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Abstract
This paper is concerned with global practical stabilization of the double integrator system with an imperfect sensor and
subject to an additive bounded output disturbance. The imperfect sensor nonlinearity possesses the nonlinear characteristics
of saturation and dead zone. Because of the presence of output dead zone and the additive disturbance, the states cannot be
expected to driven into an arbitrarily small neighborhood of the origin. To solve the global practical stabilization problem, we
proposes a low gain-based linear dynamic output feedback law, under which the first state enters and remains in a bounded
set whose size is depended on the bound of disturbance and the range of dead zone and the second state enters and remains in
a pre-specified arbitrarily small set, both in finite time. Simulation results illustrate the effectiveness of our proposed control
method.

Keywords Output saturation · Disturbance rejection · Output dead zone · Low gain feedback · Linear output feedback ·
Practical stabilization

1 Introduction

Saturation nonlinearity is ubiquitous in control systems. In
particular, sensor saturation, or output saturation, frequently
occurs due to physical limitations. In the presence of sat-
uration, the measurement of the sensor is inaccurate when
the output enters the saturation region, which may lead to
the degradation of system performance. Several results on
systems subject to output saturation have been obtained.
For example, it is pointed out in Ref. [1] that a single-
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input single-output linear system subject to output saturation
can be globally asymptotically stabilized by a deadbeat
controller. Such a control method was then extended to
multiple-input multiple-output systems where the output sat-
uration occurs on each component [2] and to the systems
with direct feedthrough term [3]. For a neutrally stable lin-
ear system subject to output saturation, there exists linear
output feedback control laws that achieve global asymptotic
stabilization [4]. Furthermore, it is established in Ref. [5]
that linear dynamic feedbacks can globally asymptotically
stabilize the double integrator system, an unstable linear
system, in the presence of output saturation. In Ref. [6], a
low gain-based linear dynamic output feedback law is pro-
posed to solve the global practical stabilization problem of
the double integrator system subject to output saturation and
an additive bounded disturbance. On the other hand, Ref.
[7] established that semi-global asymptotic stabilization of a
single-input single-output system in the presence of output
saturation can be achieved as long as all its invariant zeros
are in the closed left-half plane. In the presence of output sat-
uration and output-additive disturbances, an output feedback
H∞ controller was designed in Ref. [8] to solve the local
stabilization problem.

Besides saturation, dead-zone nonlinearity is also com-
mon in practice. Many efforts have been made in the analysis
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and design of control systems in the presence of dead-zone
nonlinearity. For example, adaptive control designs were
proposed in Refs. [9, 10] to deal with unknown dead-zone
nonlinearities. Reference [11] considered imperfect actua-
tors that exhibit both saturation and dead-zone nonlinearities,
and designed low-and-high gain feedback laws to solve the
semi-global stabilization problem for linear systems. More-
over, for a multi-agent system, with an imperfect actuator for
each agent, two types of consensus control algorithms, the
low-and-high gain feedback and the low gain-based variable
structure control, were proposed in Ref. [12] to achieve the
semi-global leader-following practical consensus.

In this paper, we focus on the double integrator system
with an imperfect sensor and subject to a bounded additive
output disturbance, and consider its global practical stabiliza-
tion. Here, the imperfect sensor is characterized by saturation
and dead-zone nonlinearities. Differently from the practical
stabilization for systems with input saturation [13] or imper-
fect actuator [12], in which all the systems states are to be
driven into a pre-specified arbitrarily small neighborhood of
the origin, practical stabilization with an imperfect sensor
we consider in this paper aims for partial states to enter an
arbitrarily small neighborhood of the origin. To solve the
global practical stabilization problem, we design low gain-
based linear dynamic output feedback laws, and propose a
set of more relaxed conditions than Ref. [6] to determine the
parameters of linear dynamic output feedback laws. Numer-
ical example demonstrates the effectiveness of our proposed
design.

The remainder of this paper is organized as follows. In
Sect. 2, we present the system description and formulate
the global practical stabilization problem. Then we estab-
lish three technical lemmas that will be useful in the design
of the linear dynamic output feedback laws. In Sect. 3, we
construct a family of low gain-based linear dynamic output
feedback laws to achieve global practical stabilization of the
double integrator system with an imperfect sensor and sub-
ject to a bounded disturbance. In Sect. 4, a numerical example
demonstrates the effectiveness of our proposed design. Sec-
tion 5 concludes the paper.

Notation: Throughout the paper,R denotes the set of real
numbers. For a vector x and a matrix M , xT and MT denote
their transposes. For two integers l1 and l2, l2 ≥ l1, I [l1, l2]
denotes the set of integers {l1, l1 + 1, · · · , l2}.

2 Preliminaries

Consider the double integrator systemwith an imperfect sen-
sor and subject to an output-additive disturbance,

{
ẋ = Ax + Bu,

y = σ(Cx + d),
(1)

where

A =
[
0 1
0 0

]
, B =

[
0
1

]
, C = [

1 0
]
,

x = [x1 x2]T ∈ R
2 is the state, u ∈ R is the control input, y ∈

R is the measured output, d ∈ R is a bounded disturbance,
that is, |d| ≤ D, for some positive scalar D, and σ represents
the input–output characteristic of the imperfect sensor, that
is,

σ(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ, s > b + k−1Δ,

ks − kb, b < s ≤ b + k−1Δ,

0, |s| ≤ b,

ks + kb, −b − k−1Δ ≤ s < −b,

−Δ, s < −b − k−1Δ,

where � > 0, b ≥ 0, and k > 0. The function σ(s) exhibits
both saturation and dead-zone nonlinearities and is depicted
in Fig. 1.

Remark 1 In the definition of function σ , Δ represents the
saturation level, b the dead-zone break points, and k the linear
slope. Without loss of generality, we can assume that k = 1.
Otherwise, if k �= 1, we can redefine σ as k−1σ and add a
linear gain k when using y as output feedback. When b = 0
and Δ = 1, function σ simplifies to the standard saturation
function.

Note that the linear system represented by (A, B, C) does not
have any invariant zeros. It is clear that (A, B) is controllable
and (A, C) is observable.

The objective of this paper is to solve the global practical
stabilization problem for system (1). To be more specific, we
would like to design a dynamic output feedback law such
that, for any x(0) ∈ R

2 and any small interval s0 ⊂ R that
contains the zero in its interior, the state x1(t) will enter and
remain in a bounded set and the state x2(t) will enter and
remain in s0, both in finite time.

To deal with the nonlinear function σ(s), we establish the
following convex hull representation, which will be useful in
solving the practical stabilization problem of system (1).

Lemma 1 Let v, u ∈ R with |v| ≤ Δ. Then,

σ(u) ∈ co {u − b, u + b, v} ,

where co denotes the convex hull.
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Fig. 1 The input–output characteristic of the imperfect sensor

Proof If u resides the positive saturation region, that is, u >

b + Δ, we have

σ(u) = Δ = Δ − v

u − b − v
(u − b) + u − b − Δ

u − b − v
v.

Since Δ−v
u−b−v

∈ [0, 1), u−b−Δ
u−b−v

∈ (0, 1] and Δ−v
u−b−v

+
u−b−Δ
u−b−v

= 1, we have σ(u) ∈ co {u − b, v}. Consider-
ing that co {u − b, v} ⊆ co {u − b, u + b, v}, we have
σ(u) ∈ co {u − b, u + b, v}.

If u resides the positive linear region, that is, b < u ≤
b + Δ, we obtain

σ(u) = u − b ∈ co {u − b, u + b, v} .

If u resides the dead-zone region, that is, |u| ≤ b, we have

σ(u) = 0 = b − u

2b
(u + b) + u + b

2b
(u − b)

∈ co {u + b, u − b} ,

since b−u
2b ∈ [0, 1], u+b

2b ∈ [0, 1] and b−u
2b + u+b

2b = 1. Then,
we have σ(u) ∈ co {u − b, u + b, v}.

One can obtain the same convex hull representation of
σ(u) in the negative saturation and linear regions by a similar
analysis. In summary, we finally have

σ(u) ∈ co {u − b, u + b, v} .

This completes the proof. 	


Before presenting the main result in this paper, we denote

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = h − l2 �= 0,

k2 = h

h − l2
,

k3 = hl1 + g1l1
h − l2

,

k4 = −g2l2h + g2l22 + g1l1l2 + hl1l2
(h − l2)2

,

k5 = g2h − g2l2 − l1l2 − g1l1
h − l2

.

(2)

Lemma 2 There exist scalars g1, g2, l1, l2, and h such that
the following conditions hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 < 0,

k2 > 1,

k3 < 0,

k4 > 0,

k5 < 0,

k2k5 + k4 < k5.

(3)

Proof It is easy to find a set of ki ’s, i ∈ I [1, 5], that meet all
the conditions in (3). Then from the expressions of k1 and k2
in (2), we have

{
h = k1k2 < 0,

l2 = k1(k2 − 1) < 0.
(4)

Inspecting the expressions of k3, k4, and k5, we have

⎡
⎣k3

k4
k5

⎤
⎦ = S

⎡
⎣ g2

l1
g1l1

⎤
⎦ , (5)

where

S =

⎡
⎢⎢⎢⎢⎢⎣

0
h

h − l2

1

h − l2
− l2

h − l2

hl2
(h − l2)2

l2
(h − l2)2

1 − l2
h − l2

− 1

h − l2

⎤
⎥⎥⎥⎥⎥⎦ .

Carrying out the elementary operations on S, one can find
that matrix S is equivalent to the following matrix:

S =
⎡
⎣ 0 0 1

0 l2 0
h − l2 −l2 −1

⎤
⎦ .
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Note that h−l2 = k1 < 0 and l2 < 0.This ensures thatmatrix
S is invertible, which implies that matrix S is also invertible.
Thus, we can solve (5) for g2, l1, and g1 as follows:

⎧⎪⎪⎨
⎪⎪⎩

g2 = k3 − l−1
2 (h − l2)k4,

l1 = l−1
2 (h − l2)k4 + k5 �= 0,

g1 = l−1
1

(
(h − l2)k3 − (h2l−1

2 − h)k4 − hk5
)

,

(6)

in which l1 �= 0 is ensured by k2 �= 1 and k2k5 + k4 �= k5.
This completes the proof. 	

Lemma 3 Given a set of ki ’s, i ∈ I [1, 5], that satisfy the
conditions in (3), there exist scalars pi , i ∈ I [1, 6], such that
the following conditions hold:

p3k4 + p5k5 = 0, (7)

p2k2 + p4 = 0, (8)

p5k1 + p1 = 0, (9)

p2k4 + p4k5 = −1, (10)

p1k2 + p6k1 = 1, (11)

p5k4 + p6k5 = min

{
b + D

4p4k1Δ
,−p4k2

}
− p4k2. (12)

Proof We will prove this lemma by providing a solution to
Eqs. (7)–(12). From (8) and (10), we have

p2 = − 1

k4 − k2k5
< 0,

and

p4 = k2
k4 − k2k5

> 0. (13)

From (9) and (11), we obtain

p6 = k−1
1 + p5k2. (14)

Then substituting (13) and (14) into (12) yields

2p5k4 + 2p6k5

= 2p5(k4 + k2k5) + 2k5k−1
1

= min

{
(k4 − k2k5)

2k1k2

b + D

Δ
,

−2k22
k4 − k2k5

}
− 2k22

k4 − k2k5

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4k22
k4 − k2k5

, 0 ≤ b + D

Δ
<

−4k1k32
(k4 − k2k5)2

,

(k4 − k2k5)

2k1k2

b + D

Δ
− 2k22

k4 − k2k5
, otherwise,

(15)

from which we obtain the expression of p5 as follows:

p5 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−4k22
k4−k2k5

− 2k5
k1

2(k4 + k2k5)
, 0 ≤ b + D

Δ
<

−4k1k32
(k4 − k2k5)2

,

(k4−k2k5)
2k1k2

b+D
Δ

− 2k22
k4−k2k5

− 2k5
k1

2(k4 + k2k5)
, otherwise.

Furthermore, substituting this expression of p5 into (9), (7),
and (14), we can obtain the expressions of p1, p3, and p6.
This completes the proof. 	


Denote

A =
⎡
⎣ 0 1 k2

0 0 k4ε
k1ε2 0 k5ε

⎤
⎦ , (16)

in which ε ∈ (0, 1] is a low gain parameter. If scalars ki ,
i ∈ I [1, 5], have been determined to meet the conditions in
(3), one can easily prove that A is Hurwitz. In what follows,
we denote

P =
⎡
⎣p1ε2 p2ε p4ε

p2ε p3 p5
p4ε p5 p6

⎤
⎦ , (17)

and

Q =
⎡
⎣q1ε3 0 0

0 q2ε 0
0 0 q3ε

⎤
⎦ ,

in which

q1 = −2p4k1,

q2 = −2p2,

q3 = −2(p4k2 + p5k4 + p6k5).

(18)

If scalars ki , i ∈ I [1, 5], and pi , i ∈ I [1, 6], are selected to
satisfy conditions (3) and (7)–(12), one can easily find that
qi , i ∈ I [1, 3], are positive, that is, Q > 0. Moreover, denote

ξ1 = p1 + p5k1,

ξ2 = p1k2 + p2k4 + p4k5 + p6k1,

ξ3 = p2k2 + p3k4 + p5k5 + p4.

Then a simple calculation shows that

A
T

P + P A

=
⎡
⎣2p4k1ε3 ξ1ε

2 ξ2ε
2

� 2p2ε ξ3ε

� � (2p4k2 + 2p5k4 + 2p6k5)ε

⎤
⎦
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=
⎡
⎣2p4k1ε3 0 0

0 2p2ε 0
0 0 (2p4k2 + 2p5k4 + 2p6k5)ε

⎤
⎦

= −Q, (19)

where the second “=" holds because of (7)–(11). Since A is
Hurwitz and Q > 0, we have P > 0.

3 Main results

In this section, we propose the following observer-based
dynamic output feedback law to achieve global practical sta-
bilization for system (1):

{
ż = Az + Bu + L(ε)(Cz − y),

u = G(ε)z + H(ε)y,
(20)

where z = [z1 z2]T ∈ R
2, the feedback gains G(ε) and H(ε)

and the observer gain L(ε) are parameterized in a low gain
parameter ε ∈ (0, 1] as follows:

G(ε) = [
g1ε2 g2ε

]
, L(ε) =

[
l1ε
l2ε2

]
, H(ε) = hε2,

and the scalars g1, g2, l1, l2, and h will be determined later.
The resulting closed-loop system can then be written as

[
ẋ
ż

]
=
[

A BG
0 A + LC + BG

] [
x
z

]

+
[

B H
B H − L

]
σ(Cx + d). (21)

Select a set of ki ’s, i ∈ I [2, 5], that meets the conditions
in (3), and specify

k1 = k24 + (k2 − 1)k4k5
(k2 − 1)2

. (22)

It is clear that k1 < 0, which satisfies (3). Thus, by Lemma 2,
we can determine the parameters g1, g2, l1, l2, and h accord-
ing to (4) and (6). Suppose that the dynamic output feedback
law (20) has been designedwith these determined parameters
g1, g2, l1, l2, and h. The following theorem establishes that
the low gain-based dynamic output feedback laws globally
practically stabilize system (1).

Theorem 1 Consider the double integrator system (1) under
the linear dynamic output feedback law (20). For any given
positive scalar D and an arbitrarily small interval s0 ⊂ R

that contains the zero in its interior, there exists ε∗ ∈ (0, 1]
such that, for any ε ∈ (0, ε∗], the state trajectory of system
(1) under (20) starting from any initial state in R

2 will enter

and remain in a bounded set and x2(t) will enter and remain
in s0, both in a finite time.

Proof Define two new states e2 and w as

e2 = x2 − h(h − l2)
−1z2,

and

w = (h − l2)l
−1
1 εz1 + z2.

Then we can obtain

ẇ = k3εw + (
(h − l2)l

−1
1 + g2 − k3

)
εz2.

Noting that k1 = (k2 − 1)−2
(
k24 + (k2 − 1)k4k5

)
, we have

l2 = k1(k2 − 1) = k4
( k4

k2 − 1
+ k5

)
.

On the other hand, according to the expressions of k2 and l1,
we have

l1 = k4
k2 − 1

+ k5,

from which it follows that l2 = k4l1. Then we have

l−1
2 (h − l2)k4 = l−1

1 (h − l2).

Hence, from the expression of g2 in (6), we obtain

k3 = g2 + l−1
1 (h − l2).

Thus, we have ẇ = k3εw, and the closed-loop system (21)
can be rewritten as

⎡
⎢⎢⎣

ẋ1
ė2
ż2
ẇ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
0 1 k2 0
0 0 k4ε k6ε
0 0 k5ε k7ε
0 0 0 k3ε

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1
e2
z2
w

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

k1ε2

0

⎤
⎥⎥⎦ σ(x1+d), (23)

where

k6 = −g1l1l2 − hl1l2
(h − l2)2

and

k7 = l1l2 + g1l1
h − l2

.

Note that ẇ = k3εw is asymptotically stable since k3 < 0.
The practical stabilization problem of system (21) is then
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equivalent to that of the following reduced-order system:

⎡
⎣ẋ1

ė2
ż2

⎤
⎦ =

⎡
⎣0 1 k2
0 0 k4ε
0 0 k5ε

⎤
⎦
⎡
⎣x1

e2
z2

⎤
⎦ +

⎡
⎣ 0

0
k1ε2

⎤
⎦ σ(x1 + d)

= A

⎡
⎣x1

e2
z2

⎤
⎦ +

⎡
⎣ 0

0
k1ε2

⎤
⎦ (σ (x1 + d) − x1) , (24)

where matrix A is defined as (16). From (24),

ż2 = k5εz2 + k1ε
2σ(x1 + d)

= k5ε(z2 + k1k−1
5 εσ (x1 + d)).

Since k1 < 0 and k5 < 0, z2 enters and remains in the
set [−k1k−1

5 Δε, k1k−1
5 Δε] in a finite time. Inside this set,

|z2| ≤ Bzε, where Bz = |k1k−1
5 Δ|. Partition the state space

of system (1) into the following regions:

S+ = {x ∈ R
2 : x1 > b + Δ + D},

S0 = {x ∈ R
2 : |x1| ≤ b + Δ + D},

S− = {x ∈ R
2 : x1 < −b − Δ − D}.

Let

x̃1 =
⎧⎨
⎩

b + Δ + D, x ∈ S+,

x1, x ∈ S0,
−b − Δ − D, x ∈ S−,

and ζ = [x1 e2 z2]T. Choose the following Lyapunov func-
tion:

V (ζ ) =
⎡
⎣x̃1

e2
z2

⎤
⎦
T

P

⎡
⎣x̃1

e2
z2

⎤
⎦ + f (x),

where

f (x) =
⎧⎨
⎩
2p1�ε2(x1 − b − Δ − D), x ∈ S+,

0, x ∈ S0,
−2p1�ε2(x1 + b + Δ + D), x ∈ S−,

and matrix P is defined in (17) and its parameters, pi , i ∈
I [1, 6], satisfy all the conditions in Lemma 3. The Lyapunov
function V (ζ ) is continuous in the whole state space and is
positive for all non-zero states. It is worth mentioning that
the Lyapunov function is piecewise and is not differentiable
in the intersections ∂S+ = {x ∈ R

2 : x1 = b + Δ + D}
and ∂S− = {x ∈ R

2 : x1 = −b − Δ − D}. In this paper, to
analyze the state trajectory of system (1) under the dynamic
output feedback control law (20), we utilize the directional

derivative of V (ζ ) at ζ along ζ̇ , that is,

V̇ (ζ ) = lim
t→0+

V (ζ + t ζ̇ ) − V (ζ )

t
.

Furthermore, we consider the following cases:

Case 1 x ∈ S+ and x + t ẋ ∈ S+ ∪ ∂S+. In this case, the
Lyapunov function can be written as

V (ζ ) =p1(b + Δ + D)2ε2 + 2p2(b + Δ + D)εe2

+ 2p4(b + Δ + D)εz2 + p3e22 + 2p5e2z2

+ p6z22 + 2p1Δε2(x1 − b − Δ − D),

and the directional derivative of V (ζ ) is equal to its time
derivative, that is,

V̇ = (2p5k4 + 2p6k5)εz22

+ (2p2k4 + 2p4k5 + 2p6k1 + 2p1k2)Δε2z2

+ (2p2k4 + 2p4k5)(b + D)ε2z2

+ 2p4k1(b + Δ + D)Δε3 + (2p3k4 + 2p5k5)εe2z2

+ (2p5k1 + 2p1)Δε2e2

= (2p5k4 + 2p6k5)εz22 − 2(b + D)ε2z2

+ 2p4k1(b + Δ + D)Δε3,

where the second “=" holds due to (7) and (9)–(11). Because
of (12), we have

2(p5k4 + p6k5) <
b + D

2p4k1Δ
< 0.

Then, for any z2 ∈ R, the following inequality holds:

2(p5k4 + p6k5)

b + D
εz22 − 2ε2z2 + 2p4k1Δε3 < 0,

from which, we have

V̇ (ζ ) < 2p4k1Δ
2ε3 < 0.

1 3
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Case 2 x ∈ ∂S+ and x + t ẋ ∈ S+. In this case, x1 = b +
Δ + D. Then the directional derivative of V (ζ ) is given as

V̇ (ζ )

= lim
t→0+

1

t

(
2p2(b + Δ + D)ε(e2 + t ė2)

+ 2p4(b + Δ + D)ε(z2 + t ż2) + p3(e2 + t ė2)
2

+ 2p5(e2 + t ė2)(z2 + t ż2) + p6(z2 + t ż2)
2

+ 2p1Δε2t ẋ1 − 2p2(b + Δ + D)εe2

− 2p4(b + Δ + D)εz2 − p3e22 − 2p5e2z2 − p6z22

)
=2(p5k4 + p6k5)εz22 − 2(b + D)ε2z2

+ 2p4k1(b + D)Δε3 + 2p4k1Δ
2ε3

<2p4k1Δ
2ε3 < 0.

From Cases 1 and 2, we can obtain that V̇ (ζ ) < 0 for
each x ∈ S+ ∪ ∂S+. This implies that the state trajectory of
the closed-loop system will leave the region S+ in a finite
time after it enters S+. Similarly, we calculate the directional
derivative V̇ (ζ ) in Cases 3 and 4, and then we obtain that
V̇ (ζ ) < 0 for each x ∈ S− ∪ ∂S−, where Case 3 is described
as x ∈ S− and x + t ẋ ∈ S− ∪ ∂S− and Case 4 is described
as x ∈ ∂S− and x + t ẋ ∈ S−.

Case 5 x ∈ S0 and x+t ẋ ∈ S0. In this case, |x1| ≤ b+Δ+D
and the Lyapunov function can be written as

V (ζ ) =
⎡
⎣x1

e2
z2

⎤
⎦
T

P

⎡
⎣x1

e2
z2

⎤
⎦ .

The directional derivative of V (ζ ), which is equal to its time
derivative, is given as

V̇ =
⎡
⎣x1

e2
z2

⎤
⎦
T (

A
T

P + P A
)⎡
⎣x1

e2
z2

⎤
⎦

+ 2

⎡
⎣x1

e2
z2

⎤
⎦
T ⎡
⎣p4k1ε3

p5k1ε2

p6k1ε2

⎤
⎦(

σ(x1 + d) − x1
)

= −
⎡
⎣x1

e2
z2

⎤
⎦
T

Q

⎡
⎣x1

e2
z2

⎤
⎦ + 2

(
p4k1ε

3x1 + p5k1ε
2e2

+p6k1ε
2z2

) (
σ(x1 + d) − x1

)
.

By Lemma 1, σ(x1 + d) can be expressed as the following
convex hull representation:

σ(x1 + d) ∈ co
{

x1 + d − b, x1 + d + b,
Δx1

b + Δ + D

}
.

Then, we have

V̇ (ζ ) ∈ co {Π1,Π2,Π3} ,

where

Π1 = −
⎡
⎣x1

e2
z2

⎤
⎦
T

Q

⎡
⎣x1

e2
z2

⎤
⎦ + 2p4k1ε

3x1(d − b)

+ 2p5k1ε
2e2(d − b) + 2p6k1ε

2z2(d − b),

Π2 = −
⎡
⎣x1

e2
z2

⎤
⎦
T

Q

⎡
⎣x1

e2
z2

⎤
⎦ + 2p4k1ε

3x1(d + b)

+ 2p5k1ε
2e2(d + b) + 2p6k1ε

2z2(d + b),

and

Π3 = −
⎡
⎣x1

e2
z2

⎤
⎦
T

Q

⎡
⎣x1

e2
z2

⎤
⎦ + 2p4k1ε

3x1
−b − D

b + Δ + D
x1

+ 2p5k1ε
2e2

−b − D

b + Δ + D
x1

+ 2p6k1ε
2z2

−b − D

b + Δ + D
x1.

Since |d| ≤ D, we have

2p4k1ε
3x1(d ± b)

≤ 2|p4k1ε
3x1|(D + b)

≤ 0.5q1ε
3x21 + 2p24k21(D + b)2q−1

1 ε3,

2p5k1ε
2e2(d ± b)

≤ 2|p5k1ε
2e2|(D + b)

≤ 0.5q2εe22 + 2p25k21(D + b)2q−1
2 ε3,

2p6k1ε
2z2(d ± b)

≤ 2|p6k1ε
2z2|(D + b)

≤ 0.5q3εz22 + 2p26k21(D + b)2q−1
3 ε3.

On the other hand, since |x1| ≤ b + Δ + D, we have

2p4k1ε
3x1

−b − D

b + Δ + D
x1

≤ 2|p4k1ε
3x1|(D + b)

≤ 0.5q1ε
3x21 + 2p24k21(D + b)2q−1

1 ε3,

2p5k1ε
2e2

−b − D

b + Δ + D
x1

≤ 2|p5k1ε
2e2|(D + b)

≤ 0.5q2εe22 + 2p25k21(D + b)2q−1
2 ε3,
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2p6k1ε
2z2

−b − D

b + Δ + D
x1

≤ 2|p6k1ε
2z2|(D + b)

≤ 0.5q3εz22 + 2p26k21(D + b)2q−1
3 ε3.

Then V̇ (ζ ) in the region S0 satisfies the following inequality:

V̇ (ζ ) ≤ −0.5

⎡
⎣x1

e2
z2

⎤
⎦
T

Q

⎡
⎣x1

e2
z2

⎤
⎦ + Φ(D, b,Δ)ε3,

where

Φ(D, b,Δ) =2k21

(
p24
q1

+ p25
q2

+ p26
q3

)
(D + b)2. (25)

Let the positive scalar γ satisfy

γ Pε − 0.5Q < 0. (26)

Such γ exists since P > 0 and Q > 0. Then,

V̇ + γ εV

≤
⎡
⎣x1

e2
z2

⎤
⎦
T

(γ Pε − 0.5Q)

⎡
⎣x1

e2
z2

⎤
⎦ + Φ(D, b,Δ)ε3

≤ Φ(D, b,Δ)ε3.

Furthermore,

V̇ ≤ −γ ε(V − γ −1Φ(D, b,Δ)ε2).

Define the following level set of theLyapunov functionV (ζ ):

E(D, b,Δ)

=
{
[x1 e2 z2]T ∈ R

3 : V ≤ γ −1Φ(D, b,Δ)ε2
}

.

Then V̇ (ζ ) < 0, ∀ [x1 e2 z2]T ∈ R
3 \ (S0 ∩ E(D, b,Δ)).

Considering the fact that in the regions S+ ∪ ∂S+ and S− ∪
∂S−, V̇ (ζ ) < 0 and the system trajectory finally leaves S+
and S−, we can see that the system trajectory enters the level
set E(D, b,Δ) in a finite time and remains in it. On the other
hand, since P > 0, there exist positive scalars α and β such
that both the following matrices are positive definite, that is,

⎡
⎣(p1 − α2)ε2 p2ε p4ε

p2ε p3 p5
p4ε p5 p6

⎤
⎦ > 0 (27)

and

⎡
⎣p1ε2 p2ε p4ε

p2ε (p3 − β2) p5
p4ε p5 p6

⎤
⎦ > 0.

For any [x1 e2 z2]T ∈ E(D, b,Δ), we have

α2 x̃21 ≤ γ −1Φ(D, b,Δ),

and

β2e22 ≤ γ −1Φ(D, b,Δ)ε2,

and

f (x) ≤ γ −1�(D, b,�)ε2.

Define

Bx1 =
⎧⎨
⎩α−1

√
γ −1�, α−1

√
γ −1� ≤ b + � + D,

0.5p−1
1 �−1γ −1� + b + � + D, otherwise.

(28)

Then, we have

|x1| ≤ Bx1 .

Furthermore, from x2 = e2 + k2z2, we have

|x2| ≤ |e2| + |k2z2|
≤ (

β−1
√

γ −1Φ(D, b,Δ) + |k2|Bz
)
ε

� Bx2ε.

Let

S(D, b,Δ) = {
x ∈ R

2 : |x1| ≤ Bx1 , |x2| ≤ Bx2ε
}
.

Clearly, the set S(D, b,Δ) is bounded. Then the state tra-
jectory of system (1) under (20) that has been determined in
Lemma 2 will enter the bounded set S(D, b,Δ), and there
exists ε∗ ∈ (0, 1] such that, for any ε ∈ (0, ε∗], x2 enters and
remains in the given set s0. This completes the proof.

	


Remark 2 Theorem 1 has proven that the dynamic output
feedback law (20) with parameters g1, g2, l1, l2, and h deter-

1 3



Global practical stabilization of the double...

mined by a set of ki ’s, i ∈ I [1, 5], that satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 = k24 + (k2 − 1)k4k5
(k2 − 1)2

,

k2 > 1,

k3 < 0,

k4 > 0,

k5 < 0,

k2k5 + k4 < k5,

(29)

can globally practically stabilize the double integrator sys-
tem (1). It is clear that such a design of the dynamic output
feedback laws applies to the double integrator system subject
to standard sensor saturation, which has been studied in Ref.
[6]. Note that the scalars ki ’s, i ∈ I [1, 5], selected in Ref. [6]
are required to satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k3 < 0, k4 > 0, k5 < 0,

4k5 + 9k4 �= 0,

k4
k25

<
64

27
,

− 5

12
k24k5 − 1

3
k4k25 =

(3
4

k4 + 1

3
k5
)2

,

k1 = k5
3

< 0,

k2 = −9k4
4k5

> 0.

(30)

Comparing conditions (29) and (30), it is obvious that the
later is more conservative than the former. This implies that
the new design of dynamic output feedback laws proposed
in this paper weakens the intricate restriction on the design
in Ref. [6], and support a more relaxed selection in the deter-
mination of feedback law parameters.

Remark 3 By the definition of Bx1 in (28), the values of α,
γ , and Φ(D, b,Δ) determine the value of Bx1 . We assume
that the values of ki ’s, i ∈ I [1, 5], have been chosen as in
(29). Lemma 3 has established the relationship between ki ’s
and p j ’s, i ∈ I [1, 5], j ∈ I [1, 6]. As seen in the proof of

Lemma 3, if b+D
Δ

≤ −4k1k32
(k4−k2k5)2

, p j ’s are independent of b+D
Δ

.

By (26) and (27), α and γ are also independent of b+D
Δ

.
Furthermore, by its definition, Φ(D, b,Δ) is not affected
by Δ. This implies that the bound Bx1 only depends on the

parameters b and D if b+D
Δ

≤ −4k1k32
(k4−k2k5)2

. On the other hand,

if b+D
Δ

>
−4k1k32

(k4−k2k5)2
, p j ’s, α, γ , and Φ(D, b,Δ) depend on

b, D, and Δ. Thus, Bx1 will be related with all the values of
b, D and Δ.

Remark 4 One can easily observe in the expression of Bx1
that Bx1 = 0 if b = 0 and D = 0. This implies that in

Fig. 2 The evolution of the state x1 when ε = 0.3, ε = 0.2, and ε = 0.1

the case of D = 0 and b = 0, the state x1 will converge
to the zero, which, by the Barbalat lemma, means that the
time derivative of x1 will also converge to the zero. Since
ẋ1 = x2, we have x2 → 0 as t → ∞. This implies that
the dynamic output feedback law (20) can achieve global
asymptotically stabilization of the double integrator system
subject to standard output saturation.

4 A numerical example

In this section, we present a numerical example to illus-
trate that the proposed low gain-based linear dynamic output
feedback laws (20) achieve global practical stabilization of
system (1). For the input–output characteristic of the sen-
sor, we assume the dead-zone break points b = 1 and the
saturation level Δ = 1, that is, both the dead zone and the
saturation range from −1 to 1.

We choose k2 = 2, k3 = −1, k4 = 1, and k5 = −2,
which satisfy the conditions in Lemma 2. According to (22),
k1 = −1. Then the parameters g1, g2, l1, l2, and h can be
determined according to (4) and (6), and we obtain g1 = 1,
g2 = −2, l1 = −1, l2 = −1, and h = −2. Let the output-
additive disturbance d = 2 sin(t) + 2. Clearly, D = 4.

The parameter ε is chosen as ε = 0.3, ε = 0.2, and ε =
0.1, respectively. Let the initial states be [xT(0), zT(0)] =
[5, −4, 0, 0]. The time trajectories of the states x1(t) and
x2(t) in the three cases are plotted in Figs. 2 and 3, respec-
tively. For these three values of ε, state x1(t) enters a bounded
set in a finite time and remains in it. On the other hand, a
smaller value of ε drives state x2(t) to enter and remain in
a smaller neighborhood of 0. This implies that the proposed
low gain-based linear dynamic output feedback laws indeed
achieves global practical stabilization.

A phase trajectory of the double integrator system (1)
under the proposed low gain-based linear dynamic output
feedback is plotted in Fig. 4, which also illustrates global
asymptotic behavior of the closed-loop system. On the other
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Fig. 3 The evolution of the state x2 when ε = 0.3, ε = 0.2, and ε = 0.1

Fig. 4 The trajectory of x1 and x2 when ε = 0.1

Fig. 5 The evolution of the Lyapunov function V (ζ ) when ε = 0.1

hand, we plot in Fig. 5 the evolution of the Lyapunov func-
tion V (ζ ) along the trajectory shown in Fig. 4. It is clear
that, along this trajectory, the value of the Lyapunov func-
tion decreases before the state enters the set S(D, b,Δ). In
addition, shown in Fig. 6 is the time trajectory of the output
y = σ(x1 + d), which continues to oscillate within the satu-
ration region after the system state enters the set S(D, b,Δ).

Fig. 6 The evolution of the output y = σ(x1 + d) when ε = 0.1

5 Conclusion

This paper considered the global practical stabilization prob-
lem for the double integrator systemwith an imperfect sensor
and subject to an additive output disturbance. To solve this
problem, we designed a family of low gain-based linear
dynamic output feedback laws and presented a set of con-
ditions to determine the parameters of the output feedback.
It is proven that under such dynamic output feedback laws,
the first state enters a bounded set in finite time and remains
in it, and the second state can be driven to an arbitrarily
small set that contains the zero in its interior and remains in
it. Simulation results illustrate the effectiveness of the pro-
posed design.
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