Skip to main content
Log in

Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy

Ti6Al4V-xTA15合金激光增材修复TA15 锻件的相容性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The application of mixed powders with different mass fraction on laser additive repairing (LAR) can be an effective way to guarantee the performance and functionality of repaired part in time. A convenient and feasible approach is presented to repair TA15 forgings by employing Ti6Al4V-xTA15 mixed powders in this paper. The performance compatibility of Ti6Al4V-xTA15 powders from the aspects of microhardness, tensile property, heat capacity, thermal expansion coefficient and corrosion resistance with the TA15 forgings was fully investigated. The primary α laths were refined and the volume fraction of the secondary α phase was increased by increasing the mass fraction of TA15 in the mixed Ti6Al4V-xTA15 powders, leading to varied performances. In conclusion, the mixed Ti6Al4V-70%TA15 (x=70%) powders is the most suitable candidate and is recommended as the raw material for LAR of TA15 forgings based on overall consideration of the compatibility calculations of the laser repaired zone with the wrought substrate zone.

摘要

本文提出了一种利用混合粉末修复TA15 锻件的简便可行方法。利用激光增材技术并应用于Ti6Al4V-xTA15 混合粉末,可以有效地保证修复后零件的性能和功能。从显微硬度、拉伸性能、热容、热膨胀系数和耐腐蚀性能等方面研究了Ti6Al4V-xTA15 粉末与TA15 锻件的相容性。结果显示,随着TA15 质量分数的增加,Ti6Al4V-xTA15 粉末细化了初生α 板条,增加了次生α 相的体积分数,导致其性能发生变化。综上所述,综合考虑激光修复区与锻造基板区域的相容性,Ti6Al4V-70%TA15(x=70%)混合粉末是最合适的候选材料,推荐该混合粉末作为TA15 锻件激光增材修复的原材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAMANFAR A, PASANG T, VENTURA A, MISIOLEK W Z. Mechanical properties and microstructure of laser welded Ti-6Al-2Sn-4Zr-2Mo (Ti6242) titanium alloy [J]. Materials Science and Engineering A, 2016, 663: 213–224. DOI: https://doi.org/10.1016/j.msea.2016.02.068.

    Article  Google Scholar 

  2. GRIFFITH M L, SCHLIENGER M E, HARWELL L D, OLIVER M S, BALDWIN M D, ENSZ M T, ESSIEN M, BROOKS J, ROBINO C V. Understanding thermal behaviour in the LENS process [J]. Materials & Design, 1999, 20(2,3): 107–113. DOI: https://doi.org/10.1016/S0261-3069(99)00016-3.

    Article  Google Scholar 

  3. FATOBA O S, AKINLABI E T, MAKHATHA M E. Influence of rapid solidification on the thermophysical and fatigue properties of laser additive manufactured Ti-6Al-4V alloy [M]// Aluminum Alloys. 2017, 181: 181–202. DOI: https://doi.org/10.5772/intechopen.71697.

    Google Scholar 

  4. FACCHINI L, MAGALINI E, ROBOTTI P, MOLINARI A, HÖGES S, WISSENBACH K. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders [J]. Rapid Prototyping Journal, 2010, 16: 450–459. DOI: https://doi.org/10.1108/13552541011083371.

    Article  Google Scholar 

  5. FADIDA R, SHIRIZLY A, RITTEL D. Static and dynamic shear-compression response of additively manufactured Ti6Al4V specimens with embedded voids [J]. Mechanics of Materials, 2020, 147: 103413. DOI: https://doi.org/10.1016/j.mechmat.2020.103413.

    Article  Google Scholar 

  6. ZHAO Zhuang, CHEN Jing, ZHANG Qiang, TAN Hua, LIN Xin, HUANG Wei-dong. Microstructure and mechanical properties of laser additive repaired Ti17 titanium alloy [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(12): 2613–2621. DOI: https://doi.org/10.1016/S1003-6326(17)60289-9.

    Article  Google Scholar 

  7. ZHAO Zhuang, CHEN Jing, TAN Hua, LIN Xin, HUANG Wei-dong. Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy [J]. Optics & Laser Technology, 2017, 92: 36–43. DOI: https://doi.org/10.1016/j.optlastec.2016.12.038.

    Article  Google Scholar 

  8. MARAZANI T, MADYIRA D M, AKINLABI E T. Microhardness profiling of Ti-6Al-4V components repaired through multiple laser additive re-melt technique [J]. Procedia Manufacturing, 2019, 35: 897–902. DOI: https://doi.org/10.1016/j.promfg.2019.06.036.

    Article  Google Scholar 

  9. SONG Ya-nan, SUN Qi-dong, GUO Kai, WANG Xie-bin, LIU Jiang-wei, SUN Jie. Effect of scanning strategies on the microstructure and mechanical behaviour of 316L stainless steel fabricated by selective laser melting [J]. Materials Science and Engineering A, 2020, 793: 139879. DOI: https://doi.org/10.1016/j.msea.2020.139879.

    Article  Google Scholar 

  10. CHEN X, QIU C. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy [J]. Scientific Reports, 2020, 10(1): 1–12. DOI: https://doi.org/10.1038/s41598-020-72627-x.

    Article  Google Scholar 

  11. ZHANG Xiao-hong, LIN Xin, CHEN Jing, HUANG Wei-dong. Effects of heat treatment on the microstructures and mechanical properties of TAl5 titanium alloys by laser solid forming [J]. Rare Metal Materials and Engineering, 2011, 40(1): 142–147. DOI: CNKI:SUN:COSE.0.2011-01-031.

    Google Scholar 

  12. LI Jing, LIN Xin, QIAN Yuan-hong, HUANG Wei-dong. Study on microstructure and property of laser solid forming TC4 titanium alloy [J]. Chinese Journal of Lasers, 2014, 41(11): 109–113. DOI: CNKI:SUN:JJZZ.0.2014-11-017. (in Chinese)

    Google Scholar 

  13. XU Wei-feng, MA Jun, LUO Yu-xuan, FANG Yue-xiao. Microstructure and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 160–170. DOI: https://doi.org/10.1016/S1003-6326(19)65188-5.

    Article  Google Scholar 

  14. ZHANG Z, WANG Q, MO W. Metallurgy and heat treatment of titanium [M]. Beijing: Metallurgical Industry Press, 2009. DOI: https://doi.org/10.11900/0412.1961.2018.00460. (in Chinese)

    Google Scholar 

  15. ZHANG Feng-ying, CHEN Jing, TAN Hua, LIN Xin, HUANG Wei-dong. Chemical composition analysis for laser solid forming of titanium alloys from blended elemental powders [J]. Chinese Optics Letters, 2009, 7(3): 222–225. DOI: CNKI:SUN:JJZZ.0.2009-05-050.

    Article  Google Scholar 

  16. ZHANG Yong-yun, FENG Shi-hui, DING Chao, NODOOSHAN H R J, YE Shu-long, JIANG Feng, LI Zhong, GU Meng, YU Peng. Investigation of the influences of heat treatment on the microstructures and thermal properties of Al-20Si alloy fabricated by powder extrusion [J]. Materials Characterization, 2020, 168: 110522. DOI: https://doi.org/10.1016/j.matchar.2020.110522.

    Article  Google Scholar 

  17. GUAN S, WAN D, SOLBERG K, BERTO F, WELO T, YUE T M, CHAN K C. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping [J]. Materials Science and Engineering A, 2019, 761: 138056. DOI: https://doi.org/10.1016/j.msea.2019.138056.

    Article  Google Scholar 

  18. WANG J T, XIE L, WANG Z G, GU H, LUO K Y, LU Y L, HE M T, GE M Z. Influence of laser shock peening on the coefficient of thermal expansion of Al (7075)-based hybrid composites [J]. Journal of Alloys and Compounds, 2020, 844: 156088. DOI: https://doi.org/10.1016/j.jallcom.2020.156088.

    Article  Google Scholar 

  19. ZOSKI C G. Handbook of electrochemistry [M]. USA: Elsevier, 2006. ISBN-13: 978-0-444-51958-0.

    Google Scholar 

  20. OLIVEIRA N T C, GUASTALDI A C. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications [J]. Acta Biomaterialia, 2009, 5(1): 399–405. DOI: https://doi.org/10.1016/j.actbio.2008.07.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by YU Jun, LIN Xin and HUANG Wei-dong. All experiment data were measured by SONG Ye-pan under LIN Xin and YU Jun’s supervision. The initial draft of the manuscript was written by YU Jun and CAO Zhen-jie. YU Jun, CAO Zhen-jie, ZENG Quan-ren and WANG Jun-jie edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Xin Lin  (林鑫).

Additional information

Conflict of interest

YU Jun, SONG Ye-pan, LIN Xin, CAO Zhen-jie, ZENG Quan-ren, WANG Jun-jie and HUANG Wei-dong declare that they have no conflict of interest.

Foundation item: Project(2019-00899-1-1) supported by the Ministry of Industry and Information Technology of China; Project(2021JM-060) supported by the Natural Science Foundation of Shaanxi Province, China; Project(3102019QD0409) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Song, Yp., Lin, X. et al. Compatibility research of laser additive repairing TA15 forgings with Ti6Al4V-xTA15 alloy. J. Cent. South Univ. 28, 1015–1027 (2021). https://doi.org/10.1007/s11771-021-4676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4676-z

Key words

关键词

Navigation