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Multiple parametric Marcinkiewicz integrals with mixed

homogeneity along surfaces

SHEN Jia-weil HE Shao-yong®* CHEN Jie-cheng!

Abstract. In this paper, the multiple parametric Marcinkiewicz integral operators with mixed
homogeneity along surfaces are studied. The LP-mapping properties for such operators are
obtained under the rather weakened size conditions on the integral kernels both on the unit
sphere and in the radial direction. The main results essentially improve and extend certain

previous results.

81 Introduction

Let R? (d = m or n), d > 2, be the d-dimensional Euclidean space and S?~! be the unit
sphere in R? equipped with the induced Lebesgue measure dog. Let ag; >1(j=1,---,d) be
fixed real numbers. Define the function F : R? x (0,00) — R by F(z,p4) = Z?:l x?p;%éd’j. It
is clear that for each fixed z € R?, the function F(x, pg) is a decreasing function in pg > 0. Let
pd(z) be the unique solution of the equation F'(z, pg) = 1. Fabes and Riviere [21] showed that
(R9, pg) is a metric space which is often called the mixed homogeneity space related to {aq,; jy
For A > 0, let Ay be the diagonal d x d matrix, namely, Ay » = diag{A¥1,--- A4} For a
function ¢: RT — (0, 00), we shall let A7 : R? — R? be the mapping

A7 (Y) = Adp(om)Y

/

where y' = A4 ,,)-1y € STL

We would like to remark that if ag; = age = - - -agq = 1, then pg(z) = |z|. Indeed, the
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change of variables related to the space (R%, p,) is given by the transformation

z1 = py™" cosby - - cosby_ocosOy_1,

To = pjd’z cos by - --cosfg_osinfy_1,

Ta—1 = py"*" cos b sin bz,

T4 = psd’d sin 01,
where 2 € R?. Therefore, it is easy to check that

dr = p5¢~ " Jy(2)dpdog(x'),

where p3¢~"Jy(z') is the Jacobian of the above transform and oy = Z?:1 aq,;. Furthermore,
it was proved that in [21] that Jy(2’) € C*°(S?~!) and that there exists My > 0 such that

1< Jd(l’/) < My, e Sd_l.
Let 2 be a real valued and measurable function on R? with Q € L'(S9!) and satisfy
QAae) = o), YA >0, and [ 0) I )douty/) = 0. (1)
gd—1

For a suitable function h defined on (0,00), we define the parabolic Marcinkiewicz integral

pd( )) th
fino(f / /pd(th pdy% — e W) (2)

where 7 = a +ib (a,b € R with a > 0) and h € Ay(R"). Here A, (R") for v > 1 denotes the
set of all measurable functions satisfying the condltlon

R
sup (R71/ |h(t)]"dt) Y7 < .
R>0 0

We would like to note that the class of the operators py, ¢ is related to the class of the parabolic

operator

singular integral operators

Q(y)h(p(y
Ta(f)e) = po. [ SOy ya
re  pY)
When h =1, we denote pp, o by pg. Clearly, if g = a3 = --- = ag =1 and 7 = 1, then the

operator pq is a natural analogy of higher-dimensional Marcinkiewicz integral introduced by
Stein [30], which has been investigated by many authors (see [8,10,18,34]). When a; > 1,5 =

-,d, and 7 = 1, Xue ,Ding and Yabuta [37] first established that pq is bounded on LP(R9)
for 1 < p < oo, provided that 2 € L4(R?) for ¢ > 1. Subsequently, Chen and Ding [12, 13]
extended the result of [37] to the case Q € L(logtL)2 (S% 1) and Q € H'(591) respectively.
Moreover, it follows from Wang, Chen and Yu’s work [31] (also see [6]) that uq is bounded on
LP(RY) for Qﬁ - <p<2Bif Qe Fg(S?t) for some B > 1, where

Fs(8971) = {Q e LS4 1) sup / 12(y")|(log )ﬁdo(y’) < oo}, VB > 0.
cesd—1.Jgd—1

1€ - y'I

For the general operator up o, the kernel of 11, o has the additional roughness in the radial
direction, which has received a large moment of interest of many authors in the Euclidean
setting, for instance, see e.g. [15-17,19]. In order to extend the results in [23] to the singular
integral operator T}, o in the Euclidean setting, Fan and Stao [22] introduced the function class
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WZF5(S471) in more general form, namely, the set of all functions Q € L!(S971) satisfying
s [ 120)2w)] (105 15 ———) do(B)do(w) < o0, 5> 0.
gresi-1.J Jgd-1xgd-1 (0 —w) - ¢
Furthermore, they showed that F5(S') C WF3(S'). However, for d > 2, the relation between
F5(8971) and WF5(S971) remains to be open. Recently, Liu, Wu and Zhang [27] showed that
pn.q is bounded on LP(R?) for some 8 > max{2,7'}/2 with |1/p — 1/2| < min{1/9/,1/2} —
min{1/9’ 4+ 1/2,1}/(8 + 1), provided that h € A, (RT) for v > 1 and Q € WFz(S%1).

In this paper, we will focus our attention on the multiple Marcinkiewicz integrals with mixed
homogeneity on product spaces. Suppose that Q € L!(S™~! x S"~1) and satisfies the conditions

Q(Am,sxa An,t) = Q(Iay)a vsat > 0’ (3)
/ Q' )T (0 ory (') = / Q1) (Yo (v) = 0. (4)
S7YL71 Snfl

Let 7 = a; +1b;, a;,b; € R with a; > 0,4 =1,2. For v > 1, let A, denote the set of measurable
functions h : RT x Rt — C satisfying

f pfia 1/y
sup / / h(r, t)|"drdt < 0.
R1>0,Ry>0 R1Rz ) )

A, for y1 > 72 and L™ = A.. We consider the multiple parabolic

Observe that A
Marcinkiewicz integral operators defined by

ds dt
Man(f (/ / st$y|28 ) (5)
where

Yh(pm(u), pn(v))
F,(z / / T —u,y — v)dudv.
(2, y) T STt o w)<s o ()<t pm ocnﬁnp (v)on—T2 £ Y )

When h =1, 1 = =1, and oy = o = 1,4 = 1,---,m,j = 1,-- -, n, the operator

nw &

Mg, (denoted by Mgq) is just the classical Marcinkiewicz integral on product domains, which
studied extensively by many authors (see [2,7,9,11,14,24,25,32, 33, 35,36] among others). In
particular, Al-Qassem et al. [2] proved that Mg is bounded on LP(R™ xR"™) for 1 < p < 00 ifQ €
Llogt L(S™~1xS"~1). It should be pointed out that the condition Q € Llog™ L(S™~1xS"~1)
is optimal in the sense that the operator Mg may fail L? boundedness if €2 is assumed to be in
L(logt L)'=¢(S™~! x S"~1) for some ¢ > 0. Afterward, Al-Salman extends the results in [2] to
Marcinkiewicz integrals with mixed homogeneity. On the other hand, Hu, Lu and Yan [24] (also
see Wu’s work [33,36]) obtained that Mgq) is bounded on LP(R™ x R™) for 1 + % <p<2B
and 8 > %, provided that ) satisfies the following condition:

sw [ Q! VEE )Y o)) <00, (6)

(€' m)esm—1xgn-1.)Jgm-1xgn-1

where
1

1 1
O .
& ] 8 o]

1 1
G\ =1 1 1
&', n") =log R + log o] + log
For the sake of simplicity, we denote that for g > 0,
Fs(S™ 1t x S"H = {Q e LY(S™ ! x §"71) 1 Q satisfies (6)}.
In 2013, Liu and Wu [26] extends the result of [24] to the case: h=1, 71 =T =1, ap; > 1

and o, ; > 1,9=1,---,m,j =1,---,n. To study singular integral operator on product domains
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with rough kernels both along a radial direction and on the spherical surface, Ma, Fan and
Wu [29] introduced the following size condition:

sup / / Q) |96, w)]
(5/7,’7/)esm—lxsn—l (Sm—lXSn—l)Z

x {Ger (0, W)Y doy, (u)do, (v')do, (0)do, (w) < oo, (7)
where
Gf'ﬂ?'(07w) = lOg

+ log + log

1 log 1 1 1 .
[(u" = 0,60 [(v = w, )| [(u" = 0,¢")] (v = w, )|
WFp(S™ 1t x S" ) ={Q e LY(S™ ! x §"71) : Q satisfies (7)}.
We note that the condition (7) introduced by Ma et al. in a more general form in [29]. Employing
the ideas in [22], one can check that Fg(S x §) C WFz(S x S) (see Proposition 2.1 in [29]).
When m > 2 or n > 2, the relation between F5(S™~! x S"~1) and WF5(S™ ! x S"~1) remains

to be open.

We set

A natural question, which arises from the above results, is the following:

Question: For the general case o, > 1 (i =1,---,m) and ap; > 1 (j =1,---,n),
determine whether the L” boundedness of the operator Mgq j, holds under the condition in the
form of Q € WFg(S™  x §"~1) with h € A, for v > 1.

The main purpose of this paper is to settle this question. We will study a family of operators
broader than Mg ;. More precisely, let Py, and Py, be two non-negative polynomials on R
with Py, (0)=0 and deg(Px,) = N;(i = 1,2). For suitable functions ¢,1 : RT — R, we define
the multiple singular integral operator M“”w along surfaces S(Pn;, (¢), Pn, (%)) by

o (0). P ds dt\ ?
Mg = ([ [T O ) ®)

where
Ffzvl(W):PNg(w)(x,y>
11 Q h(pm(u), pn
— / (uav) Ep (u) p (i})) f(ac—Af:lNl((p)(u),y—A5N2(¢)(v))dudv
ST Sy <s Jpu (o<t P (W) 3m =T py (0) 072
and

S(Py, (#), Pry (9)) := {(An P (), 4, (0)) = (u,0) € R™ x R"}.
Clearly, Mg p, is the special case of MQ,h for Py, = ¢ =% =1,i=1,2. It was verified in [1]
that Mgq j, is bounded on LP with [1/p — 1/2| < min{1/4/,1/2} if Q € L9(S™~! x S"~1) and
h € A, for some v > 1.
Our main results can be formulated as follows:

Theorem 1.1. Let Py, and Py, be two real valued polynomials on R satisfying Py, (0) = 0
and Py, (t) > 0 for t # 0, where N; is the degree of Pn,, i = 1,2. Let ¢,1 € §, where § is the
set of functions ¢ satisfying the following properties:

1. ¢ : RY — RT is continuous strictly increasing and ¢ € CY(RT) satisfying that ¢' is
monotonous;

2. there exist constants Cy and cg such that tg'(t) > Cpo(t) and ¢(2t) < cyp(t) for allt > 0.
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Suppose that h € A, for some v > 1 and Q € WF5(S™ 1 x S"71) for some 8 > max{2,7'}/2
satisfying (3)-(4). Then Mglﬁ defined as in (8) is bounded on LP(R™ x R™) for |1/p—1/2| <
min{l/v'}—min{1/7'+1/2,1}/(B+1). Furthermore, the bound is independent of the coefficients
of Pn, and Py, , but depends on ¢, ¢, N1, Na, m, n and .

Remark 1.1. It should be pointed out that the introduction of the class § is greatly motivated
by Al-Salman’s works [5-7]. There are some model examples in the class §, such as t*(a > 0),
t*(In(1 +1))?(a, B > 0), tInln(e + t), real-valued polynomials P on R with positive coefficients
and P(0) = 0 and so on. In addition, for any ¢ € §, there exists a constant By > 1 such
that ¢(2r) > Bgp(r) for all v > 0 . In [6], Al-Salman established the LP—boundedness of
the parabolic Marcinkiewicz integrals with h(t) = 1 and Pn(t) = t along surfaces defined by
the functions ¢ in §, provided Q € Fz(S"~1) for B > 1 and 2261 < p < 28 (see [7] for the
multiple-parameter case). In the current paper, our theorems show that the LP—boundedness of

the operator Mg’f;ﬁ, whose kernel has the additional roughness in the radial direction due to the
presence of h, depends on the index v, which characterize the roughness of h.

Theorem 1.2. Let Py,, Pn,, ¢ and ¢ be as in Theorem 1.1. Suppose that h € A, for some
v > 1, Q satisfies (3)-(4) with Q € Fz(S x S) for some 8 > max{2,~v'}/2. Then ng,/i defined
as in (8) is bounded on LP(R™ x R™) for |1/p—1/2| < min{l/y'} —min{1/+'+1/2,1}/(8+1),
and the bound is independent of the coefficients of Pn, and Py, , but depend on ¢, 1, N1, Na,
m, n and f3.

Obviously, Theorem 1.2 follows from Theorem 1.1 and the relation Fz(Sx.S) C WFg(Sx.S).
Therefore, it suffices to prove Theorem 1.1.

We end this introduction with the following remarks. First of all, all of our results are
new, even in the special case: Py, = Py, = ¢ = % = 1, moreover, even in the case where
Omi = Qp; = 1,4 =1,---m,j = 1,---,n, namely, the Euclidean setting. Second, since
Ugs1 La(S™=1 x 8§"~1) is a proper subset of WFz(S™~1 x §"~1) for any 8 > 0, Theorem
1.1 gives an essential improvement of the result in [1]. However, we don’t know whether the
ranges of 8 and p in Theorems 1.1 and 1.2 are sharp, which is interesting. Third, we note that
the main ingredient of Theorem 1.1 is based on the use of Fourier transform estimates and
Littlewood-Paley theory which was originally introduced in [20]. Employing the ideas in [20],
there are many works to investigate the LP —boundedness of Marcinkiewicz integrals and related
operators, for example, see [3,4,6,7,26,36] and the references therein. Due to the presence of
h, our methods and techniques are more delicate and complex than those of [3,4,6,7,26,36].

This paper is organized as follows. In Section 2, we will introduce some notation and give
some preliminary lemmas. Section 3 is devoted to proving Theorem 1.1.

Finally, we make some conventions. Throughout this paper, we let p’ denote the conjugate
index of p, i.e., % + i = 1. The letter C, sometimes with additional parameters, stands for
a positive constant which is independent of the essential variables, but whose value may vary
from line to line.
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82 Some notations and preliminary lemmas
For given positive polynomials Py, () = Z L Bit', Pny(t) = Z;V:QI v;t7, and for | €

{1,2,---,m}, k € {1,2,---,n}, we denote (Py, (t))*m! = Zf\sf”“t a; it and (Py,(t))omr =
Z;sz " b tl. Then for z,£ € R™, y,n € R™ and ¢,9 € §, we write
m Niom,
PNl go) 5 ZPN1 amzx &= Z Z azl@ pm x;'glv
n Nzwn,k
A (y) U*ZPNQ (Pn @)™ e =D Y bt (pn(¥)) i - h-

k=1 j=1

Let N1 = max{Nia; : 1 <1 < m}, Ny = max{Noan i : 1 < k < n}, let a;; = 0 when
1> Nioun 1, bjr =0 when j > Nooy, . Thus
PN ([P m Niam N1 ) )
! 5 Z Z g, l‘P pm 'gl = Z(Lz(f) Y )@((pm(-r))) ,
1= =1
where L; (&) = (a; 161, - ,a%mgm). Similarly,
n Naon k Na
AN =33 bistlon )Y i e = D (L) - 5 ((on ()

k=1 j=1

where I;(n) = (bj1m,- - bjﬂ)n) For any € {0,1,- - -
Q,U. Zaz 1931(;0 pm
ijalyl,(/} pn
i=1
Then
)- €= Z e(pm(@))’,
Ry(y)-n= Z(Ij(n) -y )0 (pa ),

j=1

For i,j € Z,s,t € R" and 0 < pp < N7,0 < v < Ny, we define the measures {7}, ,} and

{| J.St‘} by

,Ni}and v € {0,1,- -,

Za’ ml’mSO pm(z))" )v

Z b],”‘byn pn

P (), pn(y)) o—i(Qu(@) €+ Ry (y):

j=1
No}, we set

v)’).

OSMSNla

0<p <N,

M dxdy,

,jst(f Tl) 27’ST1 2]t //;éth

h(pm (), p

,uu

A, — Tlp (y)an_TZ

Ti,5;s,t

pwe{0,1,--- N }and v € {071,... Ao},
7] St(§ 77) ,j st(f 77)

|Q(x, y)] n(y))] o~ 1(Qu(@)-E+ Ry (y)-)
|(£ 77) 21 T1 2]t T2 /Ast m Oémelp ( )lx”*‘l’z dxdy

where Af; = {2715 < p(z) < 25,2771 < p,(y) < 27t}. One can easily check that for each

=0
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and
0

FPNI(@) PN, (w)(m y) — gT14T2 Z 2iT19JT2 z] 5t f(x,y) (9)

1,j=—00

First we need the following estimate, which plays curial role in the proof of our main result.

Lemma 2.1. ( [25], Lemma 2.5) Let ¢, € F. Then for p € {1,--- N1}, v € {1,---,Na} and
r >0,

" 71 T ’dpm —
|//2 i Bl TP < Clplr) L) |,

-

—1 J p’ﬂ —1/v

|/ S L)y v (on) L)< Clp(r) Ly(n) - | /v
r/2 Pn

Lemma 2.2. Let o, € F, let h € Ay(R") for some 1 < < 0o and ¥ = max{2,v'}. Suppose
that Q € WF3(S™ ! x S"~1) for some 3 > 0 and satisfies (1). Then for p € {1,--- N1},
ve{l,---,No}, there exists a constant C > 0 such that

(i
077 (Em) — 0l (€ m)| < Clp(2's) Lu() [ min {1, ([ (PDL )" }:  (10)
(i)
T €)= o M€ )] < ClO@ ) L ()| min {1, (I |p(2) LD~ F 1 (1)
(iii)
o7 (€ m)| < Cmin {1, (In [p(27) L (&)) 7, (In [ L ()7,
(I |p(2') L))~ - (n [ (2L, ()~ }; (12)
(iv)

—_—

ST (Em) — (€ m) — PN E ) + o (€ )
< Cmin {1, |0(2°8)" Lu(©)], [$2ID L, ()] |9 )" Lu(€)| - (@ OPL ()]}, (13)

Proof. By a change of variable, we have
,]st(§ TI) lf;ifﬁ’l”
(2is)(2)7 [ Jaz 4

m( )am_Tlp (y)an_7'2
29¢
< Clp(2's) L / / h(r1,72)
i—lg J2i—1¢

drid
o // €201, 82)|Jin (61) T (02)dom (01 ) dorn (82)
172 Sm—1xgn-1

< Clo(2's)" Lu(€)]-
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On the other hand, by the Holder’s inequality, we have

S

| ,jst(gﬂ )_ f],i;(ga

29¢ . ]
/ / / / ¢ S i) 02 (2 (=i T (La(©) 00 ()’
2l8 1 2]15 gi—1g Joi—1¢ Sgm—1yxgn—1

— e I OO 1y, 05) 5 (01) o (02) A (00 drn (B oy, 2) ol T2
T 7"2

1

27¢ ‘ V
< (/ / | // e_i E;:l(Ij('fl)'az)w(Té)J [efi SE L (Li(€)-01)p(r1)
>~ 2i—1lg J2i—1¢ Sm—1yxgn—1

_e_iZé‘:(Li(g)'el)wﬁ)i]ﬂ(% 02) I (01) I (02)dom (01)don (62) ‘7 drldm)

1

rir2
27t
< Clp(2's) L (€)™ °}</ / // =i Y (1 (0)-02) ()’
2i— ls 27—1¢ Sm 1y Sn—1
X [67121:1( 1(5)'01)90(7“1) _ *ZZ (£)-601)p(r1)"
dridry\ 7
(01, 02) T (02) T (02)dor (01, (6)] T;@?) a4)

Let

27t v |
(&m) / / |// et =1 (Li(m)-02)9(r2) [e*izle(l‘i(i)'el)w(h)l
»] S, 2i—1g ,J2i—1¢ Sgm—1ygn—1

- eiiZ::ll(Li(g)'el)W(Tl)i]Q(Gl, 92)Jm(01)=]n(02)d0'm(el)ddn(QQ)|2%
Then we can write ne
|RE (&) = ‘ 2” // [emiLu(€)010(r)" _ q][eilu(©wie(r)” _q]
2i-1g Ji- 1t §m—1xgn- 1)2
% e~ 1260 (Li(€) (01—w1))e(r1)’ g—i 325y (1 () (02— wz)w<rz)J)Q(91 92)m
T (01), (GZ)WdUm(ol)dUn(Gz)dUm(dean(w2)d:ifzz .
(15)

Let )
27t — dr
Lj (02, w2,m) = / e Xi=1 L) (02— w2)eh(ra)! Z22

’ 2i-1¢ 2
Applying Lemma 2.1, we have

|0 (B2, wa,m)| < Cmin{1L, [(290)" L (1) - (62 —w2)| /7).

Since ﬁ is increasing in (e, 00), it must satisfy the estimate

(i |(Ly () - (0 = w) | 1))
L’V 9 , W2, S C - .
| (02,2, )] (In [9(27t) L, (n)])?
Combining (14)-(15) with the fact that © € WFg(S™~! x §"~1) yields (10). Similarly, (11)
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holds. Next we return to prove 111) By a change of variable and Holder’s inequality, we have

27¢ )
/ / / / =i S (La(©)-0)p (1)’
2’8 1 2]t T2 Joi-1g Joi-14 J Jgm—1ygn—1

B_i 25:1(1 n)- OQ)w(rz X Q(Gl, 02) (91, 92)d0’1 (91)d0’2(92)h(1"1, ’I“g)

SV
|0'i,jj;s,t(§7 77)‘

dr1 d’l”g

1—71, 1—79
T Te

is 27¢ . )
< Cllhlla, ( / / | / / o1 S (Li(€)0)p(r)! =i 525y (15 (0)-02) 3 (72)?
2i—1g Joji—1¢ gm—1y gn—1

" drydr 4
X 9(91792)‘](91,92)d01(91)d02 (02)]" ﬁ)

23t .
/ // i S (La(©)-0)p(r) i Yy (1 (m)-02) o (r2)?
2i—1g J2i—1¢ Sm—1ygn—1

dridry | 1
x 9(91792)J(917ez)dal(eﬁdaz(ez)fﬁ) '

Repeating the same argument as in (i), we get (12). (13) follows from the inequality

—_—

N2 w—1 /7
lo ,Jst(f 77) H,_]it(g n-—o l’fjst(f 71)"‘“”,;& Y&l

29t ) )
/ / / / o™t S (E©0R(r)' =i DI (L€ 000’
218 1 2jt T2 gm—1ygn-1 Joi-1g Joi—1¢

x |emi 2= i) 02)¢(r2)! _ —i TN f(1<n>02>w<rz)JHQ 01,0) T, (601) T (62)]
dT‘ldT‘Q

"I"} 7'17,,; T2
This completes the proof of Lemma 2.2. O

X |h(’l”1,7’2) dom(ﬂl)don(%).

Lemma 2.3. Let Q € L'(S™™ 1 x S"71) satisfy (3) and (4). Suppose that h € A, for some
v > 1 and p,p € F, then for any p € {1,-- - N1} and any v € {1,- - -, No}, the mazimal
operator defined by

O.Z,V(f)(x y) - bup bup Hazg st| * f(xay)‘
i,JEZ s,t>

is bounded on LP(R™ x R™) for v < p < 0.

Proof. We first define the measures {A!"”_,} and maximal operator {A*"} as

1,738,

1Q(z, y)| —i(Qu(®)-€+Ru(y)n)
(5777) 21 T 2jt //ASt Pm am Tlp ( )an*-rze H d.%'dy

AL

and

A:V(f)(m y) = Sup sup HAz] st‘ * f(m’y)‘
i,JEZ 5,t>0

By a change of variable, we have

29t
A:;7V(f)(x y < C sup / / // |f(x _ Qu(Am,r1UI)7y _ RV(An)rz'UI)N
i,§€EL J2i=1g J2i—1¢t J J§m—1x Gn—1
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dridry
T17T2

2t , S dridrsg
<C sup fle — Qu(Am '),y — Ry (Ap "))
Sm—1lxgn—1435€Z.J2i-1s J2i— 1t 172

X |Qu, 02)| T (u") I, (V) do s, (61)doy, (62).
Following the same arguments as those in the proof of Lemma 5 in [28], we obtain that
AL (Dl e @m xrny < CfllLr@m xrn), 1 < p < o0 (16)
By Hoélder’s inequality,

x |Q(u’,6)2)|Jm(u')Jn(v’)dam(Gl)don(Qg)

1
7

o7, () (@, )] < C(A; L (1) (@, 9)) 7
Plugging this estimate into (16) yields Lemma 2.3. O

Now we take two radial functions ¢; € C§°(R™) and ¢o € C§°(R™) such that ¢;(t) = 1 for
[t| <1 and ¢;(t) = 0 for |[t| > min{B,, By},i = 1,2, where B, By are as in Remark 1.1. We

define the measures {w;’;, ;} as
Wl (6m) = o1 (€ L ()T () = ot 1Y (€I (0 — DL (v)

— 0L, f1(€ I ()L = 1) + ot of ™ (€ ) (u — DIa(v — 1),
where IT; () = II 1u+1¢1( (2's)" L (€)), Ha(v) = HNQDH(bQ(z/)(th)ZIg(n)). Here we use the
convention Iljegza; = 1. Observe that

N1 No

NiNa v

Oijist — E : Wi jis,t (17)
p=1lv=1

Applying Lemma 2.2 and the same arguments as in the proof of Lemma 2.7 in [25], we get

Lemma 2.4. For p=1,2,-- Ny andv =1,2,-- - Ny,
(i) |l (Em)] < Clol@ s L ()92, ()
(ii) if |p(2's V¥ Lu(€)| > By, then
b (€ m)| < Clinlp(28) L (€)™ F (270" L, ()
(iii) if [V (27t)“Tv(€)| > By, then
[l (€, m)| < Clp(2'8)# L
(iv) if [p(2'$)" L(€)] > B, and [:(27t)* In(€)
b (Em)| < Cn fo(2'8) L (€))7 (n (2P )L, (n)]) 7.

&)|(In [W (270 L, ()~
| > By, then

From the definition of wj'}, , and Lemma 2.3, we get

| sup sup fulif, o+ A1, < €I 18

for p € (7, 00).

Lemma 2.5. For arbitrary functions {g;r},

1

Z / / |wﬂ,jys t ¥ gi,jIQdet ?

1,jEZL

1

Z ‘gz,j| 5

i,JEL

<c‘
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and
1 1
‘ D lwl e giglPdsdt)? || < 0‘ > lgisl?)?
1,jEZ i,jEZ
for |7 — 7| < where the constant s mdependent of the coefficients of PN1 and Py, .

Applying (18), the proof of Lemma 2.5 follows from the arguments similar to the proof of
Lemma 4 in [27]. Here, we omit it.

83 Proof of Theorem 1.1

Take two collections of C*° functions {®y }rez and {¥;}sez such that
(i)supp @k C [p(25F1)7H, (2871)7#], supp Wy C [p(2F1) 7V, (277
(i) 0 < B, Uy < 1, Yyoen B2(0) = Yy V() = 1
(iil) |d®x(t)/dt] < C/t,|dW,(t)/dt| < C/t.
For k,l € Z, we define the multiplier operator S;; on R™ x R" by

Sl (6m) = (L ()N (L () F (& m).

By taking Fourier transform, it is easy to see that for any test function f,
y) =Y Siif)zy). (19)
k.l

To show Theorem 1.1, we first consider the mapping G defined by

BN ETEES ) DI Y1)
k,lEZ i,J€EL
Then we have the following result.

Lemma 3.1. (i)For1<p<2and1<q<p,

1|19
(X [ 13 Sunsuatati Pasan)? <OZ (X [ [ ot asa’
1,JEZL k,JEZ k,JEZ i,JEZL p
(20)
(i) For 2<p<ooand1<q<yp,
(X [ 15 SnutaifapPasan’|
i,JEL k,EZ P
<C> (/ / 1D g8t ydsdt) . (21)

k,leZ i,jEL

By the arguments similar to those used in [24], one can easily establish the above lemma.
The details are omitted.

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. By (9), (17) and Mlnkowskl s inequality, it follows that

it dsdt, 1
Mé, / / 22T ijst*f(%y)IQ?V

% j*—oo

dsdt, 1
217—1217—2 / / stt )|2 S )2
J_—OO

dsdt 1
Z 2712772 ( / / |0005t*fxy)|2?)2

1,j=—00

v dsdt | 1
/ / ok F@y)lP—-)"
1 st

k€L

<ciz [ [ 3 bt sterasan’,

k€7
Thus, it suffices to consider the L” R™ x R™) boundedness for the operator

./\/l //1 Z\wklst*fa:yﬂdsdt)

k,lc€Z

O

I A

By (19), one can write

/\;187 Z / / | Z Sitkj+t (Wi e * Sivk g f (2, v))| det)%

k€L 1,JEL
We now establish the LP(R™ x R™) boundedness for ng}é, We consider two cases.

25(8+1)
Case 1: Giop <P < 2.

By (20), we have that, for any 1 < g < p,

VgL DI < SIS / / Wt Sy fl2dsdr) . (22)

i,j€EL k€L
For every fixed i,j € Z, define the operator

Uijf(z Z/ / Wi tees * Sik,j+if] 2dsdt)3 .

k,leZ
By Plancherel’s theorem, we have

wutli= [ [ X ([ WP LD 1 0

k,l€Z

x | f(&,m)|*dédndsdt

=02 // f(&n ‘2/ / whr (6, m) P dsdtddn,
BEitr, J-H

kIEZ
where Ei+k,j+l — {(g,n) cR™ x R" : <p(2z+k:+1)*u < L#(g) < 90(2z+k71)f/1«,¢(2i+l+1)7u <
L,(n) < @(27+=1)="}. Then by Lemma 2.4 and Remark 1.1, we have that

Ui fll2 < OByl fll Lz, (23)
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where ) .
B;”‘B;J'j,i,j > —2;
=] Wi 2
B, ™4 BIA > -2, < —2;
|Z'|_ﬁ/:7|j|_ﬁ/:y,i,j < —9.
On the other hand, applying Lemma 2.5 and the Littlewood-Paley theory, we get

1 1 1 1
Ui fllp < CUCY |Sivr gt P2 llp < Cllf s 1= = Sl <= (24)
k,l€Z p v
By interpolating between (23) and (24), there exists a 8, € (2&3‘:21) , 1) such that
LB+
Ui fllp < CBYS| fllp, for = <p<2.
H 2 H;D ‘10 (’Y+ 2)ﬁ
Then for fixed 27(55;) < p < 2, we can choose 1 < ¢ < p such that # > 1. Therefore,
—i —jvl, S —q0,8/7 p—Iiv0p
Z Ui fIIE < C’( Z B, NequwJ ¢ Z |i| 40 B/vaJ q
i,§EL 0,§>—2 i<—2,j>—2
+ Z B;iuﬁ’pqm—q@p,@/& + Z |i|—q9p/3/ﬁj—q9p,3/‘y> [l
i>—2,j<—2 i,j<—2
< CIFIE
which yields
27(B+1)
ME SCONfllpy =7 <p<2 25
IME (Dl < CUE Il G128 (25)
25(8+1)

Case 2: 2<p< m

By (21), we have that, for 2 <p < oo and 1 < g < p/,

v 12 H
IMERHIE<C D (/ / 1O lwit o * Sivnjrif1?)? desdt)
i,JEZ
For each fixed i,j € Z, let
VS F ) = (O3 [whrey * Sivk (@, y))?.

kJEZ
Applying the Lemma 2.5 and the Littlewood- Paley theory, we get

s, 11
Vi3 Fllo < CICY_ ISingeif] )4 I, < Clflles 1= =51 <
k,EZ p 2

k€L

N

(26)

R

Also, by Plancherel’s theorem as in Case 1, we have

IV fllz < OBl fll2, (27)
where B; ; is the same as before. By interpolating between (26) and (27), for
2<p< (27([”1) we can choose ¢ € (1,p’) and 9, € (2&37121), 1) such that % > 1 and

1Vl < CBE £
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. This shows that
Y —1 —jvl, [ —40,8/5 v,
||Mg:1;f(f)|;’,§0( Z B0 70 Z 1i|=2° ﬁ/waJ a

i,j>—2 i<—2,j>-2

+ Z B;iwpq|j|—q9p6/&_~_ Z |Z~|—q9pﬁ/’vj—qapﬁ’/‘y>||f||g

i>—2,j<—2 i,j<—2
<Clfl3
for 2 <p< éj%gigj)ﬁ This together with (25) finishes the proof of Theorem 1.1.
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