Skip to main content
Log in

The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Exoelectrogenic biofilms have received considerable attention for their ability to enhance electron transfer between contaminants and electrodes in bioelectrochemical systems. In this study, we constructed anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltage application modes, voltages and hydraulic retention times (HRTs). In addition, we evaluated their capacity to remove chloramphenicol (CAP). AO-UBER can effectively mineralize CAP and its metabolites through electrical stimulation when an appropriate voltage is applied. The CAP removal efficiencies were ∼81.1%±6.1% (intermittent voltage application mode) and 75.2%±4.6% (continuous voltage application mode) under 0.5 V supply voltage, which were ∼21.5% and 15.6% greater than those in the control system without voltage applied, respectively. The removal efficiency is mainly attributed to the anaerobic chamber. High-throughput sequencing combined with catabolic pathway analysis indicated that electrical stimulation selectively enriched Megasphaera, Janthinobacterium, Pseudomonas, Emticicia, Zoogloea, Cloacibacterium and Cetobacterium, which are capable of denitrification, dechlorination and benzene ring cleavage, respectively. This study shows that under the intermittent voltage application mode, AO-UBERs are highly promising for treating antibiotic-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailijiang N, Chang J, Liang P, Li P, Wu Q, Zhang X, Huang X (2016). Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor. Bioresource Technology, 201: 1–7

    Article  CAS  Google Scholar 

  • Ailijiang N, Chang J L, Liang P, Zhang X Y, Huang X (2021a). Electrical stimulation on biodegradation of phenolics in a novel anaerobic-aerobic-coupled upflow bioelectrochemical reactor. Chemical Engineering Journal, 421: 127840

    Article  CAS  Google Scholar 

  • Ailijiang N, Chang J L, Liang P, Zhang X Y, Huang X (2021b). Impact of electrical stimulation modes on the degradation of refractory phenolics and the analysis of microbial communities in an anaerobic-aerobic-coupled upflow bioelectrochemical reactor. Bioresource Technology, 320(Pt B): 124371

    Article  CAS  Google Scholar 

  • Cao C, Huang J, Yan C N (2022). Unveiling changes of microbial community involved in N and P removal in constructed wetlands with exposing to silver nanoparticles. Journal of Hazardous Materials, 432: 128642

    Article  CAS  Google Scholar 

  • Cao Z, Zhang M, Zhang J, Zhang H (2016). Impact of continuous and intermittent supply of electric assistance on high-strength 2,4-dichlorophenol (2,4-DCP) degradation in electro-microbial system. Bioresource Technology, 212: 138–143

    Article  CAS  Google Scholar 

  • Cébron A, Beguiristain T, Bongoua-Devisme J, Denonfoux J, Faure P, Lorgeoux C, Ouvrard S, Parisot N, Peyret P, Leyval C (2015). Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environmental Science and Pollution Research International, 22(18): 13724–13738

    Article  Google Scholar 

  • Cho Y J, Jung Y J, Hong S G, Kim O S (2017). Complete genome sequence of a psychrotolerant denitrifying bacterium, Janthinobacterium svalbardeasis PAMC 27463. Genome Announcements, 5(46): e01178–17

    Article  Google Scholar 

  • Gregory S J, Anderson C W N, Camps-Arbestain M, Biggs P J, Ganley A R D, O’Sullivan J M, McManus M T (2015). Biochar in co-contaminated soil manipulates arsenic solubility and microbiological community structure, and promotes organochlorine degradation. PLoS One, 10(4): e0125393

    Article  Google Scholar 

  • Grice E A, Kong H H, Conlan S, Deming C B, Davis J, Young A C, Bouffard G G, Blakesley R W, Murray P R, Green E D, Turner M L, Segre J A (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324(5931): 1190–1192

    Article  CAS  Google Scholar 

  • Hassan H, Jin B, Donner E, Vasileiadis S, Saint C, Dai S (2018). Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 332: 647–657

    Article  CAS  Google Scholar 

  • Jiang X, Shen J, Han Y, Lou S, Han W, Sun X, Li J, Mu Y, Wang L (2016). Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Research, 88: 257–265

    Article  CAS  Google Scholar 

  • Jiang X B, Chen D, Mu Y, Pant D, Cheng H Y, Shen J Y (2021). Electricity-stimulated anaerobic system (ESAS) for enhanced energy recovery and pollutant removal: A critical review. Chemical Engineering Journal, 411: 128548

    Article  CAS  Google Scholar 

  • Kim B C, Moon C, Choi Y, Nam K (2022). Long-term stability of high-n-caproate specificity-ensuring anaerobic membrane bioreactors: controlling microbial competitions through feeding strategies. ACS Sustainable Chemistry & Engineering, 10(4): 1595–1604

    Article  CAS  Google Scholar 

  • Liang B, Cheng H Y, Kong D Y, Gao S H, Sun F, Cui D, Kong F Y, Zhou A J, Liu W Z, Ren N Q, Wu W M, Wang A J, Lee D J (2013). Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environmental Science & Technology, 47(10): 5353–5361

    Article  CAS  Google Scholar 

  • Liang B, Kong D, Ma J, Wen C, Yuan T, Lee D J, Zhou J, Wang A (2016). Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Research, 100: 157–168

    Article  CAS  Google Scholar 

  • Liang B, Ma J, Cai W, Li Z, Liu W, Qi M, Zhao Y, Ma X, Deng Y, Wang A, Zhou J (2019). Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 148: 398–406

    Article  CAS  Google Scholar 

  • Lin H Z, Zhu L A, Xu X Y, Zang L L, Kong Y (2011). Reductive transformation and dechlorination of chloronitrobenzenes in UASB reactor enhanced with zero-valent iron addition. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 86(2): 290–298

    Article  CAS  Google Scholar 

  • Logan B E, Rabaey K (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095): 686–690

    Article  CAS  Google Scholar 

  • Logan B E, Rossi R, Ragab A, Saikaly P E (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews. Microbiology, 17(5): 307–319

    Article  CAS  Google Scholar 

  • Marounek M, Fliegrova K, Bartos S (1989). Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Applied and Environmental Microbiology, 55(6): 1570–1573

    Article  CAS  Google Scholar 

  • Monferrán M V, Echenique J R, Wunderlin D A (2005). Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere, 61(1): 98–106

    Article  Google Scholar 

  • Nagao T, Kumabe A, Komatsu F, Yagi H, Suzuki H, Ohshiro T (2017). Gene identification and characterization of fucoidan deacetylase for potential application to fucoidan degradation and diversification. Journal of Bioscience and Bioengineering, 124(3): 277–282

    Article  CAS  Google Scholar 

  • Ta D T, Lin C Y, Ta T M, Chu C Y (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresource Technology, 317: 123986

    Article  CAS  Google Scholar 

  • Tang H, Wang J Q, Zhang S, Pang H W, Wang X X, Chen Z S, Li M, Song G, Qiu M Q, Yu S J (2021). Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges. Journal of Cleaner Production, 319: 128641

    Article  CAS  Google Scholar 

  • Wang S, Xu M, Jin B, Wünsch U J, Su Y, Zhang Y (2022). Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. Water Research, 211: 118046

    Article  CAS  Google Scholar 

  • Wu Q, Chang J L, Yan X, Ailijiang N, Fan Q X, Wang S H, Liang P, Zhang X Y, Huang X (2016). Electrical stimulation enhanced denitrification of nitrite-dependent anaerobic methane-oxidizing bacteria. Biochemical Engineering Journal, 106: 125–128

    Article  CAS  Google Scholar 

  • Xiong R, Wei X, Jiang W, Lu Z, Tang Q, Chen Y, Liu Z, Kang J, Ye Y, Liu D (2022). Photodegradation of chloramphenicol in micro-polluted water using a circulatory thin-layer inclined plate reactor. Chemosphere, 291(Pt 2): 132883

    Article  CAS  Google Scholar 

  • Xue Y, Wang Z H, Bush R, Yang F, Yuan R X, Liu J S, Smith N, Huang M H, Dharmarajan R, Annamalai P (2021). Resistance of alkyl chloride on chloramphenicol to oxidative degradation by sulfate radicals: Kinetics and mechanism. Chemical Engineering Journal, 415: 129041

    Article  CAS  Google Scholar 

  • Yang Y J, Xu L J, Wang J L (2021). An enhancement of singlet oxygen generation from dissolved oxygen activated by three-dimensional graphene wrapped nZVI-doped amorphous Al species for chloramphenicol removal in the Fenton-like system. Chemical Engineering Journal, 425: 131497

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Y, Quan X, Chen S (2013). Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC) —anaerobic reactor. Water Research, 47(15): 5719–5728

    Article  CAS  Google Scholar 

  • Zhang J L, Hu J, Zhang T T, Cao Z P (2019). Improvement of 2,4-dichlorophenol degradation and analysis of functional bacteria in anaerobic microbial system enhanced with electric assistance. Bioresource Technology Reports, 5: 80–85

    Article  Google Scholar 

  • Zhang X Q, Feng H J, Shan D, Shentu J, Wang M Z, Yin J, Shen D S, Huang B C, Ding Y C (2014). The effect of electricity on 2-fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochimica Acta, 135: 439–446

    Article  CAS  Google Scholar 

  • Zhao R, Feng J, Huang J, Li X, Li B (2021). Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Science of the Total Environment, 755(Pt 2): 142632

    Article  CAS  Google Scholar 

  • Zheng M Q, Xu C Y, Zhong D, Han Y X, Zhang Z W, Zhu H, Han H J (2019). Synergistic degradation on aromatic cyclic organics of coal pyrolysis wastewater by lignite activated coke-active sludge process. Chemical Engineering Journal, 364: 410–419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledged financial support provided by the National Natural Science Foundation of China (No. 51968067), the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (No. 2018D01C044), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (China) (No. PCRRF19013) and the Student Research Training Project of XJU (China) (No. 201910755063).

Author information

Authors and Affiliations

Authors

Contributions

Yifan Liu: Conducting investigations, formulating methodology, conducting experiments, data collation and analysis, and writing the original draft. Qiongfang Zhang: Conducting experiments, data collation, analysis, writing, review, and editing. Nuerla Ailijiang: Conducting investigations, supervision, conceptualization, writing, review, editing, and formal analysis. Ainiwaer Sidike: Assisted with the experiments. Anwar Mamat: Conducted investigation, assistancd with sampling, and provided experimental guidance. Guangxiao Zhang: Assisted with the experiments. Miao Pu: Assisted with the experiments. Wenhu Cheng: Assisted with sample collection. Zhengtao Pang assisted with the experiments.

Corresponding author

Correspondence to Nuerla Ailijiang.

Additional information

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Highlights

• Presented coupled system enhanced biodegradation of antibiotic chloramphenicol.

• HRT and electrical stimulation modes were key influencing factors.

• Electrical stimulation had little effect on the chloramphenicol metabolic pathway.

• Microbial community structure varied with the voltage application mode.

Supporting information

11783_2022_1576_MOESM1_ESM.pdf

The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, Q., Sidike, A. et al. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure. Front. Environ. Sci. Eng. 16, 141 (2022). https://doi.org/10.1007/s11783-022-1576-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-022-1576-x

Keywords

Navigation