Skip to main content
Log in

Extraction efficiency of metals from low-nickel matte via NH4Cl roasting-water leaching process and synthesis of (Ni,Cu,Co)Fe2O4 photocatalyst

利用NH4Cl焙烧-水浸工艺从低冰镍中提取金属并合成(Ni,Cu,Co)Fe2O4光催化剂

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming at high energy consumption and large Co loss in the pyrometallurgy of low-nickel matte, a process of NH4Cl roasting-water leaching was proposed to co-extract metals, followed by the separation and utilization of metals. The effect of several factors on metal extractions in NH4Cl roasting process and the optimized process conditions were investigated by orthogonal experiments. The most influencing factors were roasting temperature and NH4Cl dosage, and the optimized chlorination conditions were as follows: particle size of low-nickel matte <75 µm, roasting temperature of 500 °C, roasting time of 2.5 h, NH4Cl dosage of 250% and O2 flow rate of 20 mL/min. By studying the effect of temperature and time on the extraction efficiency of metals, the appropriate leaching conditions were determined as temperature 90 °C and time 2 h. The extraction efficiency of nickel, copper, cobalt and iron can reach 97.6%, 96.2%, 94.5% and 29.2%, respectively. The (Ni, Cu, Co)Fe2O4 photocatalyst was synthesized from leaching solution using α-Fe2O3 as a carrier to composite with other metals. The optimum conditions were determined as precipitation temperature 25 °C and molar ratio of Ni-Cu-Co to Fe 1:3. The as-prepared catalysts were spherical nanoparticles of approximate 40–60 nm, and the degradation rate of which to methylene blue solution can reach 99.8% within 120 min.

摘要

针对低冰Ni 火法冶炼过程能耗高、Co 损失大的问题,本文提出了NH4Cl 焙烧-水浸联合提取金属,再分离利用金属的工艺。通过正交试验,研究了NH4Cl焙烧过程中不同因素对金属提取的影响,并确定了优化的工艺条件。结果表明,焙烧温度和NH4Cl用量为主要的影响因素,最佳氯化条件为: 低冰镍粒径<75 µm,焙烧温度500 ℃,焙烧时间2.5 h,NH4Cl用量250%,O 2 流速20 mL/min。通过研究温度和时间对金属浸出的影响,确定了适宜的浸出条件为: 温度90 ℃,时间2 h,这时Ni、Cu、Co和Fe 的浸出率分别达到97.6%、96.2%、94.5% 和29.2%。以浸出液为原料,以α-Fe2O3 为载体与其他金属复合,合成了(Ni,Cu,Co)Fe2O4 光催化剂。最佳制备条件确定为: 沉淀温度25 ℃,Ni-Cu-Co 与Fe 的摩尔比1: 3。制备的催化剂为40~60 nm 的球形纳米颗粒,在120 min 内对亚甲基蓝溶液的降解率可达99.8%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. XIAO Wan-hai, LIU Xu-heng, ZHAO Zhong-wei. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure [J]. Hydrometallurgy, 2020, 194: 105353. DOI: https://doi.org/10.1016/j.hydromet.2020.105353.

    Article  Google Scholar 

  2. PARK K H, MOHAPATRA D, NAM C W, et al. A comparative study of different leaching processes for the extraction of Cu, Ni and Co from a complex matte [J]. Korean Journal of Chemical Engineering, 2007, 24(5): 835–842. DOI: https://doi.org/10.1007/s11814-007-0050-6.

    Article  Google Scholar 

  3. XIAO Teng-fei, MU Wen-ning, SHI Shuang-zhi, et al. Simultaneous extraction of nickel, copper, and cobalt from low-grade nickel matte by oxidative sulfation roasting-water leaching process [J]. Minerals Engineering, 2021, 174: 107254. DOI: https://doi.org/10.1016/j.mineng.2021.107254.

    Article  Google Scholar 

  4. FAN Chuan-lin, LI Bin-chuan, FU Yan, et al. Kinetics of acid-oxygen leaching of low-sulfur Ni-Cu matte at atmospheric pressure [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1166–1170. DOI: https://doi.org/10.1016/S1003-6326(09)60273-9.

    Article  Google Scholar 

  5. SCHALKWYK V R F, EKSTEEN J J, PETERSEN J, et al. An experimental evaluation of the leaching kinetics of PGM-containing Ni-Cu-Fe-S Peirce Smith converter matte, under atmospheric leach conditions [J]. Minerals Engineering, 2011, 24(6): 524–534. DOI: https://doi.org/10.1016/j.mineng.2010.10.012.

    Article  Google Scholar 

  6. SCHALKWYK V R F, EKSTEEN J J, AKDOGAN G. Leaching of Ni-Cu-Fe-S converter matte at varying iron endpoints; mineralogical changes and behaviour of Ir, Rh and Ru [J]. Hydrometallurgy, 2013, 136: 36–45. DOI: https://doi.org/10.1016/j.hydromet.2013.02.008.

    Article  Google Scholar 

  7. CHEN Guang-ju, GAO Jian-ming, ZHANG Mei, et al. Efficient and selective recovery of Ni, Cu, and Co from low-nickel matte via a hydrometallurgical process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(3): 249–256. DOI: https://doi.org/10.1007/s12613-017-1402-9.

    Article  Google Scholar 

  8. KARIMOV K A, KRITSKII A V, ELFIMOVA L G, et al. High-temperature sulfuric acid converter matte pressure leaching [J]. Metallurgist., 2015, 59(7): 723–726. DOI: https://doi.org/10.1007/s11015-015-0165-7.

    Article  Google Scholar 

  9. DORFLING C, AKDOGAN G, BRADSHAW S M, et al. Determination of the relative leaching kinetics of Cu, Rh, Ru and Ir during the sulphuric acid pressure leaching of leach residue derived from Ni-Cu converter matte enriched in platinum group metals [J]. Minerals Engineering, 2011, 24(6): 583–589. DOI: https://doi.org/10.1016/j.mineng.2010.08.021.

    Article  Google Scholar 

  10. RADEMAN J A M, LORENZEN L, DEVENTER J S J V. The leaching characteristics of Ni-Cu matte in the acid-oxygen pressure leach process at Impala Platinum [J]. Hydrometallurgy, 1999, 52(3): 231–252. DOI: https://doi.org/10.1016/S0304-386X(99)00024-9.

    Article  Google Scholar 

  11. PARK K H, MOHAPATRA D, REDDY B R, et al. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Hydrometallurgy, 2007, 86(3–4): 164–171. DOI: https://doi.org/10.1016/j.hydromet.2006.11.012.

    Article  Google Scholar 

  12. PARK K H, MOHAPATRA D, REDDY B R. A study on the acidified ferric chloride leaching of a complex (Cu-Ni-Co-Fe) matte [J]. Separation and Purification Technology, 2006, 51(3): 332–337. DOI: https://doi.org/10.1016/j.seppur.2006.02.013.

    Article  Google Scholar 

  13. KSHUMANEVA E S, KASIKOV A G, KUZNETSOV V Y, et al. Leaching of copper-nickel matte in the Cu(II)-Cl-HCl-Cl2 system at controlled redox potential of solution [J]. Russian Journal of Applied Chemistry, 2015, 88(5): 724–732. DOI: https://doi.org/10.1134/S107042721505002X.

    Article  Google Scholar 

  14. WANG Shao-fen, FANG Zheng. Mechanism of influence of chloride ions on electrogenerative leaching of sulfide minerals [J]. Journal of Central South University of Technology, 2006, 13(4): 379–382. DOI: https://doi.org/10.1007/s11771-006-0052-2.

    Article  Google Scholar 

  15. KOBAYASHI H, SHOJI H, ASANO S, et al. Chlorine leaching mechanism of nickel sulfide [J]. Journal of the Japan Institue of Metals, 2016, 80(11): 713–718. DOI: https://doi.org/10.2320/jinstmet.J2016019.

    Google Scholar 

  16. GENG Shu-hua, LI Guang-shi, ZHAO Yong, et al. Extraction of valuable metals from low nickel matte by calcified roasting-acid leaching process [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2202–2212. DOI: https://doi.org/10.1016/S1003-6326(19)65126-5.

    Article  Google Scholar 

  17. CUI Fu-hui, MU Wen-ning, WANG Shuai, et al. Synchronous extractions of nickel, copper, and cobalt by selective chlorinating roasting and water leaching to low-grade nickel-copper matte [J]. Separation and Purification Technology, 2018, 195: 149–162. DOI: https://doi.org/10.1016/j.seppur.2017.11.071.

    Article  Google Scholar 

  18. CUI Fu-hui, MU Wen-ning, WANG Shuai, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtaopography and kinetics [J]. Minerals Engineering, 2018, 123: 104–116. DOI: https://doi.org/10.1016/j.mineng.2018.04.013.

    Article  Google Scholar 

  19. SUN Qiang-chao, CHENG Hong-wei, MEI Xiao-yong, et al. Efficient synchronous extraction of nickel, copper, and cobalt from low-nickel matte by sulfation roasting-water leaching process [J]. Scientific Reports, 2020, 10(1): 9916. DOI: https://doi.org/10.1038/s41598-020-66894-x.

    Article  Google Scholar 

  20. MU Wen-ning, CHENG Hao, XU Jie, et al. Extraction of valuable metals from low-grade nickel matte by FeCl3-6H2O roasting and water leaching process with studies on phase evolution and kinetics analysis of chlorination process [J]. Hydrometallurgy, 2021, 202: 105614. DOI: https://doi.org/10.1016/j.hydromet.2021.105614.

    Article  Google Scholar 

  21. JENA S K, MOHANTY B, PADHY G, et al. Potassium recovery from muscovite using NaCl-roasting followed by H2SO4-leaching [J]. Journal of Central South University, 2022, 29(6): 1881–1894. https://doi.org/10.1007/s11771-022-5052-3.

    Article  Google Scholar 

  22. XU Xue-qing, MU Wen-ning, WANG Le, et al. Direct extraction of nickel and copper from low-grade nickel sulfide ore by chlorination roasting with mixed MgCl2·6H2O and NaCl [J]. JOM, 2022, 74(5): 1989–1999. DOI: https://doi.org/10.1007/s11837-021-05122-x.

    Article  Google Scholar 

  23. CUI Fu-hui, MU Wen-ning, ZHAI Yu-chun. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: Mechanism and kinetics [J]. Separation and Purification Technology, 2020, 239: 116577. DOI: https://doi.org/10.1016/j.seppur.2020.116577.

    Article  Google Scholar 

  24. MU Wen-ning, XIAO Teng-fei, SHI Shuang-zhi, et al. Co-extraction of valuable metals and kinetics analysis in chlorination process of low-grade nickel-copper sulfide ore [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(6): 2033–2045. DOI: https://doi.org/10.1016/S1003-6326(22)65928-4.

    Article  Google Scholar 

  25. XU Cong, CHENG Hong-wei, LI Guang-shi, et al. Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching [J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(4): 377–385. DOI: https://doi.org/10.1016/j.seppur.2020.116577.

    Article  Google Scholar 

  26. LI Guang-shi, ZOU Xing-li, CHENG Hong-wei, et al. A novel ammonium chloride roasting approach for the high-efficiency co-sulfation of nickel, cobalt, and copper in polymetallic sulfide minerals [J]. Metallurgical & Materials Transactions B, 2020, 51(6): 2769–2784. DOI: https://doi.org/10.1007/s11663-020-01967-w.

    Article  Google Scholar 

  27. CHONG Men-nan, JIN Bo, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review [J]. Water Research, 2010, 44(10): 2997–3027. DOI: https://doi.org/10.1016/j.watres.2010.02.039.

    Article  Google Scholar 

  28. LEE K M, LAI C W, NGAI K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review [J]. Water Research, 2016, 88: 428–448. DOI: https://doi.org/10.1016/j.watres.2015.09.045.

    Article  Google Scholar 

  29. BUKMAN L, MACHADO N R C F, CAETANO W, et al. Treatment of wastewater contaminated with ionic dyes: Liquid-liquid extraction induced by reversed micelle followed by photodegradation [J]. Separation and Purification Technology, 2017, 189: 162–169. DOI: https://doi.org/10.1016/j.seppur.2017.08.004.

    Article  Google Scholar 

  30. CRINI G. Non-conventional low-cost adsorbents for dye removal: A review [J]. Bioresource Technology, 2006, 97(9): 1061–1085. DOI: https://doi.org/10.1016/j.biortech.2005.05.001.

    Article  Google Scholar 

  31. RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2018, 90(1): 398–428. DOI: https://doi.org/10.1021/acs.analchem.7b04577.

    Article  Google Scholar 

  32. FRESNO F, PORTELA R, SUÁREZ S, et al. Photocatalytic materials: Recent achievements and near future trends [J]. Journal of Materials Chemistry A, 2014, 2: 2863–2884. DOI: https://doi.org/10.1039/C3TA13793G.

    Article  Google Scholar 

  33. SHEN Jun, LI Zhi-jun, HANG Ze-feng, et al. Insights into the effect of reactive oxygen species regulation on photocatalytic performance via construction of a metal-semiconductor heterojunction [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3478–3485.

    Article  Google Scholar 

  34. WANG Xin-chen, MAEDA K, THOMAS A, et al. A metalfree polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materals, 2009, 8(1): 76–80. DOI: https://doi.org/10.1038/nmat2317.

    Article  Google Scholar 

  35. ZOU Zhi-gang, YE Jin-hua, SAYAMA K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature, 2001, 414(6864): 625–627. DOI: https://doi.org/10.1038/414625a.

    Article  Google Scholar 

  36. GUO Sheng, ZHANG Gao-ke, GUO Ya-dan. Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants [J]. Carbon, 2013, 60: 437–444. DOI: https://doi.org/10.1016/j.carbon.2013.04.058.

    Article  Google Scholar 

  37. HU Yong-sheng, KLEIMAN-SHWARSCTEIN A, FORMAN A J, et al. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting [J]. Chemistry of Materials, 2008, 20(12): 3803–3805. DOI: https://doi.org/10.1021/cm800144q.

    Article  Google Scholar 

  38. RAHMAH M I, SABRY R S, AZIZW J. Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation [J]. International Journal of Environmental Analytical Chemistry, 2021, 101(15): 2598–2611. DOI: https://doi.org/10.1080/03067319.2019.1699549.

    Article  Google Scholar 

  39. ZHOU Xue-mei, YANG Hong-chao, WANG Chen-xuan, et al. Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles [J]. The Journal of Physical Chemistry C, 2010, 114(40): 17051–17061. DOI: https://doi.org/10.1021/jp103816e.

    Article  Google Scholar 

  40. ZHANG Guo-ying, FENG Yan, XU Yan-yan, et al. Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property [J]. Materials Research Bulletin, 2012, 47(3): 625–630. DOI: https://doi.org/10.1016/j.materresbull.2011.12.032.

    Article  Google Scholar 

  41. KHATRI A, RANA P S. Visible light assisted photocatalysis of methylene blue and rose bengal dyes by iron doped NiO nanoparticles prepared via chemical co-precipitation [J]. Physical B, 2020, 579: 411905. DOI: https://doi.org/10.1016/j.physb.2019.411905.

    Article  Google Scholar 

  42. SAHU K, BISHT A, KYRIAKOSE S, et al. Two-dimensional CuO-ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants [J]. Journal of Physics and Chemistry of Solids, 2020, 137: 109223. DOI: https://doi.org/10.1016/j.jpcs.2019.109223.

    Article  Google Scholar 

  43. MU Wen-ning, XU Xue-qing, XIN Hai-xia, et al. Preparation of spherical α-Fe2O3 nanoparticles and its photocatalytic degradation of MO and MB [J]. Desalination Water Treatment, 2021, 231: 377–388. DOI: https://doi.org/10.5004/DWT.2021.27444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MU Wen-ning and GU Meng-fei provided the concept and edited the draft of the manuscript. DU Shou-ming and CHEN Huan-huan conducted the literature review. CHEN Yu-xiang and WANG Le validated the proposed method with practical experiments. LEI Xue-fei and LUO Shao-hua provided the funding item. All the authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Wen-ning Mu  (牟文宁).

Additional information

Conflict of interest

MU Wen-ning, GU Meng-fei, DU Shou-ming, CHEN Yu-xiang, LEI Xue-fei, CHEN Huan-huan, LUO Shao-hua, and WANG Le declare that they have no conflict of interest.

Foundation item: Projects(52074069, 52174314) supported by the National Natural Science Foundation of China; Projects(E2020501022, E2021501029, E2022501030) supported by the Natural Science Foundation of Hebei Province, China; Projects (N2223027, N2223009) supported by the Fundamental Research Funds for the Central Universities, China; Project (ZD2021331) supported by the Science and Technology Project of Hebei Education Department, China; Project (22567627H) supported by Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material of Hebei Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Wn., Gu, Mf., Du, Sm. et al. Extraction efficiency of metals from low-nickel matte via NH4Cl roasting-water leaching process and synthesis of (Ni,Cu,Co)Fe2O4 photocatalyst. J. Cent. South Univ. 30, 1803–1816 (2023). https://doi.org/10.1007/s11771-023-5342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5342-4

Key words

关键词

Navigation