Skip to main content
Log in

Solution and aging behavior of precipitates in laser melting deposited V-5Cr-5Ti alloys

激光熔化沉积 V-5Cr-5Ti 合金第二相的固溶和时效行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

V-5Cr-5Ti alloys have been fabricated using a laser melting deposition (LMD) additive manufacturing process, showing precipitates aggregated near the grain/dendrite boundaries. Since the mechanical properties of vanadium alloys considerably depend on the precipitates, solution and aging treatments have been applied to eliminating the aggregations of the precipitates. The results show that as the solution temperature increases from 800 to 1560 °C, the densities and the lengths of the precipitates are reduced, while the widths of the precipitates are increased. When the solution temperature reaches 1560 °C, most impurity elements diffuse into the matrix and form into a nearly uniform supersaturated solid solution. Aging treatments have been applied to the 1560 °C solution treated samples. It shows that as the aging temperature increases from 800 to 1200 °C, the precipitate length increases, and the shapes of precipitates change from near-spherical to lath-like. Compared to 800 and 1200 °C, aging at 1000 °C results in the highest precipitate density. Compared to the LMD and solution-treated samples, the aged samples have the highest micro-hardness, due to the precipitation strengthening.

摘要

使用激光熔化沉积(LMD)技术制备的 V-5Cr-5Ti 合金中存在大量偏析分布在晶界/枝晶界的第二相。由于钒合金基体无法通过热处理进行相变强化,其力学性能主要取决于第二相,因此十分有必要研究如何采用固溶和时效热处理来消除LMD 钒合金中的第二相偏析。研究结果表明,随着固溶温度从 800 °C 升至 1560 °C,LMD 钒合金中的第二相的长度和密度减小而其宽度增加。当固溶温度达到 1560 °C,大部分杂质元素可扩散进基体中并形成近乎均匀分布的过饱和固溶体。对 1560 °C 固溶样品进行时效处理,结果表明,随着时效温度从 800 °C 升至 1200 °C,第二相的长度增加,且第二相的形状由近球形逐渐向条状转变。与 800 °C 和 1200 °C 相比,1000 °C 时效处理形成的第二相密度最高。由于存在第二相的析出强化效果,与LMD 样品和固溶状态样品相比,时效样品具有最高的硬度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SATOU M, ABE K, KAYANO H. High-temperature deformation of modified V-Ti-Cr-Si type alloys [J]. Journal of Nuclear Materials, 1991, 179(1): 757–761. DOI: https://doi.org/10.1016/0022-3115(91)90199-H.

    Article  Google Scholar 

  2. DIERCKS D R, LOOMIS B A. Alloying and impurity effects in vanadium-base alloys [J]. Journal of Nuclear Materials, 1986, 141: 1117–1124. DOI: https://doi.org/10.1016/0022-3115(86)90152-2.

    Article  Google Scholar 

  3. HEO N J, NAGASAKA T, MUROGA T. Recrystallization and precipitation behavior of low-activation V-Cr-Ti alloys after cold rolling [J]. Journal of Nuclear Materials, 2004, 325(1): 53–60. DOI: https://doi.org/10.1016/j.jnucmat.2003.10.012.

    Article  Google Scholar 

  4. SMITH J P, JOHNSON W R, TRESTER P W. Metallurgical bonding development of V-4Cr-4Ti alloy for the DIII-D radiative divertor program [J]. Journal of Nuclear Materials, 1998, 258: 1420–1424. DOI: https://doi.org/10.1016/S0022-3115(98)00323-7.

    Article  Google Scholar 

  5. BOEV A O, AKSYONOV D A, KARTAMYSHEV A I, MAKSIMENKO V N, NELASOV I V, LIPNITSKII A G. Interaction of Ti and Cr atoms with point defects in bcc vanadium: A DFT study [J]. Journal of Nuclear Materials, 2017, 492(8): 14–21. DOI: https://doi.org/10.1016/j.jnucmat.2017.04.046.

    Article  Google Scholar 

  6. BARRON P J, CARRUTHERS A W, FELLOWES J W, JONES N G, PICKERING E J. Towards V-based high-entropy alloys for nuclear fusion applications [J]. Scripta Materialia, 2020, 176: 12–16. DOI: https://doi.org/10.1016/j.scriptamat.2019.09.028.

    Article  Google Scholar 

  7. SHIKOV A K, CHERNOV V M, POTAPENKO M M, GUBKIN I N, DROBYSHEV V A, ZURABOV V S. Development of production process and study of low-activity V-(4–5)%Ti-(4–5)%Cr structural alloys for thermonuclear reactors [J]. Metal Science & Heat Treatment, 2004, 46(11, 12): 497–503. DOI: https://doi.org/10.1007/s11041-005-0009-3.

    Article  Google Scholar 

  8. POTAPENKO M M, DROBISHEV V A, FILKIN V Y, GUBKIN I N, MYASNIKOV V V, NIKULIN A D, SHINGAREV E N, VEDERNIKOV G P, VOTINOV S N, ZURABOV V S, ZOLOTAREV A B. Manufacture of semifinished items of alloys V-4Ti-4Cr and V-10Ti-5Cr for use as a structural material in fusion applications[J]. Journal of Nuclear Materials, 1996, 233–237: 438–441. DOI: https://doi.org/10.1016/S0022-3115(96)00285-1.

    Article  Google Scholar 

  9. MUROGA T, NAGASAKA T, IIYOSHI A, KAWABATA A, SAKATA M. NIFS program for large ingot production of a V-Cr-Ti alloy [J]. Journal of Nuclear Materials, 2000, 283–287: 711–715. DOI: https://doi.org/10.1016/S0022-115(00)00281-6.

    Article  Google Scholar 

  10. NAGASAKA T, MUROGA T, FUKUMOTO K I, WATANABE H, GROSSBECK M L, CHEN Ji-ming. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials [J]. Nuclear Fusion, 2006, 46(5): 618–625. DOI: https://iopscience.iop.org/article/10.1088/0029-5515/46/5/012/meta.

    Article  Google Scholar 

  11. CHUTO T, SATOU M, HASEGAWA A, ABEA K, NAGASAKAB T, MUROGAB T. Fabrication using a levitation melting method of V-4Cr-4Ti-Si-Al-Y alloys and their mechanical properties [J]. Journal of Nuclear Materials, 2002, 307(1): 555–559. DOI: https://doi.org/10.1016/S0022-3115(02)01089-9.

    Article  Google Scholar 

  12. KUWABARA T, KURISHITA H, HASEGAWA M. Development of an ultra-fine grained V–1.7mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Materials Science & Engineering A, 2006, 417(1, 2): 16–23. DOI: https://doi.org/10.1016/S0022-3115(02)01089-9.

    Article  Google Scholar 

  13. BAI Lin-rui, LE Guo-min, LIU Xue, LI Jin-feng, XIA Sheng-quan, LI Xiu-yan. Grain morphologies and microstructures of laser melting deposited V-5Cr-5Ti alloys [J]. Journal of Alloys & Compounds, 2018, 745: 716–724. DOI: https://doi.org/10.1016/j.jallcom.2018.02.249.

    Article  Google Scholar 

  14. XIA Yang, DONG Zhao-wang, GUO Xue-yi, TIAN Qing-hua, LIU Yong. Towards a circular metal additive manufacturing through recycling of materials: A mini review [J]. Journal of Central South University, 2020, 27(4): 1134–1145. DOI: https://doi.org/10.1007/s11771-020-4354-6.

    Article  Google Scholar 

  15. YANG Li-ning, SHAN Zhong-de, RONG Wen-juan, LIU Feng, WANG Yong-wei. Three-dimensional direct writing technology of low melting point molten metal [J]. Three-dimensional Direct Writing Technology of Low Melting Point Molten Metal, 2018, 49(10): 47–54. DOI: https://doi.org/10.11817/j.issn.1672-7207.2018.10.006.

    Google Scholar 

  16. GELLES D S, STUBBINS J F. Microstructural development in irradiated vanadium alloys [J]. Journal of Nuclear Materials, 1994, 212(part-P1): 778–783. DOI: https://doi.org/10.1016/0022-3115(94)90162-7.

    Article  Google Scholar 

  17. GELLES D S, RICE P M, ZINKLE S J, CHUNG H M. Microstructural examination of irradiated V-(4-5%)Cr-(4-5%)Ti [J]. Journal of Nuclear Materials, 1998, 258–263: 1380–1385. DOI: https://doi.org/10.1016/S0022-3115(98)00206-2.

    Article  Google Scholar 

  18. MUROGA T, HEO N J, NAGASAKA T, WATANABE H, NISHIMURA A, SHINOZAKI K. Heterogeneous precipitation and mechanical property change by heat treatments for the laser weldments of V-4Cr-4Ti alloy [J]. Plasma & Fusion Research, 2015, 10: 1405092. DOI: https://doi.org/10.1585/pfr.10.1405092.

    Article  Google Scholar 

  19. ZHU Bo-ling, YANG Shan-wu, DING Jian-wen, ZHANG Wen-hua, LONG Yi, WAN Fa-rong. Abnormal hardening effect induced by the lath-like precipitates in the V-4Cr-4Ti alloy [J]. Materials Letters, 2015, 161: 609–612. DOI: https://doi.org/10.1016/j.matlet.2015.09.080.

    Article  Google Scholar 

  20. ZHU Bo-ling, YANG Shan-wu, ZHANG Meng-qi, DING Jian-wen, LONG Yi, WAN Fa-rong. Formation and evolution of platelet-like Ti-rich precipitates in the V-4Cr-4Ti alloy [J]. Mater Charact, 2016, 111: 60–66. DOI: https://doi.org/10.1016/j.matchar.2015.11.012

    Article  Google Scholar 

  21. ZINKLE S J, MATSUI H, SMITH D L, ROWCLIFFE A F, VAN O E, ABE K, KAZAKOV V A. Research and development on vanadium alloys for fusion applications [J]. Journal of Nuclear Materials, 1998, 258–263(4): 205–214. DOI: https://doi.org/10.1016/S0022-3115(98)00269-4.

    Article  Google Scholar 

  22. HOELZER D T, WEST M K, ZINKLE S J, ROWCLIFFE A F. Solute interactions in pure vanadium and V-4Cr-4Ti alloy [J]. Journal of Nuclear Materials, 2000, 283–287: 616–621. DOI: https://doi.org/10.1016/S0022-3115(00)00344-5.

    Article  Google Scholar 

  23. LI Zeng-de, LIN Chen-guang, CUI Shun. Behavior of secondary phase of As-cast V-5Cr-5Ti alloy [J]. Rare Metal Mat Eng, 2017, 46(1): 104–110. DOI: http://www.cqvip.com/QK/92850X/201701/671192524.html. (in Chinese)

    Google Scholar 

  24. HEO N J, NAGASAKA T, MUROGA T. Recrystallization and precipitation behavior of low-activation V-Cr-Ti alloys after cold rolling [J]. Journal of Nuclear Materials, 2004, 325(1): 53–60. DOI: https://doi.org/10.1016/j.jnucmat.2003.10.012.

    Article  Google Scholar 

  25. MUROGAA T, CHEN J M, CHERNOV V M, KURTZ R J, FLEM M L. Present status of vanadium alloys for fusion applications [J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2014, 455(1–3): 263–268. DOI: https://doi.org/10.1016/j.jnucmat.2014.06.025.

    Article  Google Scholar 

  26. NAGASAKA T, HEO N J, MUROGA T, NISHIMURA A, WATANABE H, NARUI M, SHINOZAKI K. Impact properties of NIFS-HEAT-2 (V-4Cr-4Ti) after YAG laser welding and neutron irradiation at 563 K [J]. Journal of Nuclear Materials, 2004, 329–333: 1539–1543. DOI: https://doi.org/10.1016/j.jnucmat.2004.04.171.

    Article  Google Scholar 

  27. NAGASAKA T, HEO N J, MUROGA T, IMAMURA M. Examination of fabrication process parameters for improvement of low-activation vanadium alloys [J]. Fusion Engineering and Design, 2002, 61–62: 757–762. DOI: https://doi.org/10.1016/S0920-3796(02)00258-2.

    Article  Google Scholar 

  28. DING Jian-wen, YANG Shan-wu, LIU Guo-liang, LI Qiu-fan, ZHU Bo-ling, ZHANG Meng-qi, ZHOU Lu-jun, SHANG Cheng-jia, ZHAN Qian, WAN Fa-rong. Recrystallization nucleation in V-4Cr-4Ti alloy [J]. Journal of Alloys and Compounds, 2018, 777: 663–672. DOI: https://doi.org/10.1016/j.jallcom.2018.11.014.

    Article  Google Scholar 

  29. BUEHLER. Buehler SumMet-A guide to materials preparation & analysis [M]. 2nd edition. Germany: Buehler, 2013.

    Google Scholar 

  30. HIROSAWA S, OGURI Y, OGURA T, SATO T. Formation mechanisms of precipitate free zones in age-hardenable Al alloys [J]. Material Forum, 2004: 666–671. DOI: http://www.icaa-conference.net/ICAA9/data/papers/GP%2091.pdf.

  31. NISHIMURA A, IWAHORI A, HEO N J, NAGASAKA T, MUROGA T, TANAKA S I. Effect of precipitation and solution behavior of impurities on mechanical properties of low activation vanadium alloy [J]. Journal of Nuclear Materials, 2004, 329: 438–441. DOI: https://doi.org/10.1016/j.jnucmat.2004.04.072.

    Article  Google Scholar 

  32. GRONG O, SHERCLIFF H R. Microstructural modelling in metals processing [J]. Progress in Materials Science, 2002, 47(2): 163–282. DOI: https://doi.org/10.1016/S0079-6425(00)00004-9.

    Article  Google Scholar 

  33. PORTER D A, EASTERLING K E, SHERIF M. Phase transformations in metals and alloys [M]. Boca Raton: CRC Press, 2009.

    Google Scholar 

  34. CHEN J M, MUROGA T, NAGASAKA T, QIU S Y, LI C, CHEN Y, LIANG B, XU Z Y. The mechanical properties of V-4Cr-4Ti in various thermo-mechanical states [J]. Fusion Engineering & Design, 2006, 81(23–24): 2899–2905. DOI: https://doi.org/10.1016/j.fusengdes.2006.07.051.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by LE Guo-min, HUANG Xue-fei, and YUE Guo-zong. CHAI Peng-tao, WANG Ye, and ZHOU Yu-zhao provided the measured data, and analyzed the measured data. YANG Xiao-shan, LI Jin-feng, and LIU Xue analyzed the calculated results. The initial draft of the manuscript was written by CHAI Peng-tao. LE Guo-min, HUANG Xue-fei, and YUE Guo-zong edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Guo-zong Yue  (岳国宗).

Additional information

Conflict of interest

CHAI Peng-tao, WANG Ye, ZHOU Yu-zhao, YANG Xiao-shan, LI Jin-feng, LIU Xue, LE Guo-min, HUANG Xue-fei, and YUE Guo-zong declare that they have no conflict of interest.

Foundation item: Project(51871203) supported by the National Natural Science Foundation of China; Project(TZ2018006-0303-02) supported by the Science Challenge Project, China; Projects(2020ZDZX0017, 2019YFG0217) supported by the Sichuan Science and Technology Program, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Pt., Wang, Y., Zhou, Yz. et al. Solution and aging behavior of precipitates in laser melting deposited V-5Cr-5Ti alloys. J. Cent. South Univ. 28, 1089–1099 (2021). https://doi.org/10.1007/s11771-021-4682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4682-1

Key words

关键词

Navigation