,

��αT (g)(x) + βT (g)(y)− T (g)(px+ qy)
�� ≤ |α|

p
ε(∥x∥, ∥y∥)

for all x, y ∈ K. Proceeding by induction, we get

��αTn(g)(x) + βTn(g)(y)− Tn(g)(px+ qy)
�� ≤

(
|α|
p

)n

ε(∥x∥, ∥y∥)

for every x, y ∈ K and n ≥ 1. It follows that

αf0(x) + βf0(y) = f0(px+ qy), x, y ∈ K.

Since f0(0) = 0, f0 is additive.
For the end assume that f1 : K → Y is a solution of equation (3.1) such

that

∥f1(x)− g(x)∥ ≤ M∥x∥, x ∈ K,
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for some positive M . Then

f1(0) = 0, αf1

(
x

p

)
= f1(x), x ∈ K

and

∥f1(x)− f0(x)∥ ≤
(
M +

ε(1, 0)

p− α

)
∥x∥, x ∈ K.

It is easy to check that

∥f1(x)− f0(x)∥ ≤
(
|α|
p

)n (
M +

ε(1, 0)

p− α

)
∥x∥, x ∈ K, n ∈ N.

Hence f1 = f0, which ends the proof. �

In the second part of this section, we apply Theorem 2.1 to obtain a
stability result for equation (3.1).

Theorem 3.2. Let K be a convex cone in a real normed space (X, ∥·∥), (Y, ∥·∥)
a real Banach space and p, q > 0, α, β ∈ R fixed constants such that |α| < p.
Consider η ≥ 0 and a function f : K → Y satisfying the inequality

∥αf(x) + βf(y)− f(px+ qy)∥ ≤ η (∥x∥+ ∥y∥), x, y ∈ K.

If there exists a constant λ > 0 such that

(1 + λα)∥x∥+ (1 + λβ)∥y∥ ≤ λ∥px+ qy∥, x, y ∈ K, (3.4)

then there exists a unique function f0 : K → Y fulfilling the functional equa-
tion

αf0(x) + βf0(y) = f0(px+ qy), x, y ∈ K,

and such that

∥f(x)− f0(x)− f(0)∥ ≤ M∥x∥, x ∈ K,

for some M > 0. Moreover,

∥f(x)− f0(x)− f(0)∥ ≤ λη∥x∥, x ∈ K,

and f0 is an additive function.

Proof. Let g : K → Y be given by g(x) = f(x)−f(0), x ∈ K. As in the proof
of Theorem 3.1, g(0) = 0 and

∥αg(x) + βg(y)− g(px+ qy)∥ ≤ η (∥x∥+ ∥y∥), x, y ∈ K.

In particular, for all x, y ∈ K,

αg(x) + βg(y) ∈ g(px+ qy) + η(∥x∥+ ∥y∥)B,

where B is the unit closed ball in Y . Define an s.v. function G : K → cl(Y )
as follows:

G(x) = g(x) + λη∥x∥B, x ∈ K.

Then 0 ∈ G(0), diamG(x) = 2ηλ∥x∥, x ∈ K, and

αG(x) + βG(y) ⊂ G(px+ qy), x, y ∈ K.
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Indeed, let x, y ∈ K be fixed. By condition (3.4),

αG(x) + βG(y) = αg(x) + βg(y) + η
(
λα∥x∥+ λβ ∥y∥

)
B

⊂ g(px+ qy) + η (∥x∥+ ∥y∥)B + η
(
λα∥x∥+ λβ ∥y∥

)
B

⊂ g(px+ qy) + ηλ∥px+ qy∥B
= G(px+ qy).

By Theorem 2.1, there exists exactly one selection f0 : K → Y of the
s.v. function G satisfying equation (3.1). Hence

∥f(x)− f0(x)− f(0)∥ ≤ λη∥x∥, x ∈ K.

Since f0(0) = 0, f0 must be additive. The proof that f0 is the only solution
of equation (3.1) such that

∥f(x)− f0(x)− f(0)∥ ≤ M∥x∥, x ∈ K,

for some M > 0 runs as before. �

Example. Let |α| < p and |β| < q. Every convex cone

K ⊂
{
(x1, . . . , xn) ∈ Rn : x1 ≥ 0 ∧ · · · ∧ xn ≥ 0 ∨ x1 ≤ 0 ∧ · · · ∧ xn ≤ 0

}

satisfies condition (3.4) with

λ ≥ max

{
1

p− α
,

1

q − β

}

and with the norm in Rn given by

∥(x1, . . . , xn)∥ = |x1|+ · · ·+ |xn|, (x1, . . . , xn) ∈ Rn.

4. The selection theorem

In this section we present a certain consequence of Theorem 2.1 for the case
of a compact-valued s.v. function F satisfying the inclusion (1.1) and such
that the function x �→ diamF (x) maps bounded sets onto bounded ones.

Lemma 4.1. Let p, q > 0 and α, β ∈ R be fixed. Assume that X and Y are real
vector spaces, K a convex cone in X and K a collection of nonempty subsets
of Y closed under intersections of chains. Let F : K → K be an s.v. func-
tion fulfilling the inclusion (1.1) and 0 ∈ F (0). There exists a minimal s.v.
function F0 : K → K such that

(i) F0(x) ⊂ F (x), x ∈ K,
(ii) 0 ∈ F0(0),
(iii) αF0(x) + βF0(y) ⊂ F0(px+ qy), x, y ∈ K.

Proof. Define the set F of all s.v. functions H : K → K such that

H(x) ⊂ F (x), x ∈ K,

0 ∈ H(0) and

αH(x) + βH(y) ⊂ H(px+ qy), x, y ∈ K.
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The set F is nonempty, because F ∈ F , and partially ordered by the relation

H1 ≼ H2 ⇐⇒ H1(x) ⊂ H2(x), x ∈ K, H1, H2 ∈ F .

It is enough to prove that there is a minimal element in F . Let C be a chain
in F . Put

H0(x) =
∩

{H(x) : H ∈ C}, x ∈ K.

Since K is closed under intersections, H0(x) ∈ K, x ∈ K. Obviously, 0 ∈
H0(0) and H0(x) ⊂ H(x), x ∈ K. Fix now x, y ∈ K. For every H ∈ C,

αH0(x) + βH0(y) ⊂ αH(x) + βH(y) ⊂ H(px+ qy),

hence

αH0(x) + βH0(y) ⊂ H0(px+ qy).

Therefore, the s.v. function H0 : K → K belongs to F and H0 ≼ H, H ∈ C.
By the Kuratowski–Zorn lemma , there exists a minimal element F0 in the
set F . �

Lemma 4.2. Let p, q > 0 and α, β ∈ R be fixed. Assume that X and Y are
real vector spaces, K a convex cone in X and K a family of nonempty subsets
of Y such that αK ⊂ K and λK ⊂ K, λ ∈ Q+. Consider an s.v. function
F : K → K. If F0 : K → K is a minimal s.v. function such that

(i) F0(x) ⊂ F (x), x ∈ K,
(ii) 0 ∈ F0(0),
(iii) αF0(x) + βF0(y) ⊂ F0(px+ qy), x, y ∈ K,

then F0 is superadditive and Q+-homogeneous; i.e.,

F0(x) + F0(y) ⊂ F0(x+ y), x, y ∈ K,

and F0(λx) = λF0(x), x ∈ K, λ ∈ Q+.

Proof. Putting y = 0 in (iii) and by (ii),

αF0

(
x

p

)
⊂ F0(x), x ∈ K.

Define

H(x) = αF0

(
x

p

)
, x ∈ K.

Then H(x) ∈ K, H(x) ⊂ F0(x) ⊂ F (x), x ∈ K and 0 ∈ αF0(0) = H(0). Ob-
serve that the s.v. function H : K → K satisfies the inclusion (iii). Indeed, let
x, y ∈ K be fixed. Then

αH(x) + βH(y) = α

(
αF0

(
x

p

)
+ βF0

(
y

p

))

⊂ αF0

(
px+ qy

p

)
= H(px+ qy).

Thus, by the minimality of F0, F0(x) = H(x), x ∈ K; i.e.,

F0(x) = αF0

(
x

p

)
, x ∈ K.
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Similarly we get

F0(y) = βF0

(
y

q

)
, y ∈ K.

Hence, by (iii),

F0(x) + F0(y) = αF0

(
x

p

)
+ βF0

(
y

q

)
⊂ F0(x+ y)

for every x, y ∈ K; i.e., F0 is superadditive. In particular,

nF0

(x
n

)
⊂ F0(x), x ∈ K, n ∈ N.

Fix now n ∈ N and consider the s.v. function

K ∋ x �→ nF0

(x
n

)
∈ K.

We have

nF0

(x
n

)
⊂ F0(x) ⊂ F (x), x ∈ K,

0 ∈ nF0(0) and

αnF0

(x
n

)
+ βnF0

( y

n

)
⊂ nF0

(
px+ qy

n

)
, x, y ∈ K.

Therefore,

nF0

(x
n

)
= F0(x), x ∈ K,

by the minimality of F0. Consequently,

F0

(
λx

)
= λF0(x), x ∈ K, λ ∈ Q+. �

Remark 4.3. Let (X, ∥·∥) be a real normed space and K ⊂ X a cone. Assume
that f : K → R is Q+-homogeneous. The function f maps bounded subsets
of K onto bounded sets if and only if there exists a positive constant M such
that

|f(x)| ≤ M∥x∥, x ∈ K.

Proof. Assume that f : K → R is Q+-homogeneous (in particular, f(0) = 0)
and maps bounded subsets of K onto bounded sets. Let

M = sup{|f(x)| : x ∈ K ∧ ∥x∥ ≤ 1}.
Fix x ∈ K \ {0}. There exists a decreasing sequence (λn)n such that

lim
n→∞

λn = 1 and λn∥x∥ ∈ Q+, n ∈ N.

Since ����
x

λn∥x∥

���� =
1

λn
< 1, n ∈ N,

we have ����f
(

x

λn∥x∥

)���� ≤ M, n ∈ N.

Consequently |f(x)| ≤ M∥x∥.
The opposite implication is obvious. �
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Theorem 4.4. Let p, q > 0, α, β ∈ R and |α| < p. Assume that (X, ∥ · ∥) and
(Y, ∥ · ∥) are real normed spaces, K is a convex cone in X and F : K → c(Y )
an s.v. function such that 0 ∈ F (0) and

αF (x) + βF (y) ⊂ F (px+ qy), x, y ∈ K.

If K ∋ x �→ diamF (x) ∈ R maps bounded sets onto bounded sets, then there
exists a unique selection f : K → Y of F fulfilling the equation

αf(x) + βf(y) = f(px+ qy), x, y ∈ K.

The selection f is additive.

Proof. The family c(Y ) is closed under intersections of chains and

λ c(Y ) ⊂ c(Y ), λ ∈ R.

By Lemma 4.1, there exists a minimal s.v. function F0 : K → c(Y ) such that
F0(x) ⊂ F (x), x ∈ K, 0 ∈ F0(0) and

αF0(x) + βF0(y) ⊂ F0(px+ qy), x, y ∈ K.

Lemma 4.2 shows now that F0 is superadditive and Q+-homogeneous. Since
diamF0(x) ≤ diamF (x), x ∈ K, the function K ∋ x �→ diamF0(x) ∈ R
maps bounded sets onto bounded sets and it is Q+-homogeneous. Hence, by
Remark 4.3, there exists a positive constant M such that

diamF0(x) ≤ M∥x∥, x ∈ K.

Consequently, by Theorem 2.1, the s.v. function F0 admits a unique selection
f0 : K → Y such that

αf0(x) + βf0(y) = f0(px+ qy), x, y ∈ K.

Since f0(0) = 0 and f0 satisfies the above equation, f0 must be additive.
Assume that f1, f2 : K → Y are selections of F such that

αfi(x) + βfi(y) = fi(px+ qy), x, y ∈ K, i = 1, 2.

They are additive and

fi(x) = αfi

(
x

p

)
, x ∈ K, i = 1, 2.

Hence, for every n ∈ N,

fi(x) = αnfi

(
x

pn

)
, x ∈ K, i = 1, 2.

Fix x ∈ K arbitrary. Since K ∋ z �→ diamF (z) ∈ R maps bounded sets onto
bounded sets, there exists a constant M such that

diamF (y) ≤ M, ∥y∥ ≤ 2∥x∥.



144 A. Smajdor and J. Szczawińska JFPTA12 A. Smajdor and J. Szczawińska

For every n ∈ N there exists a number qn ∈ (1, 2) such that qnp
n ∈ Q+.

Obviously, ∥qnx∥ ≤ 2∥x∥, n ∈ N. Hence, for every n ∈ N,

∥f1(x)− f2(x)∥ = |α|n
����f1

(
x

pn

)
− f2

(
x

pn

)����

= |α|n
����f1

(
qnx

qnpn

)
− f2

(
qnx

qnpn

)����

=
1

qn

(
|α|
p

)n ��f1(qnx)− f2(qnx)
��

≤
(
|α|
p

)n

diamF (qnx) ≤
(
|α|
p

)n

M.

Letting n → +∞ ends the proof. �
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