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Abstract
When heavy-duty commercial vehicles (HDCVs) must engage in emergency braking, uncertain conditions such as the brake
pressure and road profile variations will inevitably affect braking control. To minimize these uncertainties, we propose a
combined longitudinal and lateral controller method based on stochastic model predictive control (SMPC) that is achieved via
Chebyshev–Cantelli inequality. In our method, SMPC calculates braking control inputs based on a finite time prediction that
is achieved by solving stochastic programming elements, including chance constraints. To accomplish this, SMPC explicitly
describes the probabilistic uncertainties to be used when designing a robust control strategy. The main contribution of this
paper is the proposal of a braking control formulation that is robust against probabilistic friction circle uncertainty effects.
More specifically, the use of Chebyshev–Cantelli inequality suppresses road profile influences, which have characteristics
that are different from the Gaussian distribution, thereby improving both braking robustness and control performance against
statistical disturbances.Additionally, since theKalmanfiltering (KF) algorithm is used to obtain the expectation and covariance
used for calculating deterministic transformed chance constraints, the SMPC is reformulated as a KF embedded deterministic
MPC. Herein, the effectiveness of our proposed method is verified via a MATLAB/Simulink and TruckSim co-simulation.

Keywords Heavy-duty commercial vehicle · Brake system · Stochastic model predictive control · Road profile

1 Introduction

Advanced vehicle control features, including traction con-
trol, anti-lock braking systems, electronic stability control,
adaptive cruise control, lane-keeping assistance, etc., have
been topics of intense study over many years, and a variety
of such functions have already been implemented to assist
drivers. These and even more advanced driving automa-
tion functions are currently being readied for application
to passenger cars, buses, and large vehicles whose handling
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requires superior driving skills. In particular, in emergency
situations, advanced braking control is required to regulate
the vertical vehicle control of vehicles of buses or trucks with
large inertia and bring them to safe stops. Today, most buses
and trucks are equipped with pneumatic braking systems that
use compressed air as their energy medium. However, pneu-
matic braking systems have characteristics that make control
design difficult [1–4]. First, large time delays occur due to the
compressibility of air, and the dynamics of pneumatic brak-
ing systems inevitably mean that the relationship between
the air medium and pressure flow is non-linear. Hence,
when combined with the vehicle’s longitudinal dynamics,
pneumatic braking systems are prone to various uncertain-
ties. These include supply pressure variations due to brake
application and release, temperature increases resulting from
frequent braking, brake systemcomponentwear, vehicle load
fluctuations, and changes in road surface conditions due to
rain or snow.

When considering such factors, model predictive control
(MPC) [5], which considers dynamic coupling [6,7], topo-
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graphical information [8], and horizontal vehicle dynamics,
provides an optimal control method for safe vehicle control
during emergency stop conditions. For that reason, MPC is
incorporated into awide variety of automatic control systems
such as train pneumatic braking systems [9], bus braking
energy efficiency systems [10], and the steering systems of
all-terrain cranes with slow dynamic response levels [11].
The high utility of MPC is its ability to solve the con-
strained optimization problem of a finite-time interval for
each sampling step based on the model to be controlled.
Then the controller applies the first component of the cal-
culated input series in each sampling step. MPC makes it
possible to calculate control inputs that explicitly consider
functional, physical, and safety restrictions by applying con-
straints for input and state. However, MPC is vulnerable to
the influence of actual motion factors that are not consid-
ered in models. Therefore, although preset constraints may
be satisfied in MPC predictions, those constraints may be
exceeded in actual conditions. MPC-based control has also
been applied to heavy-duty commercial vehicle (HDCV)
wheel slip control [12,13], fuel consumption systems [14–
17], automatic hydraulic transmission systems [18], actuator
time delay controllers [19], pneumatic actuator controllers
[20]. The challenge of the controller design of HDCVs are
robustness against model uncertainty due to actuator or load-
ing. The methods proposed in [21] is not considered against
the uncertainty of the plant model. Also, the Kalman filer
(KF) embedded MPC brake system [22] is available to use
state covariance for the controller. To solve that, robust anti-
slip control systems for different road surface environments
[23] and systems that compensate for vehicle specification
changes caused by load variations [24,25] is reported. How-

ever, the deterministic constraints result in aggressive inputs
when the model has stochastic uncertainty. This may result
in the model not complying with the constraints as theory
suggests.

In contrast, stochastic model predictive control (SMPC)
is a robust control method that considers such uncertainties.
In the SMPC approach, which is shown in Fig. 1, we can see
that SMPC inputs a stochastic constraint called a “chance
constraint” based on the probability distribution of the pre-
diction error and designates it as the upper and lower limits of
the state. This allows SMPC to explicitly describe the proba-
bilistic uncertainties in designing the robust control strategy.
For example, let the deterministic constraint be x ≤ xmax,
with x as the states and xmax as the upper limit states. If x
is uncertain, the probability will not reach fifty percent. To
avoid creating too large a value, the deterministic constraint
needs to converted into a probabilistic (also called chance)
constraint, in which Pr(x ≤ xmax) ≥ 1−α, with α ∈ (0, 0.5]
is the allowable probability. In many applications, system
uncertainties are often considered to be stochastic processes,
which allows the incompleteness and uncertainties of set
optimization problems to be taken into consideration. This
suppresses erroneous control that can result from discrep-
ancies between theory and an actual environment. SMPC
can also improve both robustness and control performance
using statistical information related to disturbances. For that
reason, SMPC is also applied to uncertainties in automobile
control [26–28]. On the other hand, external disturbances
due to road environments, such as gradients and road surface
friction coefficients, affect dynamic vehicle behaviors during
emergency stops [22]. In such cases, wheel slip suppression

Fig. 1 Overview of SMPC
approach. SMPC explicitly
describes the probabilistic
uncertainties that need
consideration when designing a
robust control strategy using a
probabilistic (also called
chance) constraint. Here,
Pr(x ≤ xmax) ≥ 1 − α, with
α ∈ (0, 0.5] is the allowable
probability

1 3



250 R. Nakahara et al.

improvements can be anticipated by considering the vehicle
uncertainties, such as the brake pressure and road profile.

To facilitate this, this paper proposes a braking control
method that considers the road profile outlined in Refer-
ence [29] as a stochastic uncertainty, and via which SMPC
is applied to the control of HDCVs during emergency brak-
ing. The results of this study show that our proposed method
improves braking system robustness against fluctuations in
temperature, air brake system measurement values, and road
surface features, all of which are mathematical program-
ming problems involving random variables that are generally
considered challenging to solve. In our method, we reformu-
late an SMPC into a deterministic equivalent model based
on the expectations and covariances of random variables,
whichweachieveusing theKFalgorithm.This allowsHDCV
uncertainties to be controlled via the SMPC by considering
disturbance-related statistical information. Hence, the pri-
mary contribution of this paper is the proposal of a braking
control formulation that is robust against the probabilistic
friction circle uncertainties affect. The remainder of this
paper is organized as follows. The vehicle model, includ-
ing an HDCV airbrake system, is described in Sect. 2, while
road profiles are discussed in Sect. 3. Next, the KF-based
state estimation is described in Sect. 4, while the SMPC-
based controlled design is discussed in Sect. 5 and numerical
simulation results are shown in Sect. 6. Finally, Sect. 7 con-
cludes the paper.

Notations This paper adopts the following notations.
The subscripts fl, fr, rl, and rr refer to front left, front right,
rear left, and rear right, respectively. A := B refer to define
A as B. N ∼ N (a, b) refer to the random variable N
follows a normal distribution N (a, b) with standard devi-
ation a and variance b. ‖x‖P := √

xTPx represents the
weighted norm. R represents set of real numbers. Addition-
ally, A � O, A 	 O denotes A is a positive definite matrix
and semi-positive definite matrix, respectively. Pr(·) repre-
sents probability,Rn represents an n-dimensional real vector,
R
n×m represents an n × m real matrix, 0n is n-dimensional

zero vector, and On×m represents n × m zero matrix. The
subscript k + i | k refer to the predicted/estimated value of
the variable for the time k + i , which is given at time k.

2 Vehicle model

This section describes the equation of motion of HDCV’s
kinematic and dynamic maneuvers in the horizontal X–Y
plane, as shown in Fig. 2. To facilitate its adaptation as a
control model, some assumptions are simplified.

Fig. 2 3 DoF vehicle model with a reference path

The vehicle kinematics model is expressed as follows:

d

dt

⎡
⎣
X
Y
ψ

⎤
⎦ =

⎡
⎣
V cos(β + ψ)

V sin(β + ψ)

γ

⎤
⎦ , (1)

where γ is the yaw rate, V =
√

vx 2 + vy2 ≈ vx is the vehicle

velocity, β = tan−1(vy/vx ) ≈ vy/vx is the vehicle side-slip
angle, and vx and vy are, respectively, the longitudinal and
lateral velocities in the vehicle frame. Let βref = 0, reference
vehicle kinematics is expressed as follows:

d

dt

⎡
⎣
X ref

Y ref

ψ ref

⎤
⎦ =

⎡
⎣
cosψ ref

sinψ ref

ρref

⎤
⎦ V ref , (2)

where ρref is road curvature. To incorporate lane-keeping,
it is necessary to transform the lateral vehicle dynamics into
path tracking error dynamics. In such cases, the relative errors
between the ego and reference vehicles can be expressed as
follows:

⎡
⎣
ex
ey
eψ

⎤
⎦ =

⎡
⎣

cosψ ref sinψ ref 0
− sinψ ref cosψ ref 0

0 0 1

⎤
⎦

⎡
⎣

X − X ref

Y − Y ref

ψ + β − ψ ref

⎤
⎦ . (3)

Next, assuming the vehicle side-slip angle β and the
front-wheel steering angle δ are small, the equations for the
longitudinal, lateral, and yaw dynamics in the vehicle frame
are expressed, respectively, as follows:
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V̇ = Fxfl + Fxfr + Fxrl + Fxrr
M

, (4a)

v̇y = Fyfl + Fyfr + Fyrl + Fyrr

M
− V γ, (4b)

γ̇ = (Fyfl + Fyfr)lf − (Fyrl + Fyrr)lr
Iz

+ (−Fxfl + Fxfr)wf + (−Fxrl + Fxrr)wr

Iz
,

(4c)

ṡd = V , (4d)

ψ̇ = γ, (4e)

ėy = vy + Veψ, (4f)

ėψ = γ − ρrefV , (4g)

where M is total vehicle mass, lf and lr are the distances
from the center of gravity (CoG) to the front and rear axles,
Iz is the vehicle body moment of inertia about the z-axis,
and wf and wr are the widths of the front and rear track,
respectively. In addition, Fxi j and Fyi j are the longitudinal
and lateral tire forces, sd is the vehicle driving distance, and
ey and eψ denote the heading error and the lateral deviation
values, respectively.

2.1 Longitudinal dynamics

When the slip ratio of each wheel is small (|λ| � 1), brake
torque is approximated as follows:

Ti ≈ rwFxi , (5)

where rw is the effective wheel rolling radius. Since this
paper focuses on emergency vehicle stops, it deals solely
with braking and does not consider driving-related aspects.
We also assume that the pressure-braking force characteris-
tics are linear, as outlined below:

Fxi ≈ −kbPi , (6)

where kb is the proportional relationship constant of the brake
pressure to the braking force characteristics. Since good
mechanical lubrication is assumed, we ignore the effects of
mechanical and viscous actuator friction. Hence, from (4),
(5) and (6), the longitudinal dynamics can be expressed as
follows:

ẋlon = Alonxlon + Blonulon, (7)

with

xlon = [
sd V

]T
, ulon = [

Pfl Pfr Prl Prr
]T

,

Alon =
[
0 1
0 0

]
, Blon =

⎡
⎣ 0 0 0 0

−kb
M

−kb
M

−kb
M

−kb
M

⎤
⎦ .

2.2 Lateral dynamics

Tire side-slip angles αi are expressed as follows [30,31]:

αfl, fr = tan−1
(

vy + lfγ

vx ∓ −wfγ /2

)
− δ,

αrl, rr = tan−1
(

vy − lrγ

vx ∓ −wrγ /2

)
,

(8)

where lf and lr are the CoG distances to the front and rear
axle, respectively, and wf and wr are the front and rear track
widths, respectively. Assuming |δ|, |β|, |αf |, and |αr| � 1,
αi is approximated as follows:

αf = αfl = αfr ≈ β + lfγ

V
− δ,

αr = αrl = αrr ≈ β − lrγ

V
.

(9)

Next, assuming that the characteristics of the left and right
tires are equal and that lateral tire forces Fyi are approximated
as linear functions of the tire side-slip angles αi , the lateral
tire forces Fyi are approximated as follows:

Fyf = −2Kyfαf = −2Kyf

(
β + lfγ

V
− δ

)
,

Fyf = −2Kyrαr = −2Kyr

(
β − lrγ

V

)
,

(10)

where Kyf and Kyr are the cornering stiffness values. From
(4) and (10), the lateral dynamics in the vehicle-fixed frame
are expressed as follows:

ẋlat = Alatxlat + Blatulat + Elatd + M latulon (11)

with

xlat = [
ey ėy eψ ėψ

]T
, ulat = δ, d = ρref ,

Alat =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

0
A1

V
−A1

A2

V
0 0 0 1

0
A3

V
−A3

A4

V

⎤
⎥⎥⎥⎥⎥⎦

, Blat =

⎡
⎢⎢⎣

0
B1

0
B2

⎤
⎥⎥⎦ ,

M lat =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

−M1 M1 −M2 M2

⎤
⎥⎥⎦ , Elat =

⎡
⎢⎢⎣

0
A2 − V 2

0
A4

⎤
⎥⎥⎦ ,

A1 = − 2

M
(Kyf + Kyr),

A2 = − 2

M
(lfKyf − lrKyr),

A3 = − 2

Iz
(lfKyf − lrKyr),
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Fig. 3 Air-brake system

A4 = − 2

Iz
(l2f Kyf + l2r Kyr),

B1 = 2Kyf

M
, B2 = 2lfKyf

Iz
,

M1 = −kbwf

2Iz
, M2 = −kbwr

2Iz
.

2.3 Air-brakemodel

The air-brake system structure is shown in Fig. 3. Assum-
ing good mechanical lubrication, we ignore the effects of
mechanical and viscous friction of actuators. This system
consists of an air tank, a brake chamber, a solenoid, and a
valve. The brake chamber is supplied with compressed air
through the relay valve. We assume that the supply source is
always filledwith compressed air. The air pressure is adjusted
by opening and closing the valve by the command voltage
applied to the solenoid.

In this paper, we assume that a time delay occurs due to air
propagation and that the time delay ismodeled as a first-order
delay system as follows:

Pi = − 1

τi
Pi + Ki

τi
ui , ∀i ∈ [f, r], (12)

ẋair = Aairxair + Bairuair, (13)

with

xair = ulon, uair = [
ufl ufr url urr

]T
,

Aair = diag

{
−KPf

τf
,−KPf

τf
,−KPr

τr
,−KPr

τr

}
,

Bair = diag

{
− 1

τf
,− 1

τf
,− 1

τr
,− 1

τr

}
,

where τi and KPi are the time constant and gain of the air-
brake system, respectively, which parameters are same as
[21]. ui is the commandvoltage, and Pi j is the brake pressure.

2.4 Vehicle load transfer

The formula used for the vehicle load transfer estimate is as
follows [32]:

⎡
⎢⎢⎣
Fzfl
Fzfr
Fzrl
Fzrr

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Wf − W lon − W lat

f
Wf − W lon + W lat

f
Wr + W lon − W lat

r
Wr + W lon + W lat

r

⎤
⎥⎥⎦ , (14)

with

Wf =
(mslr

l
+ msuf

)g
2
,

Wr =
(mslf

l
+ msur

)g
2
,

W lon = mshgax
2l

,

W lat
i = mshgay

2wi
, ∀i ∈ [f, r],

where L = lf + lr is the wheelbase, ms is the vehicle sprung
mass,muf andmur are the vehicle front and rear spring mass,
respectively, g is the acceleration due to gravity, hg is the
CoG height, and rw is the effective tire rolling radius.

2.5 State equation

From (4), (7), (11) and (13), the augmented systems of longi-
tudinal, lateral, and air-brakemodel are expressed as follows:

ẋ = Ax + Bu + Ed (15)

with

x = [
xTlon xTlat x

T
air

]T ∈ R
10,

u = [
uTair ulat

]T ∈ R
5,

A =
⎡
⎣

Alon O2×4 Blon

O4×2 Alat M lat

O4×6 Aair

⎤
⎦ ∈ R

10×10,

B =
⎡
⎣

O2×5

O4×4 Blat

Bair 04

⎤
⎦ ∈ R

10×5,

E =
⎡
⎣

02
Elat

04

⎤
⎦ ∈ R

5.
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3 Road profile

Because there is such a wide variety of road surface environ-
ments, including asphalt, cobblestones, and unpaved ground,
the International Organization for Standardization (ISO) has
classified road surface conditions into eight levels (fromA to
H) in the ISO8608 [33] standard. This standard also classifies
road surface height zg(sd), which is expressed as follows:

zg(sd) =
∞∑
i=1

An{S( fn)} cos (2π fnsd + θn) (16)

with

S( fn) = S( f0)

(
fn
f0

)−2

, S( f0) = (2k · 10−3)2,

where An is the complex Fourier coefficient, f0 = 1/(2π),
and fn is the spatial frequency, S( fn) is the power spectral
density (PSD) function, and θ ∼ U(0, 2π) is the phase with
a uniform distribution. We consider the finite partial sum up
to the N term for the infinite series of (16) [34].

First, from theFourier spectrum,Ψ ( fn)of S( fn) is defined
as follows:

S( fn) := lim
 f →0

|Ψ 2|
 f

= lim
 f→0

Ψ · Ψ ∗

 f
, (17)

where Ψ ∗ is the conjugate complex number of Ψ , and the
Fourier spectrum Ψ is the effective value of the complex
Fourier coefficient An , i.e.,Ψ = An/

√
2. Accordingly, if we

let L road be the overall road length and assume the bandwidth
is fn ≈ n f = 2π/L road, S( fn) can be approximated as
follows:

S( fn) ≈ Ψ 2

 f
= A2

n

2 f
. (18)

Then, we substitute (18) into (16), the finite sum up to the N
term can be expressed as follows:

zg(sd) =
N∑
i=1

Γ
√

 f

(
fn
f0

)
cos (2π i f sd + θn), (19)

Table 1 k values of ISO-8608 road roughness classification

Road class k

Upper bound Lower bound

A B 3

B C 4

C D 5

D E 6

E F 7

Fig. 4 ISO-8608 road surface profiles

Fig. 5 Q–Q plot of road profile (D–E class)

where Γ = 2k · 10−3, sd ∈ [0, L road],  f = 1/L road,
nmax = 1/ f max, N = nmax/n = L road/ f max, and f max is
the highest spatial frequency. The road surface unevenness
degree is expressed by the k value of S( f0). The corre-
spondence between the k values and the eight road state
classifications are listed in Table1. The A and B classes
correspond approximately to asphalt, while the D–E classes
correspond to irregular roads. The road profile (with respect
to the driving distance represented by (16)) is shown in Fig. 4,
where L road = 250m, and N = 2500. Increased k values
indicate increased vertical height.

Next, wewill examine the distribution of road profile char-
acteristics. The D–E class road profile histogram is shown in
Fig. 6. To compare similarities between normal and sample
distributions, the quantile–quantile (Q–Q) plot of the D–E
class road profile is shown in Fig. 5 where the horizontal
axis is the quantiles of the standard normal distribution, and
the vertical axis is the sample quantiles. As the quantiles
increase in similarity, the tendency of the blue dots to follow
the straight line indicated by the red alternating long-short
dashed line increases. The green line shows the interquartile.
As can be seen in Fig. 5, the road profile characteristics differ
from the normal distribution.
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Fig. 6 Histogram of road profile (D–E class)

4 Kalman filter

In this paper, the output is expressed as follows:

y = Cx = [
sd ey eψ Pfl Pfr Prl Prr

]T
, (20)

and the unobtainable state is estimated by KF. First, the esti-
mation model discretized (15) by the zero-order hold at the
sampling time t is expressed as follows:

{
xk+1 = Adxk + Bduk + Eddk + wk,

yk = Cxk + vk,
(21)

where Ad, Bd, and Ed collectively define the coefficient
matrix of a discrete-time system, w ∼ N (0,�w) and v ∼
N (0,�v) are the process and observation noises, respec-
tively, and �w 	 O and �v � O are the covariance of
the process and observation noises, respectively. Then, the
prediction steps are calculated as

x̂k|k−1 = Ad x̂k−1|k−1 + Bduk−1 + Eddk−1, (22a)

Pk|k−1 = AdPk−1|k−1AT
d + �w, (22b)

where x̂k|k−1 and Pk|k−1 are the a priori state estimate and
error covariance, respectively. The filtering steps are calcu-
lated as

Mk = Pk|k−1CT(CPk|k−1CT + �v)
−1, (23a)

x̂k|k = Ad x̂k|k−1 + Mk( yk − Cx̂k|k−1), (23b)

Pk|k = (I − MkC)Pk|k−1, (23c)

where Mk is the Kalman gain, and x̂k|k and Pk|k are the a
posteriori state estimate and error covariance, respectively.

5 Stochastic MPC-based vehicle control

This section describes the formulation of the optimization
problem designed to achieve vehicle stability. First, we
describe the cost function required to balance the input and
state priority necessary to achieve the desired performance,
after which we describe the constraints. In particular, we
examine how uncertainty is considered via the chance con-
straint in the optimization problem.

5.1 Cost function

In this paper, the evaluation function of the following equa-
tion is defined as follows:

J =‖x̃k+H |k‖2Qf
+

H−1∑
i=0

(‖x̃k+i |k‖2Q + ‖uk+i |k‖2Ru

+ ‖uk+i |k‖2R�u
) + ‖εk‖2ρε

, (24)

where uk is the current time input, uk = uk − uk−1, x̃k =
x̂k − xrefk is the error between the estimated state x̂k at the
current time and the target state xrefk , Q 	 O is the stage
cost weight matrix, R � O is the input weight matrix,
Qf 	 O is the terminal cost weight matrix, and H is a
horizon. Additionally, ρε is a weight constant for the slack
variable ε.

5.2 Constraints

By designing a brake pressure Pi constraint that satisfies the

friction circle
√
F2
xi + F2

yi ≤ μi Fzi , vehicle slip occurrence

is suppressed. Here, μi and Fzi are the road surface friction
coefficient and vertical force, respectively. From the rela-
tional expression of the circle of forces and (6), the limit
value of the brake pressure Pi is expressed by the following
inequality:

0 ≤ Pi ≤ 1

kb

√
(μi Fzi )2 − F2

yi , ∀i ∈ [fl, fr, rl, rr]. (25)

In addition, the speed constraint for not taking into account
backward movement, the upper and lower limits for the com-
mand voltage of the air brake system, and the lateral deviation
ey constraint for preventing lane departure are set as follows:

V > 0, (26)

umin
i ≤ ui ≤ umax

i , ∀i ∈ [fl, fr, rl, rr], (27)

−emax
y ≤ ey ≤ emax

y . (28)

Next, we will explain how to transform the chance con-
straint into a deterministic constraint to solve the stochastic
optimization problem as an equivalent deterministic problem

1 3
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[35]. First, let g j be a j th basis vector, and let the j th com-
ponent of the state be given by x j = gTj xk . Then, the chance
constraint of x j is

Pr(x j ≤ xmax
j ) ≥ 1 − α j , (29)

where η j := 1−α j and α j is allowable probability. Since we
focus solely on design brake pressure chance constant here,
α j is expressed as follows:

α j =
{
1/2, ∀ j ∈ {1, · · · , 6},
α, ∀ j ∈ {7, · · · , 10}. (30)

Note that α = 1/2 is equivalent to the deterministic con-
straint. As can be seen in Fig. 6, the road profile is an
asymmetrical and multimodal distribution, so an approxima-
tion as a Gaussian distribution is not reasonable. Therefore,
from the Chebyshev–Cantelli inequality [36], the expected
value E(xk) = x̂k|k , and the variance σ 2

j = gTj Pk|k g j , the
chance constraint is transformed as follows:

x̂ j ≤ xmax
j − xmargin

j , (31)

where xmargin
j :=

√
ζ gTj Pk|k g j , ζ = η j/(1 − η j ). Even

though it is a conservative constraint, it is possible to use the
Chebyshev–Cantelli inequality to deal with general distribu-
tions.

5.3 Optimization problem

Using a vehicle model, a cost function, and the relevant
constraints, a deterministic equivalent constrained stochastic
programming is expressed as follows:

Deterministic equivalent SMPC:

min
[UTε]T

(24)

w.r.t. uk+l|k,∀l ∈ [0, H − 1]
s.t. x(0) = x0,

x̂k+l+1|k = Ad x̂k+l|k + Bduk+l|k
+Eddk+l|k,

x̂k + x̂margin ≤ x̂k+i+1|k ≤ x̂k − x̂margin
,

uk ≤ uk+i |k ≤ uk,
ε ≥ 0,

where U = [uTk|k uTk+1|k · · · uTk+H−1|k]T, • :=
•min − εvmin•,ECR , • := •max + εvmax•,ECR.

To avoid infeasibility, the state and input constraints are
relaxed by the slack variable [37]. The relaxation degree is
adjusted by Equal Concern for Relaxation (ECR) vmax•,ECR.
Note that vmax•,ECR = 0 refers to a hard constraint that is relaxed
as the value of the ECR increases.

6 Simulation result and discussion

The control system is shown in Fig. 7.Here, it can be seen that
KF estimates the state acquired from the controlled object.
The SMPCcontrol input is calculated using the target value, a
measurable disturbance, and the estimated value. The control
target is a four-axle eight-wheel TruckSim truck model pro-
vided byVirtualMechanics. In this study, we used the default
Magic Formula (MF) model in TrcuckSim as our tire model.
We also considered it difficult to identify the MF parameters
from time to time due to the various changes in road condi-
tions. Therefore, in our control model for MPC, we assume
that the tire force is linear for the longitudinal and lateral slip
of the tire as mentioned in Sects. 2.1 and 2.2. In SMPC, this

Fig. 7 SMPC system Block
diagram
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Table 2 Vehicle parameters

Symbol Value Symbol Value

mb 4455 kg wf 2.055m

mf 785 kg × 2 wr 1.855m

mr 275 kg × 2 rw 0.45m

Iz 34678.5 kg · m2 Kyf 395.6 kN/rad

l1 1.110m Kyr 210.4 kN/rad

l2 0.695m ngear 25

l3 2.780m V0 70 km/h

l4 6.695m

is considered to be a two-axle four-wheel vehicle model with
lf = (l1 + l2)/2, lr = (l3 + l4)/2, where li is the distance
from the front to the i th axle and the CoG. The truck model
inputs are the brake torque Ti and the handle angle δSW. The
brake torque is calculated by (5) and distributed to each axle
as T1,2 = Tf/2, T3,4 = Tr/2. The steering wheel angle δSW
is calculated by δSW = ngearδ, where ngear is the steering
gear ratio. The vehicle specifications used in the equation of
state are listed in Table2, while the SMPC control param-
eters are listed in Table3 and the estimated KF parameters
are as shown in Table4. Chance constraints are designed for
each of the four-wheel brake pressures, each of which had
the same allowable probability α. In this study, the value of
the speed weights is set to a large value to stop the vehicle
quickly. In this way, the weights are designed to emphasize
tracking to the target speed. In the driving scenario shown in
Fig. 8, the road surface is a split-μ circular route with μ on
the left and right sides in the direction of travel set at 0.6 and
0.9, respectively, and be known in this study. This road sur-
face information is assumed to be known. The turning radius
of the circular path is r = 152.4m. Assuming emergency
braking conditions, the target speed V ref is changed from
70 km/h to 0 km/h at time 2. Additionally, the target state is
xref = [(xreflon)

T (xreflon)
T (xreflon)

T]T, where xreflon = [srefd V ref ]T,
sd = ∫

V refdt , xreflat = 0T4 , x
ref
air = 0T4 .Hence, the left and right

road surfaces are different, and the longitudinal and lateral
force act at the same time. The control performance validity
in this scenario is verified through emergency braking. Note
that the brake pressure noise follows a normal distribution
of N (0, σ 2

f,r). In this study, braking performance verifica-
tion is conducted on roads with uneven surfaces, as shown
in the D–E class of Fig. 4 and be unknown in this study. The
MPC results are also shown for comparison purposes. The
SMPC/MPC iteration max is set to 50.

In this figure, the black-filled area shows the time evo-
lution after the vehicle has stopped. A comparison between
SMPC and MPC model results during braking on a split-μ
road with a vertical road profile displacement is shown in
Fig. 9. The red and blue solid lines show the cases of SMPC
and MPC, respectively. The green dashed line shows the ref-

Table 3 Control parameters

Symbol Value

t 0.1 s

Hp 10

ρε 1

umin, umax 0V, 24V

emax
y 0.5m

vmin
u , vmax

u [0 0 0 0 0]T
vmin
x , vmax

x [0 0 1 1/2 0 0 0 0 1/4 1/4]T
u0 [0 0 0 0 0]T
x0 [0 V0 0 0 0 0 0 0 0 0]T
Q, Qf diag(Qlon, Qlat, Qair)

Qlon diag(10−4, 5 × 104)

Qlat diag(6 × 10−2, 10−6, 10−3, 10−6)

Qair diag(1, 1, 1, 1)

Ru diag(1, 1, 1, 1, 1)

Ru diag(0.1, 0.1, 0.1, 0.1, 1)

α 0.2

Table 4 Estimate parameters

Symbol Value

�w diag(�w,lon, �w,lat, �w,air)

�w,lon diag(10−3, 10−3)

�w,lat diag(10−3, 10−3, 10−3, 10−3)

�w,air diag(σ 2
f , σ 2

f , σ 2
r , σ 2

r )

�v diag(�v,lon,lat, �v,air)

�v,lon,lat diag(10−3, 10−3, 10−3)

�v,air diag(σ 2
f , σ 2

f , σ 2
r , σ 2

r )

σf,r 10 kPa, 5 kPa

Fig. 8 Simulation scenario involving a braking turn on a split-μ road

erence trajectory. Trajectories on the X–Y plane are shown
in Fig. 9a, while Fig. 9b shows the time evolution of the vehi-
cle longitudinal speed. The lateral deviation time evolution
is shown in Fig. 9c. The chain line shows constraints. The
time evolution of QP iterations is shown in Fig. 9d. Here,
the yellow line shows that using the QP is infeasible, while
the chain line shows max iterations. The time evolution of
traveling distance is shown in Fig. 9e. The Key Performance
Indicators (KPIs) is shown in Table5 and Fig. 9f, where index
factor is max deceleration, max corrective steering angle,
max traveling distance, mean front wheels slip ratio, mean
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Fig. 9 Comparison between SMPC andMPC during braking on a split-
μ road with aa vertical road profile displacement broken down by a
trajectory, b longitudinal speed of the vehicle CoG, c lateral deviation,
and d quadratic programming (QP) iterations. e Traveling distance. f
Key Performance Indicators (KPIs) The red and blue solid lines show

the SMPC and MPC cases, respectively, while the green dashed line
shows the reference trajectory and the chain lines show constraints.
The yellow line shows that using QP is infeasible, while the chain line
shows the max iterations

rear wheels slip ratio, max yaw rate [13]. The time evolution
of execution time is shown in Fig. 10, while Fig. 10a, c and
Fig. 10b, d show the SMPC andMPC cases, respectively. The
time evolution of brake pressure in the SMPC case is shown
in Fig. 11, while Fig. 11a and b show the SMPC and MPC

cases, respectively. Additionally, the slip ratio of each wheel
in the SMPC case are shown in Fig. 12, while Fig. 12a shows
the slip ratio of first and second axle wheels. Next, Fig. 12b
shows the slip ratio of third and fourth axle wheels, while
Fig. 13 shows the slip ratio of each wheel in the MPC case.
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Table 5 KPIs

KPIs index SMPC MPC

Max deceleration 1.10 m/s2 1.26 m/s2

Max corrective steering angle 12.3 deg 12.5 deg

Max traveling distance 71.8m 72.2m

Mean front wheels slip ratio 0.136 0.1511

Mean rear wheels slip ratio 0.0658 0.0692

Max yaw rate 10.8 deg/s 10.9 deg/s

The vehicle braked while maintaining lane tracking in
each case, as shown in Fig. 9a. As shown in Fig. 9c, the lat-
eral deviation constraint was violated in both the SMPC and
MPC cases because it was necessary to allow the slack vari-
able constraint to be violated to make the chance constraint
of the friction circle feasible. In addition, the lateral deviation
in the SMPC case was smaller than in the MPC case because
the solution became infeasible in theMPC casewhen its opti-
mality was lost at the 2-s mark, as shown in Fig. 9d. Hence,
when considering the statistical information related to distur-
bances, the results of this study show that lane followability
and running stability during braking on a split-μ circular

route are improved by the use of SMPC. In Fig. 9b, we can
see that the SMPC simulation stopping time was slightly
longer than the MPC stopping time. However, As shown in
Fig. 9e, stopping distance of SMPC is 71.8m and MPC is
72.2m. Also, as shown Table5 and in Fig. 9f, SMPC KPIs
are improved comparedwithMPCKPIs. The slip ratio during
braking in the SMPC case, as shown in Fig. 12, was smaller
than the MPC case, as shown in Fig. 13. This is because
SMPC considers the confidence interval of the brake pres-
sure to be a chance constraint and is more conservative than
the original constraint, as shown in (31) and Fig. 11. As a
result, slippage due to uncertainty is suppressed, as shown in
Fig. 12. In theMPCcase, the brake pressure uncertainty is not
explicitly considered, so the ratio of time exceeding the tire
friction circle constraint is higher than that of SMPC, which
means the vehicle slipped more, as shown in Fig. 13. The
slip ratio values in the black-filled area oscillated after the
vehicle stopped as shown in Figs. 12 and 13. This is because
the formula for calculating the vehicle skid angle has a term
that includes velocity in the denominator, and the calcula-
tion becomes unstable due to division by zero as the vehicle
is braked. From Fig.10, the longer the prediction horizon Hp

is, the more dimensionality of the matrices handled in the

Fig. 10 Execution time. a SMPC (fixed with t = 100 ms). bMPC (fixed with t = 100 ms). c SMPC (fixed with Hp = 10). dMPC (fixed with
Hp = 10)
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Fig. 11 Brake pressure of the front left wheel during braking on the
split-μ road with vertical road profile displacement. The green marker
shows the measurement values while the red solid line shows the esti-

mation. The blue solid line shows the upper bound predicted by the
tire friction circle, while the yellow solid line shows the true value. The
violet dashed line shows 2σ confidence interval: a SMPC. bMPC

Fig. 12 Slip ratio during braking in a turn on an split-μ road (SMPC). The blackfilled area shows the time evolution after the vehicle has stopped.
a First and second left/right wheels, b third and fourth left/right wheels

Fig. 13 Slip ratio during braking in a turn on an split-μ road (MPC). The black-filled area shows the time evolution after the vehicle has stopped.
a First and second left/right wheels, b third and fourth left/right wheels

optimization calculation. Therefore, the average and peak
execution times are longer. In all cases of Hp = 10, 7, 5, the
computation time peaked at 2 s, which is the start of stopping,

but it was below the sampling time of MPC t = 100 ms.
This is because the vehicle switched from constant driving,
which does not reach the friction circle constraint, to braking,
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which does reach the friction circle constraint. As a result,
the active constraints in the effective constraint method were
updated, and the Hesse matrix of the Lagrangian function
was re-evaluated. This resulted in a temporary increase in
the run time by 2s.

7 Conclusions

This paper proposed a method of SMPC that considers the
uncertainty of brake pressure and road profiles in relation to
the emergency braking of heavy-duty commercial vehicles
(HDCVs). Herein, the proposedmethodwas verified through
a simulation involving turning braking on a split-μ road. The
running stability of an HDCV ensured stable conditions in
areaswhere the controlling braking force and the lateral force
interacted.
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