Skip to main content
Log in

Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst

基于声发射主频熵的岩爆预警实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2021

This article has been updated

Abstract

Rockburst is a dynamic phenomenon accompanied by acoustic emission (AE) activities. It is difficult to predict rockburst accurately. Based on the fast Fourier transform (FFT) method and the information entropy theory, the evolution model of dominant frequency entropy was established. The AE energy, frequency and stress were synthetically considered to predict rockburst. Under the triaxial and the single-face unloading tests, the relationship between AE energy and the development of internal cracks was analyzed. Using the FFT method, the distribution characteristics of AE dominant frequency values were obtained. Based on the information entropy theory, the dominant frequencies evolved patterns were ascertained. It was observed that the evolution models of the dominant frequency entropy were nearly the same and shared a characteristic “undulation-decrease-rise-sharp decrease” pattern. Results show that AE energy will be released suddenly before rockburst. The density of intermediate frequency increased prior to rockburst. The dominant frequency entropy reached a relative maximum value before rockburst, and then decreased sharply. These features could be used as a precursory information for predicting rockburst. The proposed relative maximum value could be as a key point to predict rockburst. This is a meaningful attempt on predicting rockburst.

摘要

岩爆是一种伴随着声发射(AE)活动的动态现象, 难以准确预测。本文基于快速傅立叶变换(FFT) 方法和信息熵理论, 建立了主频熵的演化模型。综合考虑应力, AE 能量和频率来进行岩爆预警。在 三轴卸荷的试验条件下, 分析了声发射参数与裂纹发育的关系, 使用FFT 方法获得了AE 主频分布的 特征。基于信息熵理论确立了主频熵的演化模型。可以观察到, 实验中的主频熵演化模型几乎都呈现 出“震荡—下降—小幅上升—急剧下降”的特征。结果表明, 岩爆前, AE 能量会突然释放, 声发射的 中频密度会增加。主频熵值在岩爆前达到相对最大值, 然后急剧下降。这些特征可以作为岩爆预警的 前兆信息, 主频熵相对最大值点可以作为预测岩爆的关键点。这对于岩爆预警是一次有意义的尝试。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. LI Tie, CAI Mei-feng, CAI M. A review of mining-induced seismicity in China [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1149–1171. DOI: https://doi.org/10.1016/j.ijrmms.2007.06.002.

    Article  Google Scholar 

  2. GONG Feng-qiang, SI Xue-feng, LI Xi-bing. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52: 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  3. XU Nu-wen, TANG Chun-an, LI Hong, DAI Feng, MA Ke, SHAO Jing-dong, WU Ji-chang. Excavation-induced microseismicity: Microseismic monitoring and numerical simulation [J]. Journal of Zhejiang University-Science A, 2012, 13(6): 445–460. DOI:https://doi.org/10.1631/jzus.a1100131.

    Article  Google Scholar 

  4. HARDY H R. Application of acoustic emission techniques to rock mechanics research [J]. Acoustic Emission, ASTM International, 1972, 41: 41–43. DOI:https://doi.org/10.1520/stp35381s.

    Article  Google Scholar 

  5. EBERHARDT E, STEAD D, STIMPSON B, READ R S. Changes in acoustic event properties with progressive fracture damage [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34: 3–4. DOI: https://doi.org/10.1016/s1365-1609(97)00062-2.

    Google Scholar 

  6. MLAKAR V, HASSANI F P, MOMAYEZ M. Crack development and acoustic emission in potash rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1993, 30(3): 305–319. DOI: https://doi.org/10.1016/0148-9062(94)92418-x.

    Article  Google Scholar 

  7. HE Man-cao, MIAO Jin-li, FENG Ji-li. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  8. EBERHARDT E, STEAD D, STIMPSO B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 361–380. DOI: https://doi.org/10.1016/s0148-9062(99)00019-4.

    Article  Google Scholar 

  9. MORADIAN Z A, BALLIVY G, RIVARD P, GRAVEL C, ROUSSEAU B. Evaluating damage during shear tests of rock joints using acoustic emissions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4): 590–598. DOI:https://doi.org/10.1016/j.ijrmms.2010.01.004.

    Article  Google Scholar 

  10. LU Cai-ping, DOU Lin-ming, LIU Biao, XIE Yao-she, LIU Hai-shun. Microseismic low-frequency precursor effect of bursting failure of coal and rock [J]. Journal of Applied Geophysics, 2012, 79: 55–63. DOI: https://doi.org/10.1016/j.jappgeo.2011.12.013.

    Article  Google Scholar 

  11. EBERHARDT E, STEAD D, STIMPSON B, READ R S. Identifying crack initiation and propagation thresholds in brittle rock [J]. Canadian Geotechnical Journal, 1998, 35(2): 222–233. DOI:https://doi.org/10.1139/cgj-35-2-222.

    Article  Google Scholar 

  12. ANZANI A, BINDA L, CARPINTERI G, CARPINTER A, LACIDOGNA G, MANUELLO A. Evaluation of the repair on multiple leaf stone masonry by acoustic emission [J]. Materials and Structures, 2008, 41(6): 1169–1189. DOI: https://doi.org/10.1617/s11527-007-9316-z.

    Article  Google Scholar 

  13. CHEON D S, JUNG Y B, PARK E S, SONG, W K, JANG H L. Evaluation of damage level for rock slopes using acoustic emission technique with waveguides [J]. Engineering Geology, 2011, 121(1): 75–88. DOI: https://doi.org/10.1016/j.enggeo.2011.04.015.

    Article  Google Scholar 

  14. WANG Chun-lai. Identification of early-warning key point for rockmass instability using acoustic emission/microseismic activity monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 171–175. DOI: https://doi.org/10.1016/j.ijrmms.2014.06.009.

    Article  Google Scholar 

  15. WANG Chun-lai, HOU Xiao-lin, LIAO Ze-feng, CHEN Zeng, LU Zhi-jiang. Experimental investigation of predicting coal failure using acoustic emission energy and load-unload response ratio theory [J]. Journal of Applied Geophysics, 2019, 161(2): 76–83. DOI:https://doi.org/10.1016/j.jappgeo.2018.12.010.

    Article  Google Scholar 

  16. ZHAO X G, WANG J, CAI M, CHENG C, MA L K, SU R, ZHAO F, LI D J. Influence of unloading rate on the strainburst characteristics of Beishan granite under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 467–483. DOI: https://doi.org/10.1007/s00603-013-0443-2.

    Article  Google Scholar 

  17. CHAI Meng-yu, ZHANG Zao-xiao, DUAN Quan. A new qualitative acoustic emission parameter based on Shannon’s entropy for damage monitoring [J]. Mechanical Systems and Signal Processing, 2018, 100: 617–629. DOI: https://doi.org/10.1016/j.ymssp.2017.08.007.

    Article  Google Scholar 

  18. STEPHENS R W, POLLOCK A. Waveforms and frequency spectra of acoustic emissions [J]. Journal of The Acoustical Society of America, 1971, 50(3B): 904–910. DOI: https://doi.org/10.1121/1.1912715.

    Article  Google Scholar 

  19. IABBACCHIONE A T, PROSSER L J, GRAU R, OYLER D C, DOLINAR D R. Roof monitoring helps prevent injuries in stone mines [J]. Mining Engineering, 2000, 52: 32–37.

    Google Scholar 

  20. ZHOU Zi-long, CHENG Rui-shan, CHEN Lian-jun, ZHOU Jing, CAI Xin. An improved joint method for onset picking of acoustic emission signals with noise [J]. Journal of Central South University, 2019, 26(10): 2878–2890. DOI: https://doi.org/10.1007/s11771-019-4221-5.

    Article  Google Scholar 

  21. BENSON P M, VINCIGUERRA S, MEREDITH P G, YOUNG R P. Spatio-temporal evolution of volcano seismicity; A laboratory study [J]. Earth and Planetary Science Letters, 2010, 297(1): 315–323. DOI: https://doi.org/10.1016/j.epsl.2010.06.033.

    Article  Google Scholar 

  22. HE Man-chao, MIAO Jin-li, LI De-jian, WANG Chun-guang. Experimental study on rockburst processes of granite specimen at great depth [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26: 865–876. DOI: https://doi.org/10.1080/10426914.2011.593231.

    Google Scholar 

  23. HE Man-chao, NIE W, ZHAO Zhi-ye, GUO Wei-hua. Experimental investigation of bedding plane orientation on the rockburst behavior of sandstone [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 311–326. DOI: https://doi.org/10.1007/s00603-011-0213-y.

    Article  Google Scholar 

  24. LU Cai-ping, DOU Lin-ming, LIU Hui, LIU Hai-shun, LIU Biao, DU Bin-bin. Case study on microseismic effect of coal and gas outburst process [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 101–110. DOI: https://doi.org/10.1016/j.ijrmms.2012.05.009.

    Article  Google Scholar 

  25. LU Cai-ping, DOU Lin-ming, ZHANG nong, XUE Jun-hua, WANG Xiao-nan, LIU Hui, ZHANG Jun-wei. Microseismic frequency-spectrum evolutionary rule of rockburst triggered by roof fall [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 6–16. DOI: https://doi.org/10.1016/j.ijrmms.2013.08.022.

    Article  Google Scholar 

  26. LOVALLO M, LAPENNA V, TELESCA L. Transition matrix analysis of earthquake magnitude sequences [J]. Chaos, Solitons & Fractals, 2005, 24(1): 33–43. DOI: https://doi.org/10.1016/j.chaos.2004.07.024.

    Article  MATH  Google Scholar 

  27. MAIN I G, NAYLOR M. Entropy production and self-organized (sub) criticality in earthquake dynamics [J]. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 2010, 368: 131–144. DOI:https://doi.org/10.1098/rsta.2009.0206.

    Google Scholar 

  28. PALUS M. Detecting nonlinearity in multivariate time series [J]. Physics Letters A, 1996, 213(3): 138–147. DOI: https://doi.org/10.1016/0375-9601(96)00116-8.

    Article  MathSciNet  MATH  Google Scholar 

  29. PALUS M, ALBRECHT V, DVORAK I. Information theoretic test for nonlinearity in time series [J]. Physics Letters A, 1993, 175(3, 4): 203–209. DOI: https://doi.org/10.1016/0375-9601(93)90827-m.

    Article  MathSciNet  Google Scholar 

  30. CHEN Xi-xi, CHEN Jian-sheng, WANG Tao, ZHOU Huai-dong, LIU Ling-hua. Characterization of seepage velocity beneath a complex rock mass dam based on entropy theory [J]. Entropy, 2016, 18(8): 293–305. DOI: https://doi.org/10.3390/e18080293.

    Article  Google Scholar 

  31. GONG Feng-qiang, YAN Jing-yi, LI Xi-bing, LUO Song. A peak-strength strain energy storage index for rock burst proneness of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 76–89. DOI: https://doi.org/10.1016/j.ijrmms.2019.03.020.

    Article  Google Scholar 

  32. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Science, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  33. LI Xi-bing, DU Kun, LI Di-yuan. True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2185–2196. DOI: https://doi.org/10.1007/s00603-014-0701-y.

    Article  Google Scholar 

  34. COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series [J]. Mathematics of Computation, 1965, 19(90): 297–301. DOI: https://doi.org/10.1007/978-1-4612-0667-59.

    Article  MathSciNet  MATH  Google Scholar 

  35. SHANNON C E. A Mathematical theory of communication [J]. Bell System Technical Journal, 1948, 27(3): 379–423. DOI: https://doi.org/10.4135/9781412959384.n229.

    Article  MathSciNet  MATH  Google Scholar 

  36. DU Kun, TAO Ming, LI Xi-bing, ZHOU Ji-an. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3437–3453. DOI: https://doi.org/10.1007/s00603-016-0990-4.

    Article  Google Scholar 

  37. CAI M, KAISER P K, MORIOKA H, MINAMI M, MAEJIMA H, TASAKA Y, KUROSE H. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550–564. DOI: https://doi.org/10.1016/j.ijrmms.2006.09.013.

    Article  Google Scholar 

  38. MONTOTO M, SUAREZ L M, KHAIR A W, HARDY H R. AE in uniaxially loaded granitic rocks in relation to their petrographic character [J]. Trans Tech Pub Clausthal, 1984: 83–100.

  39. BAKKER R R, FAZIO M, BENSON P M, HESS K, DINGWELL D B. The propagation and seismicity of dyke injection, new experimental evidence [J]. Geophysical Research Letters, 2016, 43(5): 1876–1883. DOI: https://doi.org/10.1002/2015gl066852.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Chun-lai contributed to the design of the study, conducted the experiments, wrote and revised the manuscript. CHEN Zeng wrote the manuscript. LIAO Ze-feng, HOU Xiao-lin and LI Chang-feng conducted experiments and data analysis. LI Hai-tao, WANG Ai-wen, QIAN Peng-fei modified the diagrams. LI Guang-yong and LU Hui edited the draft of manuscript.

Corresponding author

Correspondence to Chun-lai Wang  (王春来).

Additional information

Conflict of interest

WANG Chun-lai, CHEN Zeng, LIAO Ze-feng, HOU Xiao-lin, LI Hai-tao, WANG Ai-wen, LI Chang-feng, QIAN Peng-fei, LI Guang-yong, and LU Hui declare that they have no conflict of interest.

Foundation item: Project(2017YFC0804201) supported by the National Key Research and Development Program of China; Project(51574246) supported by the National Natural Science Foundation of China; Project(2011QZ01) supported by Fundamental Research Funds for the Central Universities, China; Project(C201911362) supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cl., Chen, Z., Liao, Zf. et al. Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst. J. Cent. South Univ. Technol. 27, 2834–2848 (2020). https://doi.org/10.1007/s11771-020-4506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4506-8

Key words

关键词

Navigation