Skip to main content
Log in

Surface modification of calcium carbonate: A review of theories, methods and applications

碳酸钙的表面改性: 理论、 方法和应用综述

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Calcium carbonate, which is widely employed as a filler added into the polymer matrix, has large numbers of applications owing to the excellent properties such as low cost, non-toxicity, high natural reserves and biocompatibility. Nevertheless, in order to obtain the good filling effect, calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites. This review paper systematically introduces the theory, methods, and applications progress of calcium carbonate with surface modification. Additionally, the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted. The current research progress and potential application prospects of calcium carbonate in the fields of plastics, rubber, paper, medicine and environmental protection are discussed as well. Generally, this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.

摘要

碳酸钙由于其优异的性能, 如低成本、 无毒、 高储量和生物相容性, 被广泛作为填料添加到聚 合物基体或应用于其他行业. 为了获得良好的填充效果, 碳酸钙通常需要通过有机分子进行表面改 性, 以增强在复合材料内的分散性和相容性. 本文系统地介绍了碳酸钙表面改性的理论、 方法和应用 进展. 此外, 重点介绍了影响复合材料性能的关键因素以及该行业当前所面临的困难和挑战, 并探讨 了碳酸钙在塑料、 橡胶、 造纸、 医药和环保领域的研究进展和潜在的应用前景. 本文可为碳酸钙的改 性和综合利用研究提供一定参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NYPELO T, OSTERBERG M, LAINE J. Tailoring surface properties of paper using nanosized precipitated calcium carbonate particles [J]. ACS Appl Mater Interfaces, 2011, 3: 3725–3731. DOI: https://doi.org/10.1021/am200913t.

    Article  Google Scholar 

  2. KASMANI J E, MAHDAVI S, ALIZADEH A, NEMATI M, SAMARIHA A. Physical properties and printability characteristics of mechanical printing paper with LWC [J]. Bioresources, 2013, 8: 3646–3656. DOI: https://doi.org/10.15376/biores.8.3.3646-3656.

    Google Scholar 

  3. JIANG L, ZHANG J, WOLCOTT M P. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms [J]. Polymer, 2007, 48: 7632–7644. DOI: https://doi.org/10.1016/j.polymer.2007.11.001.

    Article  Google Scholar 

  4. PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, HAQUE M M U, PRACELLA M. Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers [J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 34–41. DOI: https://doi.org/10.1016/j.compositesa.2015.11.019.

    Article  Google Scholar 

  5. CUI Z G, CUI Y Z, CUI C F, CHEN Z, BINKS B P. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant [J]. Langmuir, 2010, 26: 12567–12574. DOI: https://doi.org/10.1021/la1016559.

    Article  Google Scholar 

  6. LEE J, JO S H, LIM J. Effect of surface modification of CaCO3 nanoparticles by a silane coupling agent methyltrimethoxysilane on the stability of foam and emulsion [J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 63–70. DOI: https://doi.org/10.1016/j.jiec.2019.02.002.

    Article  Google Scholar 

  7. LI J, YANG S, LIU Y, MUHAMMAD Y, SU Z, YANG J. Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt [J]. Construction and Building Materials, 2019, 218: 413–423. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.139.

    Article  Google Scholar 

  8. SHEN C, LI R, PEI J, CAI J, LIU T, LI Y. Preparation and the effect of surface-functionalized calcium carbonate nanoparticles on asphalt binder [J]. Applied Sciences, 2019, 10: 1–16. DOI: https://doi.org/10.3390/app10010091.

    Article  Google Scholar 

  9. MELBIAH J S B, NITHYA D, MOHAN D. Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic Pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 516: 147–160. DOI: https://doi.org/10.1016/j.colsurfa.2016.12.008.

    Article  Google Scholar 

  10. SAITO T, TSUSHIMA Y, HONDA T, KAMIYA T, FUJITA M, SAWADA H. Facile creation of modified surface possessing the controlled wettability between superamphiphobic and superoleophobic — superhydrophilic characteristics by using perfluorocarboxamides/calcium carbonate/calcium fluoride nanocomposites: Application to the separation of oil and water [J]. Journal of Composite Materials, 2016, 50: 3831–3842. DOI: https://doi.org/10.1177/0021998315626257.

    Article  Google Scholar 

  11. GU J, JIA D, LUO Y, LIN X, CHENG R. Crystallization behavior of PP in composites with EPDM and a surface modified nano-calcium carbonate [J]. Journal of Reinforced Plastics and Composites, 2008, 28: 1075–1085. DOI: https://doi.org/10.1177/0731684407086971.

    Article  Google Scholar 

  12. NAM K H, SEO K, SEO J, KHAN S B, HAN H. Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate [J]. Progress in Organic Coatings, 2015, 85: 22–30. DOI: https://doi.org/10.1016/j.porgcoat.2014.12.004.

    Article  Google Scholar 

  13. BAO L, YANG S, LUO X, LEI J, CAO Q, WANG J. Fabrication and characterization of a novel hydrophobic CaCO3 grafted by hydroxylated poly(vinyl chloride) chains [J]. Applied Surface Science, 2015, 357: 564–572. DOI: https://doi.org/10.1016/j.apsusc.2015.08.249.

    Article  Google Scholar 

  14. IPPOLITO F, HUBNER G, CLAYPOLE T, GANE P. Influence of the surface modification of calcium carbonate on polyamide 12 composites [J]. Polymers (Basel), 2020, 12: 1–13. DOI: https://doi.org/10.3390/polym12061295.

    Article  Google Scholar 

  15. BOYJOO Y, PAREEK V K, LIU J. Synthesis of micro and nano-sized calcium carbonate particles and their applications [J]. J Mater Chem A, 2014, 2: 14270–14288. DOI: https://doi.org/10.1039/C4TA02070G.

    Article  Google Scholar 

  16. CHO K, CHANG H, KIL D S, KIM B G, JANG H D. Synthesis of dispersed CaCO3 nanoparticles by the ultrafine grinding [J]. Journal of Industrial and Engineering Chemistry, 2009, 15: 243–246. DOI: https://doi.org/10.1016/j.jiec.2008.10.005.

    Article  Google Scholar 

  17. CIONI B, LAZZERI A. The role of interfacial interactions in the toughening of precipitated calcium carbonate — polypropylene nanocomposites [J]. Composite Interfaces, 2010, 17: 533–549. DOI: https://doi.org/10.1163/092764410x513486.

    Article  Google Scholar 

  18. GOMEZ-ROMERO P. Hybrid organic-inorganic materials-in search of synergic activity [J]. Advanced Materials, 2001, 13: 163–174. DOI: https://doi.org/10.1002/1521-4095(200102)13:3.

    Article  Google Scholar 

  19. WARREN S C, DISALVO F J, WIESNER U. Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids [J]. Nature Materials, 2007, 6: 156–161. DOI: https://doi.org/10.1038/nmat1819.

    Article  Google Scholar 

  20. LAM T D, HOANG T V, QUANG D T, KIM J S. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites [J]. Materials Science and Engineering A, 2009, 501: 87–93. DOI: https://doi.org/10.1016/j.msea.2008.09.060.

    Article  Google Scholar 

  21. RONG M Z, ZHANG M Q, RUAN W H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review [J]. Materials Science and Technology, 2006, 22: 787–796. DOI: https://doi.org/10.1179/174328406X101247.

    Article  Google Scholar 

  22. JAZI S H S, BAGHERI R, ESFAHANY M N. The effect of surface modification of (micro/nano) -calcium carbonate particles at various ratios on mechanical properties of poly (vinyl chloride) composites [J]. Journal of Thermoplastic Composite Materials, 2013, 28: 479–495. DOI: https://doi.org/10.1177/0892705713486128.

    Article  Google Scholar 

  23. KONGSINLARK A, REMPEL G L, PRASASSARAKICH P. Synthesis of monodispersed polyisoprene — Silica nanoparticles via differential microemulsion polymerization and mechanical properties of polyisoprene nanocomposite [J]. Chemical Engineering Journal, 2012, 193–194: 215–226. DOI: https://doi.org/10.1016/j.cej.2012.04.008.

    Article  Google Scholar 

  24. KISS A, FEKETE E, PUKANSZKY B. Aggregation of CaCO3 particles in PP composites: Effect of surface coating [J]. Composites Science and Technology, 2007, 67: 1574–1583. DOI: https://doi.org/10.1016/j.compscitech.2006.07.010.

    Article  Google Scholar 

  25. MIHAJLOVIĆ S, SEKULIĆ Ž, DAKOVIĆ A, VUČINIĆ D, JOVANOVIĆ V, STOJANOVIĆ J. Surface properties of natural calcite filler treated with stearic acid [J]. Ceramics-Silikáty, 2009, 53: 268–275. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.864124.

    Google Scholar 

  26. ZHAO L, FENG J, WANG Z. In situ synthesis and modification of calcium carbonate nanoparticles via a bobbling method [J]. Science in China Series B: Chemistry, 2009, 52: 924–929. DOI: https://doi.org/10.1007/s11426-009-0125-9.

    Article  Google Scholar 

  27. KAMIYA H, IIJIMA M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media [J]. Sci Technol Adv Mater, 2010, 11: 1–7. DOI: https://doi.org/10.1088/1468-6996/11/4/044304.

    Article  Google Scholar 

  28. DANG H, XU Z, CHEN Z, WU W, FENG J, SUN Y, JIN F, LI J, GE F. A facile and controllable method to in situ synthesize stable hydrophobic vaterite particles [J]. Crystal Research and Technology, 2019, 54: 1–7. DOI: https://doi.org/10.1002/crat.201800243.

    Article  Google Scholar 

  29. DING H, LU S C, DENG Y X, DU G X. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties [J]. Transactions of Nonferrous Metals Society of China, 2007, 17: 1100–1104. DOI: https://doi.org/10.1016/S1003-6326(07)60232-5.

    Article  Google Scholar 

  30. SHI Q, WANG L, YU H, JIANG S, ZHAO Z, DONG X. A novel epoxy resin/CaCO3 nanocomposite and its mechanism of toughness improvement [J]. Macromolecular Materials and Engineering, 2006, 291: 53–58. DOI: https://doi.org/10.1002/mame.200500223.

    Article  Google Scholar 

  31. LIANG Y, YU K, ZHENG Q, XIE J, WANG T J. Thermal treatment to improve the hydrophobicity of ground CaCO3 particles modified with sodium stearate [J]. Applied Surface Science, 2018, 436: 832–838. DOI: https://doi.org/10.1016/j.apsusc.2017.12.023.

    Article  Google Scholar 

  32. TRAN H V, TRAN L D, VU H D, THAI H. Facile surface modification of nanoprecipitated calcium carbonate by adsorption of sodium stearate in aqueous solution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366: 95–103. DOI: https://doi.org/10.1016/j.colsurfa.2010.05.029.

    Article  Google Scholar 

  33. JEONG S B, YANG Y C, CHAE Y B, KIM B G. Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system [J]. Materials Transactions, 2009, 50: 409–414. DOI: https://doi.org/10.2320/matertrans.MRP2008351.

    Article  Google Scholar 

  34. CAO Z, DALY M, CLÉMENCE L, GEEVER L M, MAJOR I, HIGGINBOTHAM C L, DEVINE D M. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods [J]. Applied Surface Science, 2016, 378: 320–329. DOI: https://doi.org/10.1016/j.apsusc.2016.03.205.

    Article  Google Scholar 

  35. LAZZERI A, ZEBARJAD S M, PRACELLA M, CAVALIER K, ROSA R. Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites [J]. Polymer, 2005, 46: 827–844. DOI: https://doi.org/10.1016/j.polymer.2004.11.111.

    Article  Google Scholar 

  36. MIHAJLOVIĆ S R, VUČINIĆ D R, SEKULIĆ Ž T, MILIĆEVIĆ S Z, KOLONJA B M. Mechanism of stearic acid adsorption to calcite [J]. Powder Technology, 2013, 245: 208–216. DOI: https://doi.org/10.1016/j.powtec.2013.04.041.

    Article  Google Scholar 

  37. DEEPIKA, HAIT S K, CHEN Y. Optimization of milling parameters on the synthesis of stearic acid coated CaCO3 nanoparticles [J]. Journal of Coatings Technology and Research, 2014, 11: 273–282. DOI: https://doi.org/10.1007/s11998-013-9547-6.

    Article  Google Scholar 

  38. LIANG Yu, SUN Si-jia, DING Hao, HOU Xi-feng. Preparation and characterization of organic modified calcium carbonate by sodium stearate (or sodium oleate) using wet method [J]. Surface Review and Letters, 2020, 27(10): 1–12. DOI: https://doi.org/10.1142/S0218625X1950224X.

    Article  Google Scholar 

  39. OSMAN M A, SUTER U W. Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer [J]. Chem Mater, 2002, 14: 4408–4415. DOI: https://doi.org/10.1021/cm021222u.

    Article  Google Scholar 

  40. PRICE G J, ANSARI D M. Surface modification of calcium carbonates studied by inverse gas chromatography and the effect on mechanical properties of filled polypropylene [J]. Polymer International, 2004, 53: 430–438. DOI: https://doi.org/10.1002/pi.1392.

    Article  Google Scholar 

  41. XU X, TAO X, ZHENG Q. Influence of surface-modification for calcium carbonate on the interaction between the fillers and polydimethylsiloxane [J]. Chinese Journal of Polymer Science, 2008, 26: 145–152. DOI: https://doi.org/10.3321/j.issn:0256-7679.2008.02.003.

    Article  Google Scholar 

  42. ETELÄAHO P, HAVERI S, JÄRVELÄ P. Comparison of the morphology and mechanical properties of unmodified and surface-modified nanosized calcium carbonate in a polypropylene matrix [J]. Polymer Composites, 2011, 32: 464–471. DOI: https://doi.org/10.1002/pc.21065.

    Article  Google Scholar 

  43. ABD EL-HAKIM A E F A E M, HAROUN AAA, RABIE A G M, ALI GAM, ABDELRAHIM M Y M. Improving the mechanical and thermal properties of chlorinated poly (vinylchloride) by incorporating modified CaCO3 nanoparticles as a filler [J]. Turkish Journal of Chemistry, 2019, 43: 750–759. DOI: https://doi.org/10.3906/kim-1808-51.

    Article  Google Scholar 

  44. WANG C, XU Y, LIU Y, LI J. Synthesis and characterization of lamellar aragonite with hydrophobic property [J]. Materials Science and Engineering C, 2009, 29: 843–846. DOI: https://doi.org/10.1016/j.msec.2008.07.021.

    Article  Google Scholar 

  45. PECHYEN C, UMMARTYOTIN S. Development of isotactic polypropylene and stearic acid-modified calcium carbonate composite: A promising material for microwavable packaging [J]. Polymer Bulletin, 2016, 74: 431–444. DOI: https://doi.org/10.1007/s00289-016-1722-3.

    Article  Google Scholar 

  46. JING Y, NAI X, ZHU D, DANG L, WANG Y, LI W. Investigation into the surface modification of aragonite whiskers [J]. Surface and Interface Analysis, 2016, 48: 126–131. DOI: https://doi.org/10.1002/sia.5886.

    Article  Google Scholar 

  47. PRADITTHAM A, CHARITNGAM N, PUTTAJAN S, ATONG D, PECHYEN C. Surface modified CaCO3 by palmitic acid as nucleating agents for polypropylene film: Mechanical, thermal and physical properties [J]. Energy Procedia, 2014, 56: 264–273. DOI: https://doi.org/10.1016/j.egypro.2014.07.157.

    Article  Google Scholar 

  48. el MALTI W, LAURENCIN D, GUERRERO G, SMITH M E, MUTIN P H. Surface modification of calcium carbonate with phosphonic acids [J]. J Mater Chem, 2012, 22: 1212–1218. DOI: https://doi.org/10.1039/c1jm13555d.

    Article  Google Scholar 

  49. GAO W, MA X, WANG Z, ZHU Y. The influence of surface modification on the structure and properties of a calcium carbonate filled poly(ethylene terephthalate) [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389: 230–236. DOI: https://doi.org/10.1016/j.colsurfa.2011.08.022.

    Article  Google Scholar 

  50. BARHOUM A, RAHIER H, ABOU-ZAIED R E, REHAN M, DUFOUR T, HILL G, DUFRESNE A. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating [J]. ACS Appl Mater Interfaces, 2014, 6: 2734–2744. DOI: https://doi.org/10.1021/am405278j.

    Article  Google Scholar 

  51. BARHOUM A, van LOKEREN L, RAHIER H, DUFRESNE A, van ASSCHE G. Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials [J]. Journal of Materials Science, 2015, 50: 7908–7918. DOI: https://doi.org/10.1007/s10853-015-9327-z.

    Article  Google Scholar 

  52. EL-SHERBINY S, EL-SHEIKH S M, BARHOUM A. Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application [J]. Powder Technology, 2015, 279: 290–300. DOI: https://doi.org/10.1016/j.powtec.2015.04.006.

    Article  Google Scholar 

  53. HU Z S, DENG Y L. Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate [J]. Industrial & Engineering Chemistry Research, 2010, 49: 5625–5630. DOI: https://doi.org/10.1021/ie901944n.

    Article  Google Scholar 

  54. KIM J, BEA S K, KIM Y H, KIM D W, LEE K Y, LEE C M. Improved suspension stability of calcium carbonate nanoparticles by surface modification with oleic acid and phospholipid [J]. Biotechnology and Bioprocess Engineering, 2015, 20: 794–799. DOI: https://doi.org/10.1007/s12257-014-0898-3.

    Article  Google Scholar 

  55. WANG C, SHENG Y, HARI B, ZHAO X, ZHAO J, MA X, WANG Z. A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ [J]. Materials Science and Engineering C, 2007, 27: 42–45. DOI: https://doi.org/10.1016/j.msec.2006.01.003.

    Article  Google Scholar 

  56. HE H, LI K, WANG J, SUN G, LI Y, WANG J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites [J]. Materials & Design, 2011, 32: 4521–4527. DOI: https://doi.org/10.1016/j.matdes.2011.03.026.

    Article  Google Scholar 

  57. WONDU E, LULE Z C, KIM J. Fabrication of aliphatic water-soluble polyurethane composites with silane treated CaCO3 [J]. Polymers (Basel), 2020, 12: 1–11. DOI: https://doi.org/10.3390/polym12040747.

    Article  Google Scholar 

  58. WANG Z H, CHEN J H, YIN W Z, HAN Y X. Study on the surface modification of nanometer calcium carbonate [J]. Advanced Materials Research, 2010, 92: 229–234. DOI: https://doi.org/10.4028/www.scientific.net/AMR.92.229.

    Article  Google Scholar 

  59. LI L C, ZHANG Y. Wet surface modification of light calcium carbonate powder by aluminate coupling agent [J]. Advanced Materials Research, 2009, 79–82: 1967–1970. DOI: https://doi.org/10.4028/www.scientific.net/AMR.79-82.1967.

    Article  Google Scholar 

  60. UPADHYAYA P, NEMA A K, SHARMA C, KUMAR V, AGRAWAL D D. Physicomechanical study of random polypropylene filled with treated and untreated nano-calcium carbonate [J]. Journal of Thermoplastic Composite Materials, 2012, 26: 988–1004. DOI: https://doi.org/10.1177/0892705711433349.

    Article  Google Scholar 

  61. CHENG G, YU X, DING G, XU C. Study of surface modification of ultra-fine CaCO3 with different coupling agent [J]. Asian Journal of Chemistry, 2013, 25: 5558–5560. DOI: https://doi.org/10.14233/ajchem.2013.OH19.

    Article  Google Scholar 

  62. TANG Z, CHENG G, CHEN Y, YU X, WANG H. Characteristics evaluation of calcium carbonate particles modified by surface functionalization [J]. Advanced Powder Technology, 2014, 25: 1618–1623. DOI: https://doi.org/10.1016/j.apt.2014.05.017.

    Article  Google Scholar 

  63. PAL M K, GAUTAM J. Synthesis and characterization of polyacrylamide-calcium carbonate and polyacrylamide-calcium sulfate nanocomposites [J]. Polymer Composites, 2012, 33: 515–523. DOI: https://doi.org/10.1002/pc.22183.

    Article  Google Scholar 

  64. WU Z, ZHANG Z, MAI K. Preparation and thermal property of ultrahigh molecular weight polyethylene composites filled by calcium carbonate modified with long chain [J]. Journal of Thermoplastic Composite Materials, 2018, 33: 464–476. DOI: https://doi.org/10.1177/0892705718807955.

    Article  Google Scholar 

  65. WU Z, ZHANG Z, MAI K. Non-isothermal crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 [J]. Journal of Thermal Analysis and Calorimetry, 2019, 139: 1111–1120. DOI: https://doi.org/10.1007/s10973-019-08428-w.

    Article  Google Scholar 

  66. YE W, ZHANG L, FENG G, YE J, LI C. Preparation of calcium carbonate@Methyl methacrylate nanoparticles by seeded-dispersion polymerization for high performance polyvinyl chloride nanocomposites [J]. Industrial & Engineering Chemistry Research, 2015: 1–18. DOI: https://doi.org/10.1021/acs.iecr.5b01921.

  67. HAN Y, KIM H. Surface modification of calcium carbonate with cationic polymer and their dispersibility [J]. Materials Transactions, 2012, 53: 2195–2199. DOI: https://doi.org/10.2320/matertrans.M2012236.

    Article  Google Scholar 

  68. DEEPIKA, HAIT S K, CHRISTOPHER J, CHEN Y, HODGSON P, TULI D K. Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents [J]. Powder Technology, 2013, 235: 581–589. DOI: https://doi.org/10.1016/j.powtec.2012.11.015.

    Article  Google Scholar 

  69. YOĞURTCUOĞLU E, UÇURUM M. Surface modification of calcite by wet-stirred ball milling and its properties [J]. Powder Technology, 2011, 214: 47–53. DOI: https://doi.org/10.1016/j.powtec.2011.07.032.

    Article  Google Scholar 

  70. HAN C, HU Y, WANG K, LUO G. Preparation and in-situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system [J]. Powder Technology, 2019, 356: 414–422. DOI: https://doi.org/10.1016/j.powtec.2019.08.054.

    Article  Google Scholar 

  71. KIM D, LEE J, LEE S, LIM J. Surface modification of calcium carbonate nanoparticles by fluorosurfactant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536: 213–223. DOI: https://doi.org/10.1016/j.colsurfa.2017.05.002.

    Article  Google Scholar 

  72. YANG Z, TANG Y, ZHANG J. Surface modification of CaCO3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex [J]. Chalcogenide Letters, 2013, 10: 131–141. DOI: https://doi.org/10.7567/JJAP.52.04CC29.

    Google Scholar 

  73. KAMPHUNTHONG W, SIRISINHA K. Thermal property improvement of ethylene-octene copolymer through the combined introduction of filler and silane crosslink [J]. Journal of Applied Polymer Science, 2010, 115: 424–430. DOI: https://doi.org/10.1002/app.31017.

    Article  Google Scholar 

  74. ZHANG L, LUO M, SUN S, MA J, LI C. Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites [J]. Journal of Macromolecular Science, Part B, 2010, 49: 970–982. DOI: https://doi.org/10.1080/00222341003609336.

    Article  Google Scholar 

  75. SHI X, ROSA R, LAZZERI A. On the coating of precipitated calcium carbonate with stearic acid in aqueous medium [J]. Langmuir, 2010, 26: 8474–8482. DOI: https://doi.org/10.1021/la904914h.

    Article  Google Scholar 

  76. SONG E, KIM D, KIM B J, LIM J. Surface modification of CaCO3 nanoparticles by alkylbenzene sulfonic acid surfactant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461: 1–10. DOI: https://doi.org/10.1016/j.colsurfa.2014.07.020.

    Article  Google Scholar 

  77. LI Y, ZHAO Z F, LAU Y T, LIN Y, CHAN C M. Preparation and characterization of coverage-controlled CaCO3 nanoparticles [J]. J Colloid Interface Sci, 2010, 345: 168–173. DOI: https://doi.org/10.1016/j.jcis.2010.01.080.

    Article  Google Scholar 

  78. RAHMANI M, GHASEMI F A, PAYGANEH G. Effect of surface modification of calcium carbonate nanoparticles on their dispersion in the polypropylene matrix using stearic acid [J]. Mechanics & Industry, 2014, 15: 63–67. DOI: https://doi.org/10.1051/meca/2014009.

    Article  Google Scholar 

  79. KIM J H, AHN J H, HONG J S, AHN K H. Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification [J]. Korea-Australia Rheology Journal, 2020, 32: 29–39. DOI: https://doi.org/10.1007/s13367-020-0004-7.

    Article  Google Scholar 

  80. SUN S, LI C, ZHANG L, DU H L, BURNELL-GRAY J S. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments [J]. Polymer International, 2006, 55: 158–164. DOI: https://doi.org/10.1002/pi.1932.

    Article  Google Scholar 

  81. ZAMAN H U, HUN P D, KHAN R A, YOON K B. Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 nanocomposites [J]. Journal of Thermoplastic Composite Materials, 2012, 26: 1057–1070. DOI: https://doi.org/10.1177/0892705711433351.

    Article  Google Scholar 

  82. AJIKUMAR P K, WONG L G, SUBRAMANYAM G, LAKSHMINARAYANAN R, VALIYAVEETTIL S. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules [J]. Crystal Growth & Design, 2005, 5: 1129–1134. DOI: https://doi.org/10.1021/cg049606f.

    Article  Google Scholar 

  83. CHEN Y, JI X, ZHAO G, WANG X. Facile preparation of cubic calcium carbonate nanoparticles with hydrophobic properties via a carbonation route [J]. Powder Technology, 2010, 200: 144–148. DOI: https://doi.org/10.1016/j.powtec.2010.02.017.

    Article  Google Scholar 

  84. FU L H, DONG Y Y, MA M G, LI S M, SUN R C. Compare study CaCO3 crystals on the cellulose substrate by microwave-assisted method and ultrasound agitation method [J]. Ultrason Sonochem, 2013, 20: 839–845. DOI: https://doi.org/10.1016/j.ultsonch.2012.11.001.

    Article  Google Scholar 

  85. BASTAKOTI B P, GURAGAIN S, YOKOYAMA Y, YUSA S, NAKASHIMA K. Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions [J]. Langmuir, 2011, 27: 379–384. DOI: https://doi.org/10.1021/la103660x.

    Article  Google Scholar 

  86. ANTIPOV A A, SHCHUKIN D, FEDUTIK Y, PETROV A I, SUKHORUKOV G B, MÖHWALD H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 224: 175–183. DOI: https://doi.org/10.1016/S0927-7757(03)00195-X.

    Article  Google Scholar 

  87. CHEN J, XIANG L. Controllable synthesis of calcium carbonate polymorphs at different temperatures [J]. Powder Technology, 2009, 189: 64–69. DOI: https://doi.org/10.1016/j.powtec.2008.06.004.

    Article  Google Scholar 

  88. CHENG B, CAI W, YU J. DNA-mediated morphosynthesis of calcium carbonate particles [J]. J Colloid Interface Sci, 2010, 352: 43–49. DOI: https://doi.org/10.1016/j.jcis.2010.08.050.

    Article  Google Scholar 

  89. FUJII A, MARUYAMA T, OHMUKAI Y, KAMIO E, SOTANI T, MATSUYAMA H. Cross-linked DNA capsules templated on porous calcium carbonate microparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 356: 126–133. DOI: https://doi.org/10.1016/j.colsurfa.2010.01.008.

    Article  Google Scholar 

  90. JI X, LI G, HUANG X. The synthesis of hollow CaCO3 microspheres in mixed solutions of surfactant and polymer [J]. Materials Letters, 2008, 62: 751–754. DOI: https://doi.org/10.1016/j.matlet.2007.06.063.

    Article  Google Scholar 

  91. GORNAA M H K, VǓCAKC M, RÖHNA F G, WEGNERA G. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers [J]. Materials Science and Engineering A, 2008, 477: 217–225. DOI: https://doi.org/10.1016/j.msea.2007.05.045.

    Article  Google Scholar 

  92. PIEKARSKA K, PIORKOWSKA E, BOJDA J. The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites [J]. Polymer Testing, 2017, 62: 203–209. DOI: https://doi.org/10.1016/j.jcis.2010.08.050.

    Article  Google Scholar 

  93. BUASRI A, CHAIYUT N, BORVORNCHETTANUWAT K, CHANTANACHAI N, THONGLOR K. Thermal and mechanical properties of modified CaCO3/PP nanocomposites [J]. International Scholarly and Scientific Research & Innovation, 2012, 6: 689–692. DOI: https://doi.org/10.1016/S0141-3910(01)00082-9.

    Google Scholar 

  94. ZAMAN H U, KHAN M A, KHAN R A, BEG M D H. Effect of nano-CaCO3 on the mechanical and crystallization behavior of HDPE/LDPE/nano-CaCO3 ternary blend [J]. Journal of Thermoplastic Composite Materials, 2013, 27: 1701–1710. DOI: https://doi.org/10.1177/0892705712475010.

    Article  Google Scholar 

  95. KEMAL I, WHITTLE A, BURFORD R, VODENITCHAROVA T, HOFFMAN M. Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate [J]. Polymer, 2009, 50: 4066–4079. DOI: https://doi.org/10.1016/j.polymer.2009.06.028.

    Article  Google Scholar 

  96. FERNANDO N A S, THOMAS N L. Effect of precipitated calcium carbonate on the mechanical properties of poly(vinyl chloride) [J]. Journal of Vinyl and Additive Technology, 2007, 13: 98–102. DOI: https://doi.org/10.1002/vnl.20109.

    Article  Google Scholar 

  97. XIE X L, LIU Q X, LI R K Y, ZHOU X P, ZHANG Q X, YU Z Z, MAI Y W. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization [J]. Polymer, 2004, 45: 6665–6673. DOI: https://doi.org/10.1016/j.polymer.2004.07.045.

    Article  Google Scholar 

  98. LIU H, DONG L, XIE H, WAN L, LIU Z, XIONG C. Ultraviolet light aging properties of PVC/CaCO3 composites [J]. Journal of Applied Polymer Science, 2013, 127: 2749–2756. DOI: https://doi.org/10.1002/app.37595.

    Article  Google Scholar 

  99. ATTA A M, AL-LOHEDAN H A, EZZAT A O, AL-HUSSAIN S A. Characterization of superhydrophobic epoxy coatings embedded by modified calcium carbonate nanoparticles [J]. Progress in Organic Coatings, 2016, 101: 577–586. DOI: https://doi.org/10.1016/j.porgcoat.2016.10.008.

    Article  Google Scholar 

  100. FAN H, WANG S, LIU J. The influence of particle size of starch-sodium stearate complex modified GCC filler on paper physical strength [J]. BioResources, 2014, 9: 5883–5892. DOI: https://doi.org/10.15376/biores.9.4.5883-5892.

    Article  Google Scholar 

  101. FAN H, WANG X, LIU J, XU B. Study of coating weight and utilization rate in the modification of ground calcium carbonate [J]. BioResources, 2015, 10: 6861–6871. DOI: https://doi.org/10.15376/biores.10.4.6861-6871.

    Article  Google Scholar 

  102. FAN H, WANG X, LIU J, XU B. Surface modification of ground calcium carbonate with starch, sodium stearate, and hexametaphosphate [J]. BioResources, 2016, 11: 957–964. DOI: https://doi.org/10.15376/biores.11.1.957-964.

    Google Scholar 

  103. HU Z, ZEN X, GONG J, DENG Y. Water resistance improvement of paper by superhydrophobic modification with microsized CaCO3 and fatty acid coating [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 351: 65–70. DOI: https://doi.org/10.1016/j.colsurfa.2009.09.036.

    Article  Google Scholar 

  104. JIN F L, PARK S J. Thermo-mechanical behaviors of butadiene rubber reinforced with nano-sized calcium carbonate [J]. Materials Science and Engineering A, 2008, 478: 406–408. DOI: https://doi.org/10.1016/j.msea.2007.05.102.

    Article  Google Scholar 

  105. LU J, CONG X, LI Y, HAO Y, WANG C. High strength artificial stoneware from marble waste via surface modification and low temperature sintering [J]. Journal of Cleaner Production, 2018, 180: 728–734. DOI: https://doi.org/10.1016/j.jclepro.2018.01.181.

    Article  Google Scholar 

  106. SARKAR A, GHOSH A K, MAHAPATRA S. Lauric acid triggered in situ surface modification and phase selectivity of calcium carbonate: Its application as an oil sorbent [J]. Journal of Materials Chemistry, 2012, 22: 11113–11120. DOI: https://doi.org/10.1039/c2jm30778b.

    Article  Google Scholar 

  107. MALLAKPOUR S, KHADEM E. Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property [J]. Ultrason Sonochem, 2017, 39: 430–438. DOI: https://doi.org/10.1016/j.ultsonch.2017.05.008.

    Article  Google Scholar 

  108. YAZDIAN-ROBATI R, ARAB A, RAMEZANI M, RAFATPANAH H, BAHREYNI A, NABAVINIA M S, ABNOUS K, TAGHDISI S M. Smart aptamer-modified calcium carbonate nanoparticles for controlled release and targeted delivery of epirubicin and melittin into cancer cells in vitro and in vivo [J]. Drug Dev Ind Pharm, 2019, 45: 603–610. DOI: https://doi.org/10.1080/03639045.2019.1569029.

    Article  Google Scholar 

  109. CHEN C, HAN H, YANG W, REN X, KONG X. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery [J]. Regen Biomater, 2016, 3: 57–63. DOI: https://doi.org/10.1093/rb/rbv029.

    Article  Google Scholar 

  110. WANG J, CHENG Y, FAN Z, LI S, LIU X, SHEN X, SU F. Composites of poly(l-lactide-trimethylene carbonate-glycolide) and surface modified calcium carbonate whiskers as a potential bone substitute material [J]. RSC Advances, 2016, 6: 57762–57772. DOI: https://doi.org/10.1039/C6RA07832J.

    Article  Google Scholar 

  111. WANG J, FAN Z, LI S, LIU X, SHEN X, SU F. Fabrication and characterization of composites composed of a bioresorbable polyester matrix and surface modified calcium carbonate whisker for bone regeneration [J]. Polymers for Advanced Technologies, 2017, 28: 1892–1901. DOI: https://doi.org/10.1002/pat.4078.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Sun  (孙志明).

Additional information

Foundation item

Project(AA18242008) supported by the Guangxi Science & Technology Major Project, China; Project (HZXYKFKT201904) supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, China

Contributors

LI Chun-quan: conceptualization, data curation, formal analysis and writing-original draft. LIANG Chao: conceptualization, and methodology. CHEN Zhen-ming: resources, writing-review and editing. DI Yong-hao: conceptualization and methodology. ZHENG Shui-lin: resources, supervision, writing-review and editing. WEI Shi: formal analysis and visualization. SUN Zhi-ming: rroject administration, resources, supervision and writing-review and editing.

Conflict of interest

All the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cq., Liang, C., Chen, Zm. et al. Surface modification of calcium carbonate: A review of theories, methods and applications. J. Cent. South Univ. 28, 2589–2611 (2021). https://doi.org/10.1007/s11771-021-4795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4795-6

Key words

关键词

Navigation