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Abstract
In this paper, we investigate the distributed estimation problem of continuous-time stochastic dynamic systems over sensor
networks when both the system order and parameters are unknown. We propose a local information criterion (LIC) based on
the L0 penalty term. By minimizing LIC at the diffusion time instant and utilizing the continuous-time diffusion least squares
algorithm, we obtain a distributed estimation algorithm to simultaneously estimate the unknown order and the parameters
of the system. By dealing with the effect of the system noises and the coupling relationship between estimation of system
orders and parameters, we establish the almost sure convergence results of the proposed distributed estimation algorithm.
Furthermore, we give a simulation example to verify the effectiveness of the distributed algorithm in estimating the system
order and parameters.

Keywords Stochastic differential equations · Sensor networks · Distributed order estimation · Cooperative excitation
condition · Convergence

1 Introduction

With the rapid development of computer and communication
technology, sensor networks are widely applied in engineer-
ing systems due to high flexibility, robustness, and ease of
placement. One of the important issues is how to design
distributed algorithms to estimate unknown parameters in
dynamical systems by efficiently using the data from sen-
sor networks. Compared with the centralized algorithms,
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each sensor in distributed algorithms can exchange informa-
tion with its neighbors via network structure, and complete
the estimation task cooperatively. It is clear that distributed
algorithms can greatly reduce the communication and com-
putation burden, and have better robustness to node attacks.
Distributed estimation algorithms have a wide range of prac-
tical applications such as target tracking, health monitoring,
environmental monitoring and pollution prevention [1–4].
Meanwhile, the theoretical investigation of distributed algo-
rithms has attracted much attention of researchers in various
fields, e.g., control theory, system identification, signal pro-
cessing. (cf., [5–8]).

For discrete-time dynamical systems, some distributed
algorithms were proposed and convergence results of the
algorithms were also established for time-invariant param-
eters (cf., [9, 10]), time-varying parameters (cf., [11, 12]),
order estimation (cf., [13]), sparse signals (cf., [8]). How-
ever, in many practical scenarios, continuous time signals
such as electrical signals, speech signals, attitude control,
seismic waves, electromagnetic waves, etc. are widely used,
and the dynamical systems are often modeled by (stochas-
tic) differential equations based on specific laws of physics
[14–20]. In recent years, some theoretical results for dis-
tributed estimation problems of continuous-time systems
are given. For example, Chen and Wen et al. in [21] stud-
ied the consensus-type distributed identification algorithm
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for continuous-time systems where regressors are uniformly
bounded and satisfy the cooperative persistent excitation
(PE) condition. Nascimento and Sayed in [22] investigated
the exponential stability of diffusion-type LMS algorithm
with PE regressors. Papusha et al. in [23] investigated the
asymptotic parameter convergence of consensus-type dis-
tributed gradient algorithm under PE condition. We see that
in most of existing results, the regressors are required to be
deterministic and satisfy the PE condition, which is hard to
be satisfied for the stochastic feedback systems.

The linear regressions are often used to model the engi-
neering systems. Generally speaking, the regression model
with higher order and more parameters can fit the data better.
However, the model with high order may lead to param-
eter redundancy as well as computational pressure. How
to choose the proper order of a regression model is an
important topic in the fields of statistics, machine learning
and system identification. For discrete-time linear regres-
sion models, some algorithms are constructed by optimizing
some information criteria, such as AIC (Akaike Informa-
tion Criterion) [24], BIC (Bayesian Information Criterion)
[25], and CIC (the first letter “C” refers to the information
criterion designed for feedback control systems) [26] and
their variants, and some theoretical results for the algorithms
are obtained. For example, Hannan and Kavalieris in [27]
used the AIC criterion to design an algorithm to estimate the
system order and unknown parameters, and gave the conver-
gence analysis of the algorithm under stable input signals.
Ninness in [28] established the Cramér-Rao lower bound for
the order estimation problem of the stable stochastic observa-
tion model. Chen and Guo in [29] proposed a least-squares
based order estimation algorithm by introducing an infor-
mation criterion, and the consistent results for the system
order and parameters were given under non-persistent exci-
tation condition when the upper bounds of orders are known.
Later, Guo and Huang in [30] established the convergence
result of the order estimation problem with unknown upper
order bounds. Chen and Zhao in [31] proposed a recursive
order estimation algorithm with independent and identical
distributed input signals. In recent years, some studies have
been carried out based on genetic algorithms and neural
networks [32, 33]. However, only simulation experiments
were conducted to validate the algorithms, no corresponding
rigorous theoretical analysis was given. For the order esti-
mation problem of continuous-time models, Victor et al. in
[34] designed a two-stage estimation algorithm to estimate
the unknown parameters and orders of a noise-free dynamic
system and verified the effectiveness of the algorithm by
simulation experiments. Belkhatir and Laleg-Kirati in [35]
studied local convergence for order estimation and parame-
ter estimation of noisy systems under bounded input–output
assumption. Subsequently, Stark et al. in [36] analyzed local
convergence results for system order estimation with obser-

vation noise. So far, little attention was paid to the design
and global convergence of the distributed order estimation
problem of continuous-time stochastic systems.

In this paper, we study the distributed estimation problems
of continuous-time dynamical systems described by stochas-
tic differential equation with unknown order and parameters
over sensor networks. Motivated by the discrete-time dis-
tributed order estimation problem (cf., [13]), we introduce a
local information criterion based on the L0 penalty term,
and propose a two-step distributed algorithm to simulta-
neously estimate the unknown orders and parameters of
continuous-time stochastic regression models. To be spe-
cific, the order estimates are obtained byminimizing the local
information criterion at discrete diffusion points. Based on
this, the unknown parameters are estimated by using diffu-
sion least square algorithm. Under the cooperative excitation
conditions of the regression signals, almost sure global con-
vergence are established for the distributed order estimation
as well as the distributed parameter estimation, where some
mathematical tools such as stochastic Lyapunov function
method, Itô’s theorem, and continuous time martingale esti-
mation theorem are used to deal with the noise effect and
the coupling relationship between the estimate of the system
order and unknown parameters. Finally, simulation examples
are given to verify the effectiveness of the proposed dis-
tributed algorithm. Compared with most existing results on
distributed adaptive estimation algorithms, the convergence
results are established without relying on the commonly
used independency, stationarity or ergodicity assumptions
on regression signals, which makes it possible to apply our
results to the feedback control systems.

The rest of this paper is organized as follows. In Sect. 2,
we give the problem formulation. The main results of the
proposed algorithm are provided in Sect. 3. A simulation
example is given in Sect. 4, and the concluding remarks are
made in Sect. 5.

2 Problem formulation

2.1 Some notations and preliminaries

In this section, we will introduce some notation and prelim-
inary results on graph theory and probability theory.

The communication between sensors are modeled as an
undirected graph G = (V, E), where V = {1, 2, . . . , N } is
composedof all sensors andE ⊆ V×V is the set of edges. The
weighted adjacency matrixA = (ai j )n×n is used to describe
the interaction weights between sensors, where the weight
ai j > 0 if andonly if (i, j) ∈ E . For simplicity of analysis,we
assume that thematrixA is symmetric and doubly stochastic,
i.e., ai j = a ji and

∑N
i=1 ai j = ∑N

i=1 a ji = 1 for all i
and j . A path of length s in the graph G is defined as a
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sequence of labels {i1, . . . , is} satisfying (i j , i j+1) ∈ E for
all 1 ≤ j ≤ s − 1. The diameter of graph G, denoted as
DG , is defined as the maximum length of the path between
any two sensors. We define Ni = { j ∈ V|( j, i) ∈ E} as the
neighbor set of the graph G. See [37] for more information
about graph theory.

Let (Ω,F , P) be a probability space, and {Ft , t ≥ 0} be
a nondecreasing family of sub-σ -algebras of F . The process
{Xt ,Ft ; 0 ≤ t < ∞} is said to be a martingale if we have
E(Xt |Fs) = Xs almost surely (a.s.) for 0 ≤ s < t < ∞
, where E[·|·] is the conditional mathematical expectation
operator. The Wiener process {w(t),Ft } is an independent
incremental process with E[w(t)|Fs] = 0 and E[w2(t)] <

∞, t > s ≥ 0, where E[·] is the mathematical expectation
operator. For the continuous-time martingale, the following
martingale estimation theorem is often used to deal with the
continuous-time stochastic noise.

Lemma 1 [38] Let (Mt ,Ft ) be a measurable process sat-
isfying

∫ t
0 ‖Ms‖2ds < ∞, a.s. ∀t > 0. If {wt ,Ft }

is a Wiener process, then as t → ∞,
∫ t
0 Msdws =

O
(√

S(t) log log(S(t) + e)
)
a.s., where S(t) is defined by

S(t) = ∫ t
0 ‖Ms‖2ds.

The Itô formula plays akey role in dealingwith continuous-
time stochastic processes, which is described as follows:

Lemma 2 [39] Assume that the stochastic process ξ(t) obeys
the equation dξ(t) = a(t, ξ(t))dt + B(t, ξ(t))dw(t), and
{a(t, ξ(t)),Ft } is an l-dimensional adaptive process and
{B(t, ξ(t)),Ft } is an l × m-dimensional adaptive matrix

process satisfying ‖a(·, ·)‖ 1
2 ∈ Pt and ‖B(·, ·)‖ ∈ Pt . If

the functions f ′
t (t, x), f

′
x (t, x) and f ′′

xx (t, x) are continuous,
then

d f (t, ξ(t)) = f ′
t (t, ξ(t))dt + f ′T

ξ(t)(t, ξ(t))dξ(t)

+ 1

2
tr{ f ′′

ξ(t)ξ(t)(t, ξ(t))B(t, ξ(t))(B(t, ξ(t)))T}dt .

2.2 Problem formulation

Consider a network consisting of N sensors. The dynamical
system of each sensor i ∈ {1, . . . , N } obeys the following
continuous-time stochastic differential equation,

⎧
⎨

⎩

yi (t) = a1Syi (t) + · · · + ap̄S p̄ yi (t) + b1Sui (t)
+ · · · + bq̄ Sq̄ui (t) + vi (t),

ui (t) = 0, yi (t) = 0, t ≤ 0,
(1)

where S is the Itô integral operator (i.e., Syi (t) = ∫ t
0 yi (s)ds),

yi (t) and ui (t) are the scalar output and input of the sensor
i at time t , vi (t) is the system noise and modeled as a stan-
dard Wiener process, both the order ( p̄, q̄) and parameters
a1, . . . , ap̄, b1, . . . , bq̄ (ap̄ �= 0, bq̄ �= 0) are unknown.

For the convenience of analysis,we assume that the system
order has known the upper bounds, i.e., ( p̄, q̄) ∈ I , I �
{(p, q)

∣
∣ 0 ≤ p ≤ Up, 0 ≤ q ≤ Uq}, where Up and Uq are

the upper bounds of the order. Denote the vector of regressor
and unknown parameters in (1) as follows:

φi (t; p, q)

= [yi (t), . . . , S p−1yi (t), ui (t), . . . , S
q−1ui (t)]T,

θ(p, q) = [a1, . . . , ap, b1, . . . , bq ]T,

a j = 0, bτ = 0, p̄ < j ≤ p, q̄ < τ ≤ q.

Then the system (1) can be rewritten into the following
regression model,

yi (t) = SφT
i (t; p, q)θ(p, q) + vi (t) (p ≥ p̄, q ≥ q̄)

= SφT
i (t; p̄, q̄)θ( p̄, q̄) + vi (t).

(2)

In this paper, we put forward a two-step distributed algo-
rithm to alternately estimate the system order ( p̄, q̄) and the
parameter θ( p̄, q̄) in (2). First, a local information criterion
is proposed, by minimizing which the estimate of the sys-
tem order can be obtained; Then, the diffusion least squares
algorithm will be adopted to estimate unknown parameters
based on the order estimate due to fast convergence rate of
least squares algorithm.

In the following, we first introduce the diffusion least
squares algorithm. In this algorithm, the update of unknown
parameters only occurs at discrete diffusion time instants
which are denoted as 0 = t0, t1, t2, . . . , tk, . . . satisfying
tk → ∞ as k → ∞. For t ∈ [tn, tn+1), we introduce the
following local objective function with fixed order (p, q),

Jn,i (t; p, q, θ(p, q))

= Jn,i (tn; p, q, θ(p, q))

+
∫ t

tn

{
dyi (s)

ds
− θT(p, q)φi (s; p, q)

}2

ds,

i = 1, 2, . . . , N ,

(3)

and

Jn+1,i (tn+1; p, q, θ(p, q))

= ∑

j∈Ni

ai j Jn, j (tn+1; p, q, θ(p, q)), i = 1, 2, . . . , N ,

J0,i (t0; p, q, θ(p, q)) = 0, i = 1, 2, . . . , N ,

where 0 < ai j ≤ 1 is the i th row and j th column of the
weighted adjacency matrix A of the sensor network, and
yi (s), φi (s; p, q) are considered as the outcomes, thus, the
integral is Riemann integral. By the above recursive form,
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we have for t ∈ [tn, tn+1)

Jn,i (t; p, q, θ(p, q))

=
N∑

j=1

n−1∑

k=0
a(n−k+1)
i j

∫ tk+1

tk

{
dy j (s)

ds

−θT(p, q)φ j (s; p, q)
}2

ds

+
∫ t

tn+1

{
dyi (s)

ds
− θT(p, q)φi (s; p, q)

}2

ds,

(4)

and for t = tn+1

Jn+1,i (tn+1; p, q, θ(p, q))

=
N∑

j=1

n∑

k=0
a(n−k+1)
i j

∫ tk+1

tk

{
dy j (s)

ds

−θT(p, q)φ j (s; p, q)
}2

ds.

(5)

By minimizing the objective functions (4) and (5), we can
derive the following diffusion least squares algorithm. The
details can be found in [40].

Algorithm 1 Diffusion least squares algorithm
For i ∈ {1, . . . , n} and t > 0, given any initial estimates θ0,i (p, q; 0),
and any initial positive definite matrices P0,i (p, q; 0).
Step 1 (Adaptation): For t ∈ [tn, tn+1), θn,i (t; p, q) and Pn,i (t; p, q)

are generated according to the following adaptation process

dθn,i (t; p, q) = Pn,i (t; p, q)φn,i (t; p, q){dyi (t)
− φT

n,i (t; p, q)θn,i (t; p, q)dt}, (6)

dPn,i (t; p, q) = − Pn,i (t; p, q)φn,i (t; p, q)

· φT
n,i (t; p, q)Pn,i (t; p, q)dt . (7)

Step 2 (Diffusion): For t = tn+1, P−1
n+1,i (tn+1; p, q) and

θn+1,i (tn+1; p, q) are updated by using the information of neighbors
{
P−1
n, j (tn+1; p, q), θk, j (tn+1; p, q)

}
j∈Ni

,

P−1
n+1,i (tn+1; p, q) = ∑

j∈Ni

ai j P
−1
n, j (tn+1; p, q), (8)

θn+1,i (tn+1; p, q) = Pn+1,i (tn+1; p, q)

· ∑

j∈Ni

ai j P
−1
n, j (tn+1; p, q)θn, j (tn+1; p, q). (9)

Output: {θn,i (t; p, q), t ∈ [tn, tn+1), n ∈ N}.

For each sensor i ∈ {1, . . . , N } and any t ≥ 0, we intro-
duce the following local information criterion to estimate the
order p̄, q̄ of the dynamic system (2),

Fn,i (t; p, q)

= Jn,i (t; p, q, θn,i (t; p, q))

+ (p + q)ξ(t), t ∈ [tn, tn+1), n ∈ N,

(10)

where the definition of Jn,i (t; p, q, θn,i (t; p, q)) is given in
(3), θn,i (t; p, q) is the estimate of θ given in Algorithm 1.
In (10), the first term is the accumulative error between the
system output and the prediction, while the second term (p+
q)ξ(t) is the penalty term, and can be regarded as the L0

regularization of the unknownparameter vector. The function
ξ(t) reflects the balance between the accumulative prediction
error and the penalty term, and we will provide a principle
to select ξ(t) in Sect. 3. The distributed order estimation
algorithm based on the information criterion (10) is given in
the following Algorithm 2.

Algorithm 2 Distributed order estimation algorithm
For each sensor i ∈ {1, . . . , n}, k > 0, given any initial estimates
θ0,i (0, p, q) and any initial positive definite matrix P0,i (0, p, q).
Step 1: For t ∈ [tk , tk+1) and for all (p, q) ∈ I , Algorithm 1 is con-
ducted to obtain the parameter estimates {θk+1,i (tk+1; p, q)}(p,q)∈I .
Step 2 (Order estimation): For t = tk+1, based on the parameter esti-
mates {θk+1,i (tk+1; p, q)}(p,q)∈I , the estimate (pi (tk+1), qi (tk+1)) of
the system order ( p̄, q̄) can be obtained by minimizing the local infor-
mation criterion (10), i.e.,

(pi (tk+1), qi (tk+1)) = arg min
(p,q)∈I Fk+1,i (tk+1; p, q). (11)

Step 3 (Parameter estimation): For t ∈ [tk+1, tk+2), the parameter esti-
mate θk+1,i (t; pi (tk+1), qi (tk+1)) is obtainedby replacing (p, q) inStep
2 by (pi (tk+1), qi (tk+1)).
Output:The order estimate (pi (tk+1), qi (tk+1)) and the parameter esti-
mate θk+1,i (t; pi (tk+1), qi (tk+1)).

3 Convergence analysis of Algorithm 2

In this section, we will establish theoretical results for
convergence of the distributed order estimation algorithm
(Algorithm 2) proposed in Sect. 2.2. For this purpose, we
introduce some assumptions on the network topology and
regressors.

Assumption 1 The graph G is undirected and connected.

Remark 1 Denote the i th row and j th column element of the
matrix Am as a(m)

i j . By Lemma 8.1.2 in [37], we know that

under Assumption 1, a(m)
i j ≥ amin > 0 holds for allm > DG ,

where amin = mini, j∈V a
(DG)

i j > 0.

In fact, the above assumption for the communication graph
can be generalized to the casewhereG is a strongly connected
balanced graph, and the corresponding analysis is similar to
the undirected graph case. Thus, we just provide the analysis
of Algorithm 2 under Assumption 1.

The properties of regressors are important for the con-
vergence of the identification algorithms. In this paper, we
introduce the following cooperative excitation condition on
the regressors.
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Assumption 2 (Cooperative excitation condition)There exists
a real function ξ(t) that satisfies

(1) ξ(t) > 0, for t > 0;
(2) ξ(t) → ∞, as t → ∞;

(3) lim
t→∞

log(R(t;Up,Uq ))
ξ(t) = 0, lim

t→∞
ξ(t)

λmin(t;p,q)
= 0, (p, q)

∈ I ∗, a.s. where I ∗ = {(
p̄,Uq

)
,
(
Up, q̄

)}
,

R(t;Up,Uq) = λmax
{
P−1
0 (t0;Up,Uq)

}

+
N∑

i=1

∫ t

t0
‖φi (s;Up,Uq)‖2ds,

λmin(n; p, q)

= λmin

{
N∑

j=1

∫ tn−DG+1

t0
φ j (s; p, q)φT

j (s; p, q)ds

+
N∑

j=1
P−1
0, j (t0; p, q)

}

.

Remark 2 The choice of ξ(t) depends on the regressors,
and here we show how to choose it for a special case.
Assume that for i ∈ {1, . . . , N }, the regression vector
φi (s; p̄, q̄) is bounded, and there exists a matrix Υi such
that 1

t

∫ t
0 φi (s; p̄, q̄) φT

i (s; p̄, q̄) ds −→
t→∞ Υi , and

∑N
i=1 Υi

is positive definite [41]. Then ξ(t) can be taken as ξ(t) =
tα, 0 < α < 1.

Before giving convergence results for the estimation of the
system order and parameters in Algorithm 2, we give some
preliminary lemmas. We first provide the upper bound on
the accumulative noise, which is an important step for the
convergence of the algorithm.

Lemma 3 For fixed order (p, q), let

Hn+1,i (tn+1; p, q)

�
N∑

j=1

n∑

k=0
a(n+1−k)
i j

∫ tk+1

tk
φ j (s; p, q)dv j (s),

H0,i (t0; p, q) = 0.

Then the following inequality holds:

HT
n+1,i (tn+1; p, q)Pn+1,i (tn+1; p, q)Hn+1,i (tn+1; p, q)

= O(log R(n; p, q)),

where Pn+1,i (tn+1; p, q) is defined in (8). �
Proof Denote

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ψ (t; p, q) � diag{φ1(t; p, q), . . . , φN (t; p, q)},
V (t) � (v1(t), . . . , vN (t))T,

Pn(t) � diag{Pn,1(t; p, q), . . . , Pn,N (t; p, q)},
Hn(t) � col{Hn,1(t; p, q), . . . , Hn,N (t; p, q)}.

(12)

For simplicity of expression, we omit (p, q) in the equa-
tions without confusion. By the definition of Hn+1,i (tn+1)

and (12), we have for t = tn+1,

Hn+1(tn+1) =
n∑

k=0
A (n+1−k)

∫ tk+1

tk
Ψ (s)dV (s)

=A
(
Hn(tn) +

∫ tn+1

tn
Ψ (s)dV (s)

)
,

(13)

and for t ∈ [tn, tn+1), we have

Hn(t) =
n−1∑

k=0
A (n−k)

∫ tk+1

tk
Ψ (s)dV (s)

+
∫ t

tn
Ψ (s)dV (s),

(14)

whereA is the adjacency matrix of graph G. Differentiating
both sides of (14),we have dHn(t) = Ψ (t)dV (t). Integrating
both sides of this equation over [tn, tn+1) and substituting it
into (13), we can derive the following equation:

Hn+1(tn+1) = A Hn(tn+1). (15)

Consider the stochastic Lyapunov function HT
n (t)Pn(t)Hn

(t). By the Itô formula in Lemma 2, we have

d
(
HT
n (t)Pn(t)Hn(t)

)

= HT
n (t)dPn(t)Hn(t) + 2HT

n (t)Pn(t)dHn(t)

+ tr(Pn(t)Ψ (t)Ψ T(t))dt

= −HT
n (t)

(
Pn(t)Ψ (t)Ψ T(t)Pn(t)

)
Hn(t)dt

+ 2HT
n (t)Pn(t)Ψ (t)dV (t)

+ tr(Pn(t)Ψ (t)Ψ T(t))dt .

Integrating both sides of the equation over [tn, tn+1) yields

HT
n (tn+1)Pn(tn+1)Hn(tn+1)

= HT
n (tn)Pn(tn)Hn(tn)

−
∫ tn+1

tn
HT
n (t)Pn(t)Ψ (t)Ψ T(t)Pn(t)Hn(t)dt

+ 2
∫ tn+1

tn
HT
n (t)Pn(t)Ψ (t)dV (t)

+
∫ tn+1

tn
tr
(
Pn(t)dP

−1
n (t)

)
.

(16)
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By (15), (16) and lemma A.1 in [10], we have

HT
n+1(tn+1)Pn+1(tn+1)Hn+1(tn+1)

= HT
n (tn+1)A Pn+1(tn+1)A Hn(tn+1)

≤ HT
n (tn+1)Pn(tn+1)Hn(tn+1)

≤ HT
n (tn)Pn(tn)Hn(tn)

−
∫ tn+1

tn
HT
n (t)Pn(t)Ψ (t)Ψ T(t)Pn(t)Hn(t)dt

+ 2
∫ tn+1

tn
HT
n (t)Pn(t)Ψ (t)dV (t)

+
∫ tn+1

tn
tr
(
Pn(t)dP

−1
n (t)

)

≤ HT
0 (t0)P0(t0)H0(t0)

−
n∑

k=0

∫ tk+1

tk
HT
k (t)Pk(t)Ψ (t)Ψ T(t)Pk(t)Hk(t)dt

+ 2
n∑

k=0

∫ tk+1

tk
HT
k (t)Pk(t)Ψ (t)dV (t)

+
n∑

k=0

∫ tk+1

tk
tr
(
Pk(t)dP

−1
k (t)

)
.

This leads to the following equivalent form:

HT
n+1(tn+1)Pn+1(tn+1)Hn+1(tn+1)

+
n∑

k=0

∫ tk+1
tk

‖Ψ T(t)Pk(t)Hk(t)‖2dt

≤ 2
n∑

k=0

∫ tk+1

tk
HT
k (t)Pk(t)Ψ (t)dV (t)

+
n∑

k=0

∫ tk+1

tk
tr
(
Pk(t)dP

−1
k (t)

)
.

(17)

By Theorem 1, the first term on the right side of (17) satisfies

n∑

k=0

∫ tk+1

tk
HT
k (t)Pk(t)Ψ (t)dV (t)

= O(1) + o

(
n∑

k=0

∫ tk+1

tk
‖Ψ T(t)Pk(t)Hk(t)‖2dt

)

,

(18)

and a tedious derivation leads to

n∑

k=0

∫ tk+1

tk
tr
(
Pk(t)dP

−1
k (t)

) = O (log R(n)) . (19)

Substituting (18) and (19) into (17), we have

HT
n+1(tn+1)Pn+1(tn+1)Hn+1(tn+1) = O(log R(n)).

This completes the proof of the lemma. �
As we know, in the estimation process of the algorithm, it

is possible for the estimated order to be greater than the true

order. In the following lemma, we provide an analysis of the
parameter estimation error for this case, which is helpful for
the subsequent theoretical analysis.

Lemma 4 For any p ≥ p̄ and q ≥ q̄ , the estimation error
θ̃k,i (t; p, q) of Algorithm 1 satisfies the following equation,

P−1
k+1,i (tk+1; p, q)θ̃k+1,i (tk+1; p, q)

= ∑

j∈Ni

ai j
[
P−1
k, j (tk; p, q)θ̃k, j (tk; p, q)

−
∫ tk+1

tk
φ j (s; p, q)dv j (s)

]

,

where θ̃k,i (t; p, q) = [
a1 − a1,i (t), . . . , ap − ap,i (t), b1 −

b1,i (t), . . . , bq−bq,i (t)
]T

,
{
aτ,i (t)

}p
τ=1 and

{
br ,i (t)

}q
r=1 are

components of θk,i (t; p, q) generated by Algorithm 1.

Proof By (7) we have

dP−1
k,i (t; p, q) = φi (t; p, q)φi

T(t; p, q)dt . (20)

By (8) and (20), we have

d
(
P−1
k,i (t; p, q)θ̃k,i (t; p, q)

)

= φi (t; p, q)φi
T(t; p, q)θ̃k,i (t; p, q)dt

− φi (t; p, q)
[
φi

T(t; p, q)θ̃k,i (t; p, q)dt + dvi (t)
]

= −φi (t; p, q)dvi (t).

Integrating the above equation over [tk, tk+1) leads to

P−1
k,i (tk+1; p, q)θ̃k,i (tk+1; p, q)

= P−1
k,i (tk; p, q)θ̃k,i (tk; p, q) −

∫ tk+1

tk
φi (s; p, q)dvi (s).

(21)

Thus, we have

P−1
k+1,i (tk+1; p, q)θ̃k+1,i (tk+1; p, q)

= P−1
k+1,i (tk+1; p, q)θk+1,i (tk+1; p, q)

− P−1
k+1,i (tk+1; p, q)θ(p, q)

= ∑

j∈Ni

ai j
[
P−1
k, j (tk+1; p, q)θ̃k, j (tk+1; p, q)

]

= ∑

j∈Ni

ai j
[
P−1
k, j (tk; p, q)θ̃k, j (tk; p, q)

−
∫ tk+1

tk
φ j (s; p, q)dv j (s)

]
,

where the last equation is obtained from (21). We complete
the proof. �
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Now, we give the convergence result for the order estima-
tion of Algorithm 2.

Theorem 5 Under Assumptions 1 and 2, for any i ∈
{1, . . . , n}, the order (pi (t), qi (t)) estimated by Algorithm
2 converges to the true order ( p̄, q̄) almost surely, i.e.,

lim
t→∞(pi (t), qi (t)) = ( p̄, q̄) a.s., i ∈ {1, . . . , n}.

Proof Wewill show that for any i ∈ {1, . . . , n}, (pi (t), qi (t))
has one and only one limit point ( p̄, q̄) by reduction to
absurdity. Suppose (p′

i , q
′
i ) ∈ I is another limit point of

(pi (t), qi (t)) and (p′
i , q

′
i ) �= ( p̄, q̄). Then there exists a sub-

sequence {tmk } such that

lim
k→∞(pi (tmk ), qi (tmk )) = (p′

i , q
′
i ). (22)

To prove that lim
t→∞(pi (t), qi (t)) = ( p̄, q̄), we need to show

that neither of the following two cases holds,
(1) p′

i ≥ p̄, q ′
i ≥ q̄ and p′

i + q ′
i > p̄ + q̄;

(2) p′
i < p̄ or q ′

i < q̄ .
We first consider the case (1). By (1) and (5), we have

Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i )

=
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ

[
θ̃Tmk ,i (tmk ; p′

i , q
′
i )

·φ j (s; p′
i , q

′
i ) + dv j (s)

ds

]2
ds

= θ̃Tmk ,i (tmk ; p′
i , q

′
i )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p′

i , q
′
i )

·φT
j (s; p′

i , q
′
i )ds

]
θ̃mk ,i (tmk ; p′

i , q
′
i )

+ 2θ̃Tmk ,i (tmk ; p′
i , q

′
i )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p′

i , q
′
i )dv j (s)

]

+
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ

[
dv j (s)

ds

]2
ds

� I + II + III. (23)

We first estimate the term I. For any p, q, integrating both
sides of the equation (20) over [tk, tk+1), we have

P−1
k,i (tk+1; p, q)

= P−1
k,i (tk; p, q) +

∫ tk+1

tk
φi (s; p, q)φT

i (s; p, q)ds.
(24)

Substituting the above equation into (8), we obtain that

P−1
k+1,i (tk+1; p, q) = ∑

j∈Ni

ai j
{
P−1
k, j (tk; p, q)

+
∫ tk+1

tk
φ j (s; p, q)φT

j (s; p, q)ds

}

.

(25)

Moreover we have by (24) and (25)

P−1
mk ,i

(tmk ; p, q)

= ∑

j∈Ni

ai j
{
P−1
mk−1, j (tmk ; p, q)

+
∫ tmk

tmk−1

φ j (s; p, q)φT
j (s; p, q)ds

}

=
N∑

j=1
a(mk )
i j P−1

0, j (t0; p, q)

+
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p, q)φT

j (s; p, q)ds.

(26)

By (26) and Theorem 3.8 in [42] it follows that

I = O
(
log R(tmk ; p′

i , q
′
i )
) = O

(
log R(tmk ;Up,Uq)

)
.

(27)

For the second term II in (23), it is clear that

|II| ≤ 2
∥
∥
∥θ̃Tmk ,i (tmk ; p′

i , q
′
i )P

− 1
2

mk ,i
(tmk ; p′

i , q
′
i )

∥
∥
∥

·
∥
∥
∥
∥P

1
2
mk ,i

(tmk ; p′
i , q

′
i )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p′

i , q
′
i )dv j (s)

]∥
∥
∥
∥
∥

.

(28)

By applying Theorem 3.8 in [42] to the first term in (28), we
can get the following equation,

∥
∥θ̃Tmk ,i (tmk ; p′

i , q
′
i )P

− 1
2

mk ,i
(tmk ; p′

i , q
′
i )
∥
∥

= O
(
log

1
2
(
R(tmk ; p′

i , q
′
i )
))

= O
(
log

1
2
(
R(tmk ;Up,Uq)

))
.

(29)

From Lemma 3, we see that the second term in (28) satisfies

∥
∥
∥
∥P

1
2
mk ,i

(tmk ; p′
i , q

′
i )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p′

i , q
′
i )dv j (s)

]∥
∥
∥
∥
∥
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= O
(
log

1
2
(
R(tmk ; p′

i , q
′
i )
))

= O
(
log

1
2
(
R(tmk ;Up,Uq)

))
. (30)

By(27)–(29), we see that there exists a constant M1 > 0 such
that the following inequality holds,

Jmk ,i
(
tmk ; p′

i , q
′
i , θmk ,i

(
tmk ; p′

i , q
′
i

)) − III

≥ −M1 log
(
R(tmk ;Up,Uq)

)
.

(31)

Next we consider Jmk ,i (tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄)). By a
similar derivation as that of (23), we have

Jmk ,i
(
tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄)

)

= θ̃Tmk ,i (tmk ; p̄, q̄)

[
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p̄, q̄)

·φT
j (s; p̄, q̄)ds

]
θ̃mk ,i (tmk ; p̄, q̄)+2θ̃Tmk ,i (tmk ; p̄, q̄)

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1
tτ

φ j (s; p̄, q̄)dv j (s)

]

+
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ

[dv j (s)

ds

]2
ds

� I′ + II′ + III. (32)

By (26) we have

I′ = θ̃Tmk ,i (tmk ; p̄, q̄)P−1
mk ,i

(tmk ; p̄, q̄)θ̃mk ,i (tmk ; p̄, q̄)

− θ̃Tmk ,i (tmk ; p̄, q̄)
( N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)
)

· θ̃Tmk ,i (tmk ; p̄, q̄).

(33)

For the second term II′, we have by Lemma 4,

P−1
mk ,i

(tmk ; p̄, q̄)θ̃mk ,i (tmk ; p̄, q̄)

=
N∑

j=1
ai j P

−1
mk−1, j (tmk−1; p̄, q̄)θ̃mk−1, j (tmk−1; p̄, q̄)

−
N∑

j=1
ai j

∫ tmk

tmk−1

φ j (s; p̄, q̄)dv j (s)

=
N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)θ̃0, j (t0; p̄, q̄)

−
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; p̄, q̄)dv j (s).

(34)

Substituting (34) into II′ yields the following equation,

II′ = 2θ̃Tmk ,i (tmk ; p̄, q̄)

·
[

N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)θ̃0, j (t0; p̄, q̄)

−P−1
mk ,i

(tmk ; p̄, q̄)θ̃mk ,i (tmk ; p̄, q̄)
]
.

(35)

Substituting (33) and (35) into (32) yields

Jmk ,i

(
tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄)

)
− III

= θ̃Tmk ,i (tmk ; p̄, q̄)P−1
mk ,i

(tmk ; p̄, q̄)θ̃mk ,i (tmk ; p̄, q̄)

− θ̃Tmk ,i (tmk ; p̄, q̄)
( N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)
)

· θ̃Tmk ,i (tmk ; p̄, q̄) + 2θ̃Tmk ,i (tmk ; p̄, q̄)

·
[

N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)θ̃0, j (t0; p̄, q̄)

−P−1
mk ,i

(tmk ; p̄, q̄)θ̃mk ,i (tmk ; p̄, q̄)
]

≤ −θ̃Tmk ,i (tmk ; p̄, q̄)

(
N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)

)

· θ̃Tmk ,i (tmk ; p̄, q̄) + 2θ̃Tmk ,i (tmk ; p̄, q̄)

·
(

N∑

j=1
a(mk )
i j P−1

0, j (t0; p̄, q̄)θ̃0, j (t0; p̄, q̄)

)

≤
N∑

j=1
a(mk )
i j θ̃T0, j (t0; p̄, q̄)P−1

0, j (t0; p̄, q̄)θ̃0, j (t0; p̄, q̄)

= O(1). (36)

where the last inequality uses the inequality 2xTAy ≤
xTAx + yTAy for A ≥ 0. From (31) and (36), there exists a
constant M2 > 0 such that the following inequality holds,

Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i ))

− Jmk ,i (tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄))

≥ −M1 log
(
R(tmk ;Up,Uq)

) − M2.

(37)

Note that pi (tmk ), qi (tmk ) in (22) are positive integers.
Then, there exists a K ∈ N

+ such that for k > K ,
(pi (tmk ), qi (tmk )) ≡ (p′

i , q
′
i ). By

(pi (tmk ), qi (tmk )) = arg min
(p,q)∈I Fmk ,i (tmk ; p, q),

we know that

Fmk ,i
(
tmk ; pi (tmk ), pi (tmk )

) − Fmk ,i
(
tmk ; p̄, q̄

) ≤ 0. (38)
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On the other hand, by (37) and Assumption 2, we have for
sufficiently large k,

Fmk ,i
(
tmk ; pi (tmk ), qi (tmk )

) − Fmk ,i
(
tmk ; p̄, q̄

)

= Fmk ,i
(
tmk ; p′

i , q
′
i

) − Fmk ,i
(
tmk ; p̄, q̄

)

= Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i ))

− Jmk ,i (tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄))

+ (
p′
i + q ′

i − p̄ − q̄
)
ξ(tmk )

≥ −M1 log
(
R(tmk ;Up,Uq)

) − M2

+ (
p′
i + q ′

i − p̄ − q̄
)
ξ(tmk )

= −M2 + ξ(tmk )
(−M1 log

(
R(tmk ;Up,Uq)

)

ξ(tmk )

+ (
p′
i + q ′

i − p̄ − q̄
)) → ∞, k → ∞.

This contradicts (38), so case (1) does not hold.
We next show that the case (2) will not happen. If case

(2) holds, i.e., p′
i < p̄ or q ′

i < q̄ holds. We construct the
following (κi + μi ) dimensional vector,

θmk ,i
(
tmk ; κi , μi

) = [
a1,i (tmk ), . . . , aκi ,i (tmk ),

b1,i (tmk ), . . . , bμi ,i (tmk )
]T

,

where κi = max
{
p′
i , p̄

}
, μi = max

{
q ′
i , q̄

}
, am,i (tmk ) �

0 (p′
i < m ≤ p̄) if p′

i < p̄; bm,i (tmk ) � 0 (q ′
i < m ≤ q̄) if

q ′
i < q̄ .
Denote θ̃mk ,i

(
tmk ; κi , μi

)
� θ (κi , μi ) − θmk ,i (tmk ; κi ,

μi ). Then we have

∥
∥θ̃mk ,i

(
tmk ; κi , μi

)∥
∥2 ≥ min

{∣
∣
∣ap̄

∣
∣2,

∣
∣bq̄

∣
∣
∣
2
}

� γ0 > 0.

(39)

Similar to the analysis of (23) and (26), we have

Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i )) − III

=
N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ

[
dy j (s)

ds

−θTmk ,i (tmk ; p′
i , q

′
i )φ j (s; p′

i , q
′
i )
]2

ds

= θ̃Tmk ,i (tmk ; κi , μi )P
−1
mk ,i

(tmk ; κi , μi )

· θ̃mk ,i (tmk ; κi , μi ) − θ̃Tmk ,i (tmk ; κi , μi )

·
(

N∑

j=1
a(mk )
i j P−1

0, j (t0; κi , μi )

)

θ̃Tmk ,i (tmk ; κi , μi )

+ 2θ̃Tmk ,i (tmk ; κi , μi )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; κi , μi )dv j (s)

]

.

(40)

The following is a term-by-term analysis of the right-hand
side of (40). From (26) and Remark 1 it follows that for any
p and q the following inequality holds,

λmin
(
P−1
mk ,i

(tmk ; p, q)
) ≥ aminλmin

(
tmk ; p, q

)
, (41)

where amin = min
i, j∈V

a(DG)
i j > 0. From (39), (41) and Theo-

rem 2.6 in [13], we obtain the following estimate of the first
term at the right-hand side of the equation (40),

θ̃Tmk ,i (tmk ; κi , μi )P
−1
mk ,i

(tmk ; κi , μi )θ̃mk ,i (tmk ; κi , μi )

≥ γ0aminλmin
(
tmk ; κi , μi

)

≥ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}
.

(42)

By (41) and Theorem 3.8 in [42], we have for any p ≥ p̄
and q ≥ q̄,

n∑

i=1

∥
∥θ̃n,i (t; p, q)

∥
∥2

= O

(
log R(n; p, q)

λmin(n; p, q)

)

, t ∈ [tn, tn+1).

(43)

When p′
i < p̄, ( q ′

i < q̄ is the same), for the first
p′
i components of θ̃mk ,i

(
tmk ; κi , μi

)
utilizing (43), then

from Theorem 2.6 in [13] and Assumption 2, we have∥
∥θ̃mk ,i

(
tmk ; κi , μi

) ∥
∥ = O(1). Thus the second term at the

right-hand side of (40) satisfies the following relation,

θ̃Tmk ,i (tmk ; κi , μi )

(
N∑

j=1
a(mk )
i j P−1

0, j (t0; κi , μi )

)

· θ̃Tmk ,i (tmk ; κi , μi )

≤ λmax

(
n∑

j=1
a(t)
i j P

−1
0, j (κi , μi )

)
∥
∥
∥θ̃tk ,i (κi , μi )

∥
∥
∥
2

= O(1).

(44)

Following an analysis similar to that of (28), the following
estimate of the third term at the right-hand side of (40) can
be obtained by using Lemma 3,

∣
∣
∣θ̃Tmk ,i (tmk ; κi , μi )
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; κi , μi )dv j (s)

]∣
∣
∣
∣
∣

≤
∥
∥
∥θ̃Tmk ,i (tmk ; κi , μi )P

− 1
2

mk ,i
(tmk ; κi , μi )

∥
∥
∥

·
∥
∥
∥
∥P

1
2
mk ,i

(tmk ; κi , μi )
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·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; κi , μi )dv j (s)

]∥
∥
∥
∥
∥

= O

{∥
∥
∥
∥θ̃

T
mk ,i (tmk ; κi , μi )P

− 1
2

mk ,i
(tmk ; κi , μi )

∥
∥
∥
∥

· log 1
2

(
R(tmk ;Up,Uq)

)}
, (45)

Continuing from (39), (41) and Assumption 2 the final esti-
mate of the third term at the right-hand side of (40) is

∣
∣
∣θ̃Tmk ,i (tmk ; κi , μi )

·
[

N∑

j=1

mk−1∑

τ=0
a(mk−τ)
i j

∫ tτ+1

tτ
φ j (s; κi , μi )dv j (s)

]∣
∣
∣
∣
∣

= O
{
θ̃Tmk ,i (tmk ; κi , μi )P

−1
mk ,i

(tmk ; κi , μi )

·θ̃mk ,i (tmk ; κi , μi )
}

.

(46)

Substituting (42), (44) and (46) into (40), it can be shown
that there exists a constant M3 > 0 such that the following
inequality holds,

Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i )) − III

≥ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

· (1 + o(1)) − M3

≥ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

2
− M3.

(47)

From (10), (36) and (47) it follows that the following
inequality holds for sufficiently large k,

0 ≥ Fmk ,i
(
tmk ; pi (tmk ), qi (tmk )

) − Fmk ,i
(
tmk ; p̄, q̄

)

= Fmk ,i
(
tmk ; p′

i , q
′
i

) − Fmk ,i
(
tmk ; p̄, q̄

)

= Jmk ,i (tmk ; p′
i , q

′
i , θmk ,i (tmk ; p′

i , q
′
i ))

− Jmk ,i (tmk ; p̄, q̄, θmk ,i (tmk ; p̄, q̄)

+ (
p′
i + q ′

i − p̄ − q̄
)
ξ(tmk )

≥ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

2
− M3 + (

p′
i + q ′

i − p̄ − q̄
)
ξ(tmk )

≥ − M3

+ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

2

·
{

1 +
(
p′
i + q ′

i − p̄ − q̄
)
ξ(tmk )

γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

}

≥ − M3

+ γ0amin min
{
λmin

(
tmk ; p̄,Uq

)
, λmin

(
tmk ;Up, q̄

)}

4
→∞, k → ∞.

There is a contradiction, which proves that case (2) is not
valid either. �

Noting that (pi (t), qi (t)) and ( p̄, q̄) are integers, it follows
from Theorem 5 that there exists a sufficiently large integer
T such that, for any t ≥ T , pi (t) = p̄ and qi (t) = q̄ hold.
Thus by (43) and Assumption 2, the following convergence
result on the unknown parameter vector can be obtained.

Theorem 6 Under the condition of Theorem 5, for all i ∈
{1, . . . , n} the following equation holds,

θn,i (t; pi (t), qi (t)) −→
t→∞ θ ( p̄, q̄) , a.s.,

where θn,i (t; pi (t), qi (t)) is given by Algorithm 2.

Theorem6 provides the almost sure convergence result for
Algorithm 2 when both the order and parameters in (2) are
unknown.We see that the convergence results are established
without assuming the statistical properties of regression vec-
tors, such as independency, stationarity or ergodicity, which
makes our results applicable for feedback control systems.

4 Simulation results

In this section, we will verify effectiveness of the proposed
distributed order estimation algorithm (Algorithm 2) by a
simulation example.

Example 1 Consider a network of ten sensors (N = 10).
The dynamics of each sensor is described by the following
stochastic differential equation

yi (t) = SφT
i (t)θ + vi (t), i = 1, 2, . . . , 10,

where both the parameter vector θ ∈ R
q̄ and the system order

q̄ are to be estimated, vi (t) is the system noise following the
standard Wiener process. For q = Uq , the regressor φi (t) ∈
R
Uq (t ≥ 0), i ∈ {1, . . . , 10}) is taken as

xi (t) =
⎧
⎨

⎩

0.5t + 0.5, if mod(i, 3) = 0,
t + 0.5, if mod(i, 3) = 1,
t2 + 0.5, if mod(i, 3) = 2,

φi (t) = [e1, . . . , 0, eτ , 0, . . . , 0
︸ ︷︷ ︸

Uq

]TXi (t), (48)

where Xi (t) = (xi (t), . . . , xi (t)︸ ︷︷ ︸
Uq

)T, 0 denotes the Uq -

dimensional column vector with all zero elements, τ =
2+mod(i,Uq − 1), the mod is a remainder operator, and eτ
denotes the τ th column of the unit matrix IUq . For q < Uq ,
the regressor φi (t) is taken as the first q elements of (48).
The network topology G is shown in Fig. 1, whose weighted
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Fig. 1 Topology of the sensor network

adjacency matrix A = (ami )10×10 is determined by the
Metropolis rule (cf. [43]).

All sensors will estimate the true system order of q̄ = 3
and the unknown parameter vector θ = (0.3, 0.4, 1.2)T. It
is clear that the graph G is connected and the regressor φi (t)
of all sensors i ∈ {1, . . . , 10} satisfies Assumption 2 with

ξ(t) = t
1
2 .

Set the initial estimate θi (0) = (0, . . . , 0
︸ ︷︷ ︸

q

)T, the fusion

time instants t0 = 0, 0.1, 0.2, 0.3, . . ., the upper bound of
system order is taken as Uq = 5. Algorithm 2 is conducted
100 runs with the same initial setting, and the order estimates
{qi (t)}, i = 1, 2, . . . , 10 and the average estimation error of
parameters can be obtained.

Figure 2 shows the simulation results for the order estimate
obtained by Algorithm 2 proposed in this paper and the non-
distributed algorithm (namely, N = 1 and DG = 1). It can
be seen that the sequences of order estimates {qi (t)} (i =
1, . . . , 10) by using Algorithm 2 converges to the true order,
and not all sequences of order estimates can converge to the
true order for the non-distributed order estimation algorithm.

Figure 3 shows the simulation results of the average
estimation error of parameters by Algorithm 2 and the non-
distributed algorithm. It can be seen that the estimation errors
generated by Algorithm 2 for each sensor i converge to
zero,while the estimation errors generated bynon-distributed
algorithm do not tend to zero.

From this simulation example, we can reveal the coopera-
tive effect of multiple sensors: all sensors can cooperatively
estimate unknown system order and parameters, while none
of them can do it separately.

5 Concluding remarks

In this paper, we study the distributed order estimation
problem of continuous-time stochastic regression models.
The distributed order estimation algorithm (Algorithm 2)
is designed by minimizing the piecewise continuous local
information criterion based on the L0 penalty term, and uti-

Fig. 2 Order estimates generated by (a) Algorithm 2 and (b) non-
distributed algorithm

Fig. 3 Parameter estimation errors by (a) Algorithm 2 and (b) non-
distributed order estimation algorithm

lizing the continuous-time distributed least squares algorithm
based on the diffusion strategy. By introducing cooperative
excitation condition and dealing with the complex coupling
between estimates of system order and parameters, almost
surely convergence results of the proposed algorithm are
established. The convergence results in this paper is obtained
without assuming regression vectors to be bounded or satisfy
the persistent excitation conditions, which allows our results
to be further used in the related studies of feedback control
systems. Finally, the effectiveness of the proposed distributed
algorithm for the unknown order and parameters is verified
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by a simulation example. Some interesting problems such as
the distributed order estimation problemwith unknownupper
bound, the distributed adaptive control problem, deserve to
be further studied.
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