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H I G H L I G H T S

•AOA and comammox bacteria can be more
abundant and active than AOB/NOB at WWTPs.

•Coupled DNRA/anammox and NOx-DAMO/
anammox/comammox processes are demon-
strated.

• Substrate level, SRT and stressors determine the
niches of overlooked microbes.

•Applications of overlooked microbes in enhan-
cing nitrogen removal are promising.
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G R A P H I C A B S T R A C T

A B S T R A C T

Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater
engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria,
heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that
are less abundant but functionally important in wastewater nitrogen removal. These microbes include,
but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox)
bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent
anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of
high-throughput molecular technologies has enabled the detection, quantification, and characterization
of these minor populations. The aim of this review is therefore to synthesize the current knowledge on
the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at
wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal
processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes
from microbiology, ecology, and engineering perspectives will facilitate the design and operation of
more efficient and sustainable biological nitrogen removal processes.

© The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.
com.cn



1 Introduction

Reactive nitrogen is an indispensable nutrient for life, but
excess emissions of reactive N species will cause air, soil
and water pollution (Stein and Klotz, 2016). Nitrification-
denitrification based nitrogen removal processes have been
widely applied at wastewater treatment plants (WWTPs),
where ammonia oxidizing bacteria (AOB), nitrite oxidiz-
ing bacteria (NOB) and heterotrophic denitrifiers are
dominant microbes that have been extensively studied
(Wiesmann, 1994). In recent years, considerable research
efforts have been devoted to the autotrophic nitrogen
removal by anaerobic ammonium oxidation (anammox)
bacteria (Kartal et al., 2010). As a result, relevant review
articles summarizing the abundances and activities of these
key functional microorganisms have been published
(Kartal et al., 2010; Lu et al., 2014; Soliman and Eldyasti,
2018). However, there are diverse groups of previously
“overlooked” N-cycling microorganisms that may also
play important roles in wastewater nitrogen removal,
despite of their relatively low abundances in the commu-
nity. These microorganisms include, but not limited to
ammonia oxidizing archaea (AOA), the recently discov-
ered complete ammonia oxidizing (comammox) bacteria,
dissimilatory nitrate reduction to ammonia (DNRA)
bacteria, and nitrate/nitrite-dependent anaerobic methane
oxidizing (NOx-DAMO) archaea and bacteria (Fig. 1)
(Tiedje, 1988; Park et al., 2006; Ettwig et al., 2010; Haroon
et al., 2013; Daims et al., 2015; Van Kessel et al., 2015).
With the rapid development of high-throughput mole-

cular biology approaches, e.g., metagenomics and tran-
scriptomics methods, the distribution, phylogeny, and
metabolic properties of the previously overlooked N-
cycling microorganisms are increasingly studied in a more

comprehensive manner. For example, AOA and comam-
mox bacteria are the new members of autotrophic nitrifiers
discovered by genomic sequencing rather than traditional
culture-based method. Their functions in natural and
engineered environments are also increasingly studied
based on omics approaches (Palomo et al., 2018). It is
previously believed that DNRA bacteria made limited
contributions to nitrogen removal at WWTPs. However,
recent studies based on metagenomics revealed their
adverse roles in maintaining anammox process stability
(Keren et al., 2020). NOx-DAMO microorganisms are
widespread in natural habitats but less detectable at
WWTPs (Van Kessel et al., 2018; Ren et al., 2020).
However, they could be the key microbes facilitating
energy-neutral biological nitrogen treatment using
methane as the electron donor. Although great efforts
have been made in recent years to characterize these
previously overlooked N-cycling microorganisms, critical
knowledge gaps remain in their in situ activities and
metabolic interactions with other microorganisms during
biological nitrogen removal.
In this review, we synthesized the current knowledge on

the distribution, ecological niche, and kinetic properties of
overlooked N-cycling microorganisms, including AOA,
comammox bacteria, DNRA bacteria and NOx-DAMO
microorganisms in wastewater treatment. Their potential
applications in novel wastewater nitrogen removal pro-
cesses, such as partial nitration/denitrification, partial
nitration/anammox, partial denitritation/anammox, NOx-
DAMO/anammox, and NOx-DAMO/comammox systems
are also discussed. More insights into these previously
overlooked microorganisms will contribute to a better
understanding of their roles in wastewater N cycle,
interactions with conventional N-cycling microorganisms

Fig. 1 Overlooked microorganisms in the wastewater microbial nitrogen cycle.
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in community assembly and functioning, and facilitate the
development of sustainable wastewater nitrogen removal
techniques in the future.

2 Ammonia oxidizing microorganisms other
than canonical AOB and NOB

2.1 Ammonia oxidizing archaea (AOA)

AOA belonging to Thaumarchaeota are prevalent in
diverse environments, e.g., marine, hot spring, coral, and
soils (Hatzenpichler, 2012). They possess the unique 16S
rRNA and amoA genes that distinguish them from AOB
(Könneke et al., 2005), which can be further divided into
group I.1a (Nitrosopumilus), I.1a associated (Nitrosota-
lea), I.1b (Nitrososphaera) and ThAOA (Nitrosocaldus)
(Table 1). AOA are much smaller, and have higher
ammonia and oxygen affinity (Km,NH3

¼ 0:003 –
4:4μmol=L, Km,O2

¼ 2:01 – 10:38μmol=L) and lower
ammonia utilization rate than AOB (Table 2) (Martens-
Habbena et al., 2009; Kits et al., 2017). They can grow in
acidic/alkaline, hot/cold, and eutrophic/oligotrophic envir-
onments (Hatzenpichler, 2012). The monolayer cell
membrane of AOA contains glycerol dialkyl glycerol
tetraethers, forming stable ether bonds that are beneficial to
their adaptations to extreme environments (Schouten et al.,
2013).
The presence of AOA at WWTPs has been widely

reported (Sauder et al., 2012; Pan et al., 2018). Their
relative abundances varied from 2.99 � 102 to 8.65 �
108amoA gene copies/g sludge, accounting for 0.07%–
96.04% of the total ammonia oxidizers (Fig. 2) (Park et al.,
2006; Limpiyakorn et al., 2011; Gao et al., 2014; Yin et al.,
2018). DNA-SIP was always used to clarify the contribu-
tion of AOA and AOB, which demonstrated that AOA

were significantly dominant in winter despite numeral
relationship (Pan et al., 2018). These AOA populations are
mostly associated with group I.1a and group I.1b (Park et
al., 2006). Factors determining the partitioning of AOA
and AOB in wastewater nitrification reactors include
substrate concentrations, solids retention time (SRT),
temperature, and organics/toxicants. The following condi-
tions favor the existence of AOA: 1) Nutrition levels (e.g.,
broad ammonia, diverse organics): The abundances
ofAOAwere found negatively correlated with ammonium
concentration in the effluent of domestic WWTPs (Li et al.,
2018). When treating landfill leachate with a high
ammonia concentration (118�15 mgN/L), AOA could
outcompete AOB and comammox bacteria at relatively
low DO (£1.5 mg/L) (Yang et al., 2020). Otherwise, AOA
were abundant in some other industrial WWTPs (e.g.,
petroleum refinery), since they could utilize organics such
as malate and succinate as alternative electron donors
(Sauder et al., 2017). Another study demonstrated the
effectiveness of adding N-acyl-l-homoserine lactones in
upregulating amoA genes and the nitrification activity of
AOA (Gao et al., 2019). 2) Operation parameters (e.g.,
low dissolved oxygen (DO), long SRT): AOA could co-
exist with anaerobic microorganisms under hypoxic
conditions (DO< 0.1 mg/L), e.g., heterotrophic denitri-
fiers and anammox bacteria (AnAOB) (Straka et al., 2019).
Longer SRT is usually required to sustain more AOA due
to their relatively low growth rate (mmax = 0.010–0.050 /h).
This explains why AOA exceed AOB as the dominant
nitrifiers more frequently in biofilm systems than activated
sludge (up to 1–2 orders higher than AOB) (Chen et al.,
2017). 3) Environmental factors (e.g., high salinity, low
temperature, sensitive to toxicants): AOA can also
outcompete AOB in treating wastewater with 0.25%–3.5%
salinity (1.6–81.1 times more abundant) (Wu et al., 2020).
In winter, Candidatus Nitrosocosmicus exaquare are the

Table 1 Basic characteristics of the four overlooked nitrogen-cycling microorganisms

Microbes Reaction equation Key characteristics Representative species at WWTPs Reference

AOA NH4
+ + 1.5O2 = NO2

– + H2O+

2H+

(DG°′ = - 274.7 kJ/mol)

Aerobic, Thaumarchaeota Nitrosopumilus maritimus
Candidatus Nitrosocosmicus exaquare
Candidatus Nitrosotenuis cloacae

Martens-Hab-
bena et al., 2009

Comammox
bacteria

NH4
+ + 2O2 = NO3

– + H2O+

2H+

(DG°′ = - 348.9 kJ/mol)

Aerobic, Nitrospira lineage II
Mixotrophic (e.g., formate, urea)

Nitrospira inopinata
Canditatus Nitrospira nitrosa/ nitrificans/

kreftii

Daims et al.,
2015; Van Kes-
sel et al., 2015

DNRA bacteria C6H12O6 + 3 NO3
– + 6H+

= 6 CO2 + 3NH4
+ + H2O

(DG°′ = - 623 kJ/mol NO3
–-N)

Respiratory/Fermentative
Electron donors: organics, H2, HS

–

Enzymes: Nar/Nir, or Nap/Nrf

Wolinella succinogenes
Serratia marcescens

Salmonella typhimurium
Escherichia coli

Tiedje, 1988;
Holmes et al.,
2019; Pandey
et al., 2020

N-DAMO
archaea

4NO3
– + CH4 = 4NO2

– + CO2 +
2H2O

(DG°′ = - 503 kJ/mol CH4)

Reverse methanogenesis, ANME-2D
lineage

Enzymes: NarGH, MCR

Candidatus Methanoperedens nitroreducens Haroon et al.,
2013

n-DAMO
bacteria

8NO2
– + 3CH4 + 8H+ = 4N2 +

3CO2 +
10H2O

(DG°′ = - 928 kJ/mol CH4)

Inter-aerobic pathway, NC10 phylum
Enzymes: NirSJFD/GH/L, pMMO

Candidatus Methylomirabilis oxyfera/sinica/
limnetica/ lanthanidiphila

Ettwig et al.,
2010; He et al.,
2016; Graf
et al., 2018
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typical AOA population at WWTPs, which could be 52.95
times more abundant than AOB (Pan et al., 2018; Fan et

al., 2019). AOA encode copper-based ammonia oxidation
and respiration pathways, making them more copper-
dependent than AOB and sensitive to the existence of
metal-complexation organics in most industrial wastewater
(Stahl and De La Torre, 2012; Gwak et al., 2020). For
example, AOA could be strongly inhibited by 0.5 mmol/L
cysteine (62.86%–98.90%), tryptone (70.75%–100%), and
histidine (94.33%–96.51%) (Gwak et al., 2020). Other-
wise, AOA are generally more sensitive to some toxicants
than AOB, e.g., the NO-scavenger PTIO and short-chain
alkynes (Beeckman et al., 2018; Wright et al., 2020).
Nevertheless, AOA could be more tolerant to antibiotics
(e.g., streptomycin, kanamycin, ampicillin, and carbeni-
cillin) than AOB, and the presence of spiramycin selected
AOA as the dominant ammonia oxidizers (Zhang et al.,
2015).

2.2 Complete ammonia oxidizing (comammox) bacteria

Comammox bacteria oxidize ammonia to nitrate via nitrite
in a single microorganism. Thus far, all discovered
comammox bacteria belong to Nitrospira sublineage II,
and their 16S rRNA gene sequences are highly similar to
those of canonical NOB-Nitrospira (Daims et al., 2015).
Their amoA genes are different from those in AOB, but
more identical to the particulate methane monooxygenase

Table 2 Kinetic parameters of the conventional and overlooked nitrogen-cycling microorganisms

Microbes
Electron donor/

acceptor

Half saturation
constant of

electron donors
Km,d (µmol/L)

Half saturation
constant of

electron acceptors
Km,a (µmol/L)

Maximum
specific growth
rate µmax (/h)

Cell yield
(mg Protein /mol
NH3 or NO2

–)
Reference

Ammonia oxidizers NH4
+-N/O2

(bacteria)
1.9–200 6.9–17.4 0.007–0.088 250 Laanbroek et al., 1994; Jiang and

Bakken, 1999; Lawson and
Lücker, 2018

NH4
+-N/O2

(archaea)
0.003–4.4 2.01–10.38 0.010–0.050 298.4–304.3 Martens-Habbena et al., 2009; Qin

et al., 2014; Kits et al., 2017;
Lawson and Lücker, 2018

Nitrite oxidizers NO2
–-N/O2

(Nitrobacter)
49–1380 5.31–165.63 0.0115–0.125 83–108 Laanbroek et al., 1994; Blackburne

et al., 2007; Nowka et al., 2015;
Lawson and Lücker, 2018

NO2
–-N/O2

(Nitrospira)
9–27 2.19–5.94 0.027–0.083 120–213

Comammox bacteria NH4
+-N/O2 0.049, 0.040 NA 0.0061 394.7 Kits et al., 2017;

Sakoula et al., 2020
NO2

–-N/O2 449.2, 12.5 NA NA NA

DNRA bacteria Organic/ (NO3
–,

NO2
–)

NA NA 0.11–0.5 NA Simon, 2002

Inorganics/(NO3
–,

NO2
–)

NA NA 0.091 NA

N-DAMO archaea
n-DAMO bacteria

CH4/NO3
– 500 150�28.6 NA 73–85*

CH4/NO2
– 2.6–5.9, 91.8�5 4.28–7 0.0015–0.0583 NA He et al., 2013; Winkler et al.,

2015; Guerrero-Cruz et al., 2019;
Lu et al., 2019

Anammox bacteria NH4
+-N/ NO2

–-N 2.54–673.90 0.22–361.35 0.0022–0.014 30–70# Ali et al., 2015;
Zhang and Okabe, 2020

Note: NA: not available, * unit: mmol C/mol CH4,
# unit: mmol C/mol NH4

+-N.

Fig. 2 Abundances of AOA, comammox bacteria, DNRA
bacteria and NOx-DAMO microorganisms in wastewater treat-
ment. Data are collected from published results, representing
samples from municipal WWTPs, industrial WWTPs, recirculat-
ing aquaculture systems, and drinking water treatment systems.
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gene pmoA (Palomo et al., 2018). Based on the amoA gene
sequences, comammox bacteria are further divided into
clade A and B (Daims et al., 2015; Pjevac et al., 2017),
which differ in substrate transport, energy transfer, and
adaptability to changing environment (Palomo et al.,
2018). The representative clade A populations include
Nitrospira inopinata, the only isolated comammox
bacterium so far, and enriched cultures of Candidatus
Nitrospira nitrosa, Candidatus Nitrospira nitrificans, and
Candidatus Nitrospira kreftii, while clade B populations
still lack representative cultures (Daims et al., 2015; Van
Kessel et al., 2015; Sakoula et al., 2020).
Comammox bacteria are ubiquitous at WWTPs,

accounting for 0.02%–3% of the total bacteria community
in nitrifying activated sludge, and 1.8%–19.4% of the
biofilm communities in rotating biological contactors
(Fig. 2) (Annavajhala et al., 2018; Cotto et al., 2020;
Spasov et al., 2020). However, unlike AOA, comammox
bacteria were not detected in reactors receiving high
concentrations of ammonia, e.g., side-stream partial
nitritation/anammox systems (influent ammonium>400
mgN/L) (Cotto et al., 2020). Compared to nitrification
processes governed by AOB and NOB, comammox-
dominated nitrification possesses advantage in maintaining
performance efficiency and stability at extremely low
ammonia and DO concentrations, having less N2O
emissions, and might better cooperate with anaerobic
bacteria (e.g., AnAOB) in facilitating total nitrogen
removal. Some study revealed that currently genome-
sequenced comammox species lack NO reductases, thus
merely produced N2O abiotically (0.07%�0.006%), which
was 1–2 orders lower than AOB (0.1%–8%) (Kits et al.,
2019; Prosser et al., 2020).
Environmental factors shaping the ecological niches of

comammox bacteria in wastewater nitrogen removal
systems include: 1) Nutrition levels (e.g., low ammonia,
simple organics): comammox bacteria are prevalent in
natural and engineered systems with relatively low
ammonium concentrations (Pjevac et al., 2017; Fowler
et al., 2018). The ammonia affinity of comammox bacteria
(Km,NH3

= 0.049–0.040 µmol/L) is 1–3 magnitudes lower
than AOB (Table 2) (Kits et al., 2017; Sakoula et al., 2020).
As a result, drinking water treatment plants and recirculat-
ing aquaculture systems provide optimal conditions for
comammox bacteria, where their relative abundances can
be 2.1–60.7 times higher than AOA and AOB (Bartelme et
al., 2017; Wang et al., 2017; Fowler et al., 2018).
Comammox bacteria clade A usually dominate in these
systems (mostly Candidatus Nitrospira nitrosa), whereas
clade B are more frequently detected in rapid sand filters
(up to 75% of the total nitrifying community) (Camejo et
al., 2017; Palomo et al., 2018; Roots et al., 2019). In
addition, mixotrophic growth of comammox bacteria on
simple inorganic and organic substances (e.g., H2, formate,
and urea) other than ammonia and nitrite further improves
their survival and persistence in broad environments

(Palomo et al., 2018; Han et al., 2019). 2) Operation
parameters (e.g., high SRT and low DO): Surveys on full-
scale WWTPs revealed that longer SRT (activated
sludge>12.5 d, or biofilm) and lower DO (0.2–1.0 mg/
L) favored comammox bacteria over canonical nitrifiers
(Roots et al., 2019; Cotto et al., 2020). This can be
explained by their relatively low growth rate (µmax =
0.0061 /h) (Table 2) and high oxygen affinity (Camejo et
al., 2017; Kits et al., 2017; Roots et al., 2019). Molecularly,
the latter is attributable to the bd-type terminal oxidase and
the oxygen-sensitive carbon fixation pathway in comam-
mox bacteria. 3) Environmental factors (e.g., metal
deficient): Compared with AOB and NOB, comammox
bacteria can better survive in copper and iron deficient
conditions, because they possess enzymes to maintain
copper homeostasis (CopABCD) and the high iron affinity
of cytochrome c biogenesis system I (Palomo et al., 2018).

3 Overlooked nitrate/nitrite reducing
microbes other than heterotrophic
denitrifiers

3.1 Dissimilatory nitrate reduction to ammonia (DNRA)
bacteria

DNRA bacteria reduce nitrate to ammonia via nitrite in a
single microorganism, with organics or inorganics as
electron donors. They can be heterotrophic, autotrophic,
anaerobic or aerobic (Tiedje, 1988; Pandey et al., 2020).
Heterotrophic DNRA bacteria break down large molecule
organics and are represented by Aerobacter aerogenes,
Citrobacter freundii, Enterobacter spp., and Denitrovibrio
spp. Autotrophic DNRA bacteria are less abundant, using
hydrogen and sulfide as electron donors, such as
Desulfovibrio gigas and Veillonella alcalescens (Holmes
et al., 2019). Based on the means of ATP synthesis, DNRA
bacteria are further classified into fermentative and
respiratory, where the former derives energy directly
from substrate-level phosphorylation and the energy for
the latter is from oxidative phosphorylation (Pandey et al.,
2020). Escherichia coli are representative fermentative
DNRA bacteria possessing periplasmic nitrate reductase
(Nap), respiratory nitrite reductase (Nrf), respiratory nitrate
reductase (Nar), and cytoplasmic nitrite reductase (Nir)
systems to support growth under low and high nitrate
conditions (Pandey et al., 2020).Wolinella succinogenes is
a typical strain of respiratory DNRA, utilizing non-
fermentative organics or inorganics (e.g., formate or H2)
as electron donors, and can grow with low nitrate as they
possess the high affinity Nap/Nrf system (Simon, 2002).
nrfA gene serves as the molecular biomarker for DNRA
bacteria and its abundances positively correlated with
DNRA activity in situ (Pandey et al., 2020).
DNRA bacteria account for 0.2%–4% of total commu-

nities at full-scale municipal WWTPs across the world

Shaoyi Xu et al. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment 5



(Fig. 2). DNRA process is not trivial but can contribute
significantly to nitrogen metabolism (9.5–15.7 nmol N/g/
L) in activated sludge, granular and biofilm reactors (Chen
et al., 2020; Wang et al., 2020c). They were found more
abundant in systems operated under anaerobic, high C/N
and high sulfide conditions, e.g., anaerobic digesters,
biofloc aquaculture ponds, sulfate removing reactors
(Tiedje, 1988; Akunna et al., 1993). With the upgrade of
WWTPs, especially the nutrient removal processes, the
ratios of DNRA/denitrifying bacteria detected in the
receiving water bodies increased from 1.097 to 1.928
(Wang et al., 2020b). DNRA bacteria are important
functional groups in simultaneous nitrification and deni-
trification processes, accounting for 37.15%–46.01% of
total OTUs related to nitrogen removal (Xiang et al.,
2020).
For a long time, scientists have been interested in the

coexistence and competition between heterotrophic deni-
trifiers and DNRA bacteria. Factors influencing the relative
abundances of the two populations at wastewater bior-
eactors mainly include: 1) Nutrition levels (e.g., electron
acceptor availability, type of electron donor): From the
perspective of electron acceptor, DNRA bacteria transfer
more electrons per mole of nitrate reduced, and have
higher affinity for nitrate (µmax/Ks,NO3-: 26.2 µmol/L/h
versus 8.6 µmol/L/h) but lower affinity for acetate (5.2
mmol/L/h versus 8.6 Van Denmol/L/h) than denitrifiers
(Van Den Berg et al., 2016). Hence, DNRA bacteria have
competitive advantages over heterotrophic denitrifers in
nitrate limiting but electron donor abundant conditions
(typically acetate/nitrate ratio higher than 1.5). The
genome of Shewanella loihica strain PV-4 encodes the
complete set of conventional denitrification and DNRA
pathways, and relatively high C/N ratios upregulated their
DNRA functional genes (e.g., nrfA) (Yoon et al., 2015). In
another study, higher lactate/NO3

- ratio (2.97) also
promoted the co-existence of fermentative and respiratory
DNRA, and enhanced their activities (Van Den Berg et al.,
2017). Meta-analysis also suggested that DNRA rate was
positively correlated with C/NO3

– (Van Den Berg et al.,
2016; Pandey et al., 2020). Additionally, nitrate other than
nitrite serving as the electron acceptor favors DNRA
process over denitrification (Kraft et al., 2014). Type of
electron donor also was another important factor. Com-
pared with heterotrophic denitrifiers, fermentative DNRA
bacteria prefer to use less oxidative and labile organic
carbon sources (Tiedje, 1988; Van Den Berg et al., 2017).
L-sorbose or D-cellobiose enriched denitrifiers (e.g.,
Klebsiella), while D-glucose, D-fructose and citrate
enriched DNRA bacteria (e.g., Escherichia, Sulfurospir-
illum) (Carlson et al., 2020). In a microbial community
with both DNRA and denitrifying bacteria, DNRA process
dominated when glucose and glycerol served as the carbon
sources (nitrate removal rate: 2.7–10.1 mgN/g MLVSS/h),
while denitrification mainly occurred when acetic acid and
lactic acid were supplied (nitrate removal rate: 23.8–27.8

mgN/g MLVSS/h) (Akunna et al., 1993). Both autotrophic
denitrifiers and respiratory DNRA bacteria can use
inorganic compounds as electron donors (e.g., H2, S

2–,
Fe2+), but FeS usually enriched denitrifiers, and H2S
favored the growth of respiratory DNRA bacteria (Yin
et al., 2015; Pandey et al., 2020). 2) Environmental
factors (e.g., high temperature and pH): Higher
diversity and activity of DNRA bacteria were observed
in WWTPs operated at higher temperature despite
variations in treatment configurations (Wang et al.,
2020c). In Shewanella loihica, higher pH can regulate
DNRA process, as the NrfA protein has pH optima at 8.0,
while denitrification was observed in acid conditions (Kim
et al., 2017).

3.2 Nitrate/nitrite-dependent anaerobic methane oxidizing
(NOx-DAMO) microbes

NOx-DAMO process is driven by a microbial consortium
containing DAMO archaea and bacteria that can reduce
nitrate to dinitrogen with methane as the electron donor
(Ettwig et al., 2010; Haroon et al., 2013). N-DAMO
archaea are members of the ANME-2D lineage capable of
reducing nitrate to nitrite, with Candidatus Methanoper-
edens nitroreducens as the representative population
(Haroon et al., 2013). Nitrate reduction is catalyzed by a
pseudo-periplasm Nar-like protein complex, obtaining
electrons from reverse methanogenesis (Arshad et al.,
2015). Subsequently, nitrite is reduced to dinitrogen gas by
n-DAMO bacteria belonging to NC10 phylum (e.g.,
CandidatusMethylomirabilis oxyfera, CandidatusMethy-
lomirabilis sinica, and Candidatus Methylomirabilis
limnetica) (Ettwig et al., 2010; He et al., 2016; Graf et
al., 2018). Methylcoenzyme M reductase gene mcrA and
particulate methane oxygenase gene pmoA are the
biomarkers for DAMO archaea and bacteria, respectively
(Luesken et al., 2011; Haroon et al., 2013).
NOx-DAMO microorganisms are widely present in full-

scale anaerobic reactors (Luesken et al., 2011), and have
been enriched in the laboratory (Hu et al., 2014; Kampman
et al., 2014). N-DAMO archaea are less abundant than n-
DAMO bacteria, due to the lack of lanthanide in waste-
water, a special element required by methanol dehydro-
genase in N-DAMO archaea (Ren et al., 2020). Overall, n-
DAMO bacteria are present at 106–108 16S rRNA copies/g
sludge at WWTPs (Fig. 2), with an averaged activity of
1.61–22.31 µmol CH4/g sludge/d due to the shortage of
nitrite and relatively short SRT of mainstream treatment
processes (Hu and Ma, 2016; Meng et al., 2021). However,
on account of the fact that methane can be produced in situ
at WWTPs, this process still holds promise in future
sustainable N removal techniques. NOx-DAMO bioreac-
tors have been established and studied more intensively at
laboratory-scale. By combining anammox and NOx-
DAMO processes in a laboratory-scale membrane biofilm
reactor (MBfR), enhanced total nitrogen (TN) removal rate
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of 0.28 kg N/m3/d was achieved (Xie et al., 2018).
Laboratory-scale membrane granular sludge reactor
(MGSR) with NOx-DAMO/anammox consortium demon-
strated high nitrogen removal capacity too (16.53 kg N/m3/
d) (Fan et al., 2020).
The ecological niches of NOx-DAMO microorganisms

in wastewater nitrogen removal reactors are influenced by:
1) Nutrition levels (e.g., substrate level, trace element):
The activity of n-DAMO bacteria increased with elevated
methane concentration, whereas they can not tolerate high
nitrite (KI;NO –

2
= 4.1�0.5 mmol/L) (He et al., 2013).

Methanol and sodium acetate as additional electron donors
can stimulate the activity of n-DAMO bacteria by up to 1.9
times (Ma et al., 2017). The nitrate affinities of N-DAMO
archaea are similar to those of heterotrophic denitrifiers,
but the nitrite affinities of n-DAMO bacteria are three
orders of magnitude lower than those of denitrifiers
(Table 2) (Guerrero-Cruz et al., 2019; Lu et al., 2019). In
addition, trace amount of iron (20 µmol/L) and copper (10
µmol/L) promoted the growth of n-DAMO bacteria (He
et al., 2015a). 2) Operation and environmental condi-
tions (e.g., SRT, temperature and oxygen): With
relatively lower growth rate than heterotrophic denitrifiers,
NOx-DAMO microorganisms can be readily washed out
and a longer SRT or attached growth is generally required
(Fan et al., 2020). Although n-DAMO bacteria can
produce O2 internally, the exposure to 2% oxygen reduced
their nitrite reduction activity by 45%, indicating their
sensitivity to oxygen (Luesken et al., 2012). In addition,
mesophilic (35°C), neutral, and non-saline conditions are
in favor of n-DAMO bacteria (He et al., 2015b).

4 Engineering applications of overlooked
N-cycling microbes

Although overlooked N-cycling microorganisms make up
rarely more than 1% of the microbial communities, they
play important roles in sustaining community stability of
wastewater nitrogen removal processes, helping them to
cope with adverse conditions (e.g., cold, high salinity,
copper deficient), and/or reducing energy consumption and
greenhouse gas emissions.

4.1 AOA: ammonia oxidation under adverse conditions

Due to their relatively high ammonia/oxygen affinity
(Table 2) and tolerance to low temperature, high salinity,
acidity and alkalinity, AOA are more promising in treating
low strength ammonia wastewater under harsh conditions.
For example, when treating saline wastewater, AOA can
contribute to 94.9% and 48.2% of the overall ammonia
oxidation at 10°C and 35°C, respectively (Lin et al., 2020).
The much higher ammonia and oxygen affinities of AOA
than AOB promoted their closer metabolic interactions

with AnAOB under nutrient- and oxygen-limited condi-
tions, where the r-strategists NOB-Nitrobacter can be
suppressed too. When treating low strength nitrogen
sewage, AOA successfully cooperated with AnAOB in
removing 90% of ammonium in a single-stage SBR (Pan
et al., 2016). Reactors with efficient sludge retention (e.g.,
biofilm reactors, MbfR, sequencing batch biofilm reactors)
were always used to sustain biomass of AOA (Straka et al.,
2019; Wang et al., 2020a). For example, MBfR operated in
a counter-diffusion mode, rather than diffusion better
facilitate the AOA/AnAOB cooperation, as demonstrated
in (Fig. 3(a)) (Straka et al., 2019). Theoretically, the TN
removal by AOA-AnAOB consortia in MBfR can be up to
91.5%, and the coculture is more stable than AOB-
anammox under fluctuated DO and HRT (Liu et al., 2016).

4.2 Comammox bacteria: nitrification at low N loading and
low DO

Although raw domestic wastewater contains 20–50 mg
TKN/L, the influent to biological nitrogen removal (BNR)
systems could be as low as 9.86–14 mgN/L (Wang and
Chen, 2016; Wang et al., 2018). It is highly possible that
comammox bacteria can replace conventional AOB, AOA,
and NOB as the dominant nitrifying bacteria under low DO
conditions. Traditional nitrification process requires exten-
sive aeration (DO>2 mg/L), but comammox dominated
nitrification reactor could be operated at DO< 1 mg/L and
in the biofilm mode (Roots et al., 2019; Cotto et al., 2020).
Simultaneous nitrification-denitrification (DO< 0.75
mg/L) can also occur in these systems, saving energy
needed for aeration and internal recirculation (Holman and
Wareham, 2005; Insel, 2007).
The unbalanced ammonia oxidation and nitrite oxidation

activities of comammox bacteria lead to transient accu-
mulation of nitrite, an important intermediate involved in
diverse pathways including denitrification, DNRA, and
anammox (Daims et al., 2015; Gottshall et al., 2020). With
elevated ammonia addition from 0.01 to 1 mmol/L,
transient nitrite accumulation up to 32.67% of converted
ammonia was observed in comammox bacteria (Daims
et al., 2015). Relatively high ammonium, limited oxygen
supply, and addition of inhibitors (e.g., NH2OH) further
enhance the nitritation activity (Kits et al., 2019; Wang
et al., 2020d). Practically, comammox bacteria performing
nitritation can be coupled with denitrifiers (i.e., nitritation-
denitritation, or nitrite shunt) or AnAOB (partial nitrita-
tion-anammox, PN/A) to remove total nitrogen. In the
attached growth mode, comammox bacteria on biofilm or
granule surface oxidize ammonia to nitrite under hypoxic
conditions, which is secreted and metabolized by AnAOB
due to the relative higher nitrite affinity (Fig. 3(b), Table 2).
A synthetic community comprising of AnAOB (Candida-
tus Brocadia anammoxidans) and comammox bacteria
(Nitrospira inopinata) showed excellent nitrogen removal
without nitrite accumulation (Gottshall et al., 2020).

Shaoyi Xu et al. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment 7



However, it should be cautious that comammox bacteria
may replace AnAOB as the sole N-cycling microorganism
in the integrated system, performing complete nitrification
under low nitrogen concentrations and resulting in process
failure (Roots et al., 2019). Additionally, comammox
bacteria can also survive under metal-insufficient condi-
tions (e.g, copper and iron), which future expands their
ecological niches at WWTPs (Palomo et al., 2018; Koch et
al., 2019).

4.3 DNRA bacteria: coupling with anammox bacteria for
enhanced N removal

One of the disadvantages of anammox is its inherent
accumulation of nitrate (87% of influent nitrogen). DNRA
coupled with anammox enhance total nitrogen removal by
minimizing nitrate accumulation (Castro-Barros et al.,
2017). DNRA bacteria were found coexisted with AnAOB
in nearly all anammox systems, providing NO2

–/NH4
+ for

AnAOB (Fig. 3(c)) (Park et al., 2017). Typically,
fermentative DNRA bacteria (e.g. Chloroflexi) utilize
large molecule organics excreted by AnAOB in the form
of extracellular polymeric substances (EPS) (Lawson et al.,
2017). AnAOB also perform DNRA using small organic
acids (e.g. formate, acetate, propionate) and inorganics (e.
g, ferrous iron and hydrogen) (Castro-Barros et al., 2017).
Thermodynamically, partial DNRA-AnAOB (1984 kJ/

acetate) could surpass heterotrophic denitrifiers (796.8 kJ/
acetate) in carbon source limiting conditions. In the
presence of high ammonium and sufficient inorganic
carbon, the coupled partial DNRA-anammox process is in
fact accomplished mainly by AnAOB rather than the
mixed fermentative DNRA bacteria and AnAOB, repre-
senting a more sustainable autotrophic nitrogen removal
technique (Castro-Barros et al., 2017). Autotrophic
DNRA, e.g., Fe(II)-dependent DNRA coupled with
anammox can achieve a total nitrogen removal rate of
0.23�0.01 kg N/m3/d by controlling the EDTA-2Na/Fe(II)
ratio and pH (Li et al., 2020). Notably, although
heterotrophic/autotrophic DNRA bacteria can provide
nitrite for AnAOB growth, they also compete with
AnAOB for some metabolic necessities, such as amino
acids and vitamins (e.g. VB12) (Keren et al., 2020). A
recently study proposed another potential application of
DNRA bacteria, i.e., nitrate recovery by bioelectrochem-
ical ammonification mediated by the electroactive DNRA
bacteria Geobacter sp. (Wan et al., 2020).

4.4 NOx-DAMO microorganisms: sustainable nitrogen
removal with methane

Applications of NOx-DAMO microorganisms in waste-
water nitrogen removal are under rapid development due to
their advantages in energy conservation, greenhouse gas

Fig. 3 Potential applications of AOA (a), comammox bacteria (b), DNRA bacteria (c) and NOx-DAMO microorganisms (d) in novel
wastewater nitrogen removal processes.
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mitigation, and sludge reduction (Van Kessel et al., 2018).
Nitrate produced by AnAOB could be reduced by N-
DAMO archaea, recirculating nitrite for AnAOB and n-
DAMO bacteria (Fig. 3(d)). MBfR represents an optimal
configuration facilitating the co-existence of NOx-DAMO
microorganisms and AnAOB, resulting in a nitrogen
removal rate of up to 190 mgN/L/d (Shi et al., 2013). In
the recommended A-B process for achieving carbon
neutral at WWTPs, the coupled NOx-DAMO and ana-
mmox process is promising in stage B because methane
generated in stage A can be directly used without external
addition of organic carbon sources. NOx-DAMO process
enables a reduction in greenhouse gas emissions by at least
one fifth compared with traditional treatment (Ma et al.,
2017).
The coupled NOx-DAMO and comammox process was

recently proposed as another sustainable nitrogen removal
technology (Ren et al., 2020). Comammox bacteria supply
electron acceptors (nitrate and nitrite) to DAMO archaea/
bacteria under low N-loading and low DO conditions.
Notably, the overdosed methane can be oxidized by
ammonia monooxygenase in comammox bacteria, miti-
gating the accidental release of the potent greenhouse gas.
However, the coupled process has not been demonstrated
experimentally.

5 Conclusions and perspectives

This review summarized the distribution, ecological niche,
kinetic properties and potential applications of the over-
looked AOA, comammox bacteria, DNRA bacteria, and
NOx-DAMO microorganisms in biological wastewater
treatment processes. AOA and comammox bacteria are K-
strategy nitrifiers growing slower than conventional AOB/
NOB, but are better adapted to oligotrophic and adverse
conditions. DNRA and NOx-DAMO microorganisms
could surpass heterotrophic denitrifiers as the key nitrate
reducers depending on substrate levels and operating
parameters of bioreactors. Coupling them with AnAOB
has been proven effective in enhancing total nitrogen
removal, reducing costs and greenhouse gas emissions.
The following areas should be given priority in future

studies on these overlooked microorganisms: 1) distribu-
tion pattern, in situ activities, and adaption strategies of
overlooked microorganisms in traditional and novel
nitrogen removal process should be evaluated more
comprehensively. Efficient and accurate methods that can
distinguish the contribution of specific microorganisms
from similar function microbes (e.g., AOA/AOB/comam-
mox bacteria, denitrifiers/DNRA bacteria) should be
developed; 2) complex interactions (e.g., substrate coop-
eration/competition, toxicant detoxification) with other
microorganisms in BNR systems, and the appropriate
models describing these interactions could be constructed;
3) potentials and limitations of these microorganisms in

more sustainable nitrogen removal techniques (e.g.,
coupled AnAOB, comammox, and/or NOx-DAMO)
could be assessed from engineering application points of
view.
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