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Generalized Kannan-type contraction and fixed point

theorems

HAN Yan1,2 XU Shao-yuan3 MA Chao2,∗

Abstract. In this paper, the generalized Kannan-type contraction in cone metric spaces over

Banach algebras is introduced. The fixed point theorems satisfying generalized contractive

conditions are obtained, without appealing to completeness of X or normality of the cone. The

continuity of the mapping is relaxed. Furthermore, we prove that the completeness in cone

metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has

a fixed point in X. These results greatly generalize several well-known comparable results in

the literature.

§1 Introduction and preliminaries

In 1968, Kannan [13] proved the following famous fixed point theorem. The mapping satis-

fying the contractive condition is known as Kannan-type contraction mapping.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be a mapping such

that there exists K < 1
2 satisfying:

d(Tx, Ty) ≤ K{d(x, Tx) + d(y, Ty)}, (1.1)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X and for each x ∈ X the iterated

sequence {Tnx} converges to z.

Afterwards, Fisher [5] and Khan [14] gave two important fixed point theorems on compact

metric spaces. They proved that the continuous self-mapping on compact metric space has a

unique fixed point if T satisfies

d(Tx, Ty) <
1

2
{d(x, Tx) + d(y, Ty)} (1.2)

or

d(Tx, Ty) < (d(x, Tx)d(y, Ty))
1
2
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for all x, y ∈ X with x ̸= y, respectively.

The generalizations of Kannan-type contraction mapping were discussed in [7, 17]. They

showed that if the inequality (1.1) was replaced by the condition either

d(Tx, Ty) ≤ Ad(x, Tx) +Bd(y, Ty) + Cd(x, y), x, y ∈ X (1.3)

where A,B,C ≥ 0 and A+B + C < 1, or

d(Tx, Ty) < Ad(x, Tx) +Bd(y, Ty) + Cd(x, y), x, y ∈ X (1.4)

where A,B,C ≥ 0 and A+B + C = 1, respectively, then the conclusion of Theorem 1.1 was

also true.

In the literature known by the authors, the cone metric space was reintroduced by Huang

and Zhang [12] in 2007, which is a generalization of metric space. Then, many fixed point results

in cone metric spaces were introduced and references mentioned therein (see [3, 20]). Later on,

Liu and Xu [16] defined the notion of cone metric space over Banach algebra and obtained

the existence of some fixed point results in such spaces. Moreover, they gave an example to

illustrate the non-equivalence of fixed point theorems between metric spaces and cone metric

spaces over Banach algebras.

Very recently, Górnicki [7] and Garai et al. [6] established some meaningful theorems when

T was a Kannan-type contractive self-mapping (satisfying (1.2)) in metric spaces. Górnicki

[8] showed some fixed point theorems about extensions of Kannan-type contraction in metric

spaces. In this paper, we introduce the concept of generalized Kannan-type contraction in

cone metric spaces over Banach algebras. By defining the notions of bounded compactness, T -

orbital compactness, orbital continuity and asymptotic regularity, we establish corresponding

fixed point theorems in cone metric spaces over Banach algebras. Our main results improve

and generalize some important known results in the literature [1, 6, 7, 9, 13, 17]. Furthermore,

we prove that the completeness in cone metric spaces over Banach algebras is necessary if the

generalized Kannan-type contraction mapping has a fixed point in X. In addition, we give

some examples to show that the main results are genuine improvements and generalizations of

the corresponding results in the literature.

First, we recall some basic definitions of Banach algebras and cone metric spaces.

Let A be a real Banach algebra, i.e., A is a real Banach space in which an operation of

multiplication is defined, subject to the following properties: for all x, y, z ∈ A, a ∈ R
(1) x(yz) = (xy)z;

(2) x(y + z) = xy + xz and (x+ y)z = xz + yz;

(3) a(xy) = (ax)y = x(ay);

(4) ∥xy∥ ≤ ∥x∥∥y∥.
In this paper, we shall assume that the Banach algebra A has a unit (i.e., a multiplicative

identity) e such that ex = xe = x for all x ∈ A. An element x ∈ A is said to be invertible if

there is an inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1.

For more details, we refer to [19].

A subset P of A is called a cone if :

(i) P is non-empty, closed and {θ, e} ⊂ P , where θ denotes the zero element of A;

(ii) αP + βP ∈ P for all non-negative real numbers α, β;

(iii) P 2 = PP ⊂ P ;

(iv) P ∩ (−P ) = {θ}.
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For a given cone P ⊂ A, we can define a partial ordering ≼ with respect to P by x ≼ y if

and only if y − x ∈ P . We shall write x ≺ y if x ≼ y and x ̸= y, while x ≪ y will stand for

y − x ∈ intP , where intP denotes the interior of P .

A cone P is called normal if there is a number K > 0 such that for all x, y ∈ A,

θ ≼ x ≼ y implies ∥ x ∥≤ K ∥ y ∥ .

The least positive number satisfying the above inequality is called the normal constant of P .

A cone P is called regular if every increasing sequence which is bounded from above is

convergent. In other words, if there is a y ∈ A such that

x1 ≼ x2 ≼ · · · ≼ xn ≼ · · · ≼ y,

then there exists x ∈ A such that limn→∞ ∥xn−x∥ = 0. Equivalently, a cone P is regular if and

only if every decreasing sequence which is bounded from below is convergent. It is well known

that every regular cone is normal.

A cone P is called strongly minihedral if each subset of A which is bounded from above has

a supremum. If P is a strongly minihedral cone, then every subset of A bounded below has an

infimum (see [3, 20]).

Throughout this paper, we always assume that P is a cone over Banach algebra A with

intP ̸= ∅ and ≼ is the partial ordering with respect to P .

Definition 1.2. ([12],[16]) Let X be a nonempty set. Suppose that the mapping d : X ×X →
P ⊂ A satisfies:

(d1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space over a Banach

algebra A.

Definition 1.3. ([12],[16]) Let (X, d) be a cone metric space over a Banach algebra A, x ∈ X

and {xn} a sequence in X. Then

(i) {xn} converges to x if for every c ∈ A with c ≫ θ, there is a natural number N such that

for all n > N, d(xn, x) ≪ c;

(ii) {xn} is a Cauchy sequence if for every c ∈ A with c ≫ θ, there is a natural number N such

that for all n,m > N, d(xn, xm) ≪ c;

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent in X.

Definition 1.4. ([15]) Let P be a solid cone in a Banach space A. A sequence {un} ⊂ P is a

c-sequence if for each c ≫ θ there exists n0 ∈ N such that un ≪ c for n ≥ n0.

Lemma 1.5. ([11]) Let P be a solid cone in a Banach space A and let {xn} and {yn} be

sequences in P . If {xn} and {yn} are c-sequences and α, β ∈ P then {αxn + βyn} is a c-

sequence.

Lemma 1.6. ([19]) Let A be a real Banach algebra with a unit e and x ∈ A. If the spectral

radius r(x) of x is less than 1, i.e.,

r(x) = lim
n→∞

∥xn∥ 1
n = inf

n≥1
∥xn∥ 1

n < 1,
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then e− x is invertible. Actually, (e− x)−1 =
∑∞

i=0 x
i.

Definition 1.7. ([20]) Let (X, d) be a cone metric space over a Banach algebra A and M be

a non-empty subset of X. Let P be a normal and strongly minihedral cone. The distance

between the set M and the singleton {x} is defined as follows:

d(x,M) = inf{d(x, y) : y ∈ M}.

Lemma 1.8. ([12]) Let (X, d) be a cone metric space over a Banach algebra A and P be a

normal cone with a normal constant K. Let {xn} and {yn} be two sequences in X such that

xn → x and yn → y. Then d(xn, yn) → d(x, y)(n → ∞).

§2 Bounded compactness and T -orbital compactness

The concepts of bounded compactness and T -orbital compactness were studied in usual

metric spaces in [6], which were important to weaken the condition of compactness. In the

following, we give the notions of generalized Kannan-type contraction, bounded compactness

and T -orbital compactness in the framework of cone metric spaces over Banach algebras, which

are generalizations of metric spaces.

Definition 2.1. Let (X, d) be a cone metric space over a Banach algebra A with a unit e. The

mapping T : X → X is said to be a generalized Kannan-type contraction, if it satisfies

d(Tx, Ty) ≺ e

2
{d(x, Tx) + d(y, Ty)}, (2.1)

for all x, y ∈ X with x ̸= y.

Definition 2.2. Let (X, d) be a cone metric space over a Banach algebra A and T be a self-

mapping on X. Let x ∈ X and OT (x) = {x, Tx, T 2x, T 3x, . . .}.
The space (X, d) is said to be boundedly compact, if every bounded sequence in X has a

convergent subsequence.

The mapping T is said to be orbitally continuous at a point z ∈ X if for any sequence

{xn} ⊂ OT (x) (for all x ∈ X), xn → z as n → ∞ implies Txn → Tz as n → ∞. Obviously,

every continuous mapping is orbitally continuous, but the converse is not true.

The setX is said to be a T -orbitally compact set, if every sequence in OT (x) has a convergent

subsequence for all x ∈ X.

Example 2.3. Let A = C1
R[0, 1]× C1

R[0, 1] with the norm

∥(x1, x2)∥ = ∥x1∥∞ + ∥x2∥∞ + ∥x′
1∥∞ + ∥x′

2∥∞.

Define the multiplication by

xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1),

where x = (x1, x2), y = (y1, y2) ∈ A. Then A is a Banach algebra with a unit e = (1, 0). Let

P = {(x1(t), x2(t)) ∈ A : x1(t) ≥ 0, x2(t) ≥ 0, t ∈ [0, 1]}.
(1) Let X = [0,∞)× [0,∞) and define the cone metric d : X×X → A by d((x1, x2), (y1, y2))

(t) = (|x1−y1|, |x2−y2|) exp(t) ∈ P, ∀x = (x1, x2), y = (y1, y2) ∈ X. We make a conclusion that

(X, d) is a complete cone metric space over Banach algebra A. Put mappings T1, T2 : X → X

as

T1(x1, x2) = (
x1

2n+1
,

x2

2m+1
), n ≤ x1 < n+ 1,m ≤ x2 < m+ 1,
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and

T2(x1, x2) = (2x1, 3x2)

for all x ∈ X and n,m ∈ N. It is easy to show that X is T1-orbitally compact but not T2-orbitally

compact and also X is boundedly compact.

(2) Let X = [0, 1)× [0, 1). The cone metric is defined the same as above and T : X → X is

defined by T (x1, x2) = (x1

3 , x2

4 ). We observe that X is T-orbitally compact but not complete.

(3) Let X = [0, 2]× [0, 2]. The cone metric is defined the same as above and T : X → X is

defined by

T (x, y) =

{
(0, 0), (x, y) ∈ [0, 1]× [0, 1];

(x2 ,
y
2 ), otherwise.

Then, for any x0 = (x, y) ∈ X,n ∈ N, xn = Txn−1, xn → θ implies Txn → Tθ = θ(θ = (0, 0)).

So T is T -orbitally continuous but not continuous in X.

In the rest of this section, we assume that (X, d) is a cone metric space over Banach algebra

A with regular cone P such that d(x, y) ∈ intP for all x, y ∈ X with x ̸= y.

Theorem 2.4. Let (X, d) be a boundedly compact cone metric space over Banach algebra A
with a unit e. Suppose that the mapping T : X → X is orbitally continuous and satisfies

d(Tx, Ty) ≺ Ad(x, Tx) +Bd(y, Ty) + Cd(x, y), (2.2)

for all x, y ∈ X with x ̸= y, where A,B,C ∈ P with A+ B + C = e and (e− B)−1, (e− C)−1

exist. Then T has a unique fixed point z ∈ X and for each x ∈ X the iterated sequence {Tnx}
converges to z, i.e., T is a Picard operator.

Proof. Let x0 be an arbitrary point in X and set xn = Txn−1 = Tnx0, n ≥ 1. If there exists an

integer n ∈ N such that xn = xn+1 = Txn, then T must have a fixed point. Now, we assume

that xn ̸= xn+1, ∀n ∈ N. Set sn = d(xn, xn+1) for each n ∈ N. According to (2.2), we have

sn = d(xn, xn+1) = d(Txn−1, Txn)

≺ Ad(xn−1, xn) +Bd(xn, xn+1) + Cd(xn−1, xn)

= Asn−1 +Bsn + Csn−1,

which means that sn ≺ (e − B)−1(A + C)sn−1. Let h = (e − B)−1(A + C), then h = e by

A+B+C = e. Therefore, {sn} is a strictly decreasing sequence which is bounded from below,

that is

θ ≺ · · · ≺ sn ≺ sn−1 ≺ · · · ≺ s0 = d(x0, x1).

Since the cone is regular, we know there is a b ≽ θ in A such that sn → b (n → ∞). Thus, for

all n,m ∈ N, we infer

d(xn, xm) ≼ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)

= d(xn, xn+1) + d(Txn, Txm) + d(xm+1, xm)

≺ d(xn, xn+1) +Ad(xn, xn+1) +Bd(xm, xm+1) + Cd(xn, xm) + d(xm+1, xm),

which implies that

d(xn, xm) ≼ (e− C)−1{(e+A)d(xn, xn+1) + (e+B)d(xm, xm+1)}
≺ (e− C)−1(2e+A+B)s0 = [e+ 2(e− C)−1]s0.

So, {xn} is bounded. Owing to the bounded compactness property ofX, there exist a convergent

subsequence {xni} of {xn} and z ∈ X such that xni → z as i → ∞. By the orbital continuity
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of T , we obtain Txni → Tz. If b ≻ θ, by the fact that every regular cone is a normal cone, we

have

θ ≺ b = lim
i→∞

d(xni , Txni) = d(z, Tz).

Moreover, by the regularity of cone and (2.2), we get

θ ≺ b = lim
i→∞

sni = lim
i→∞

d(Txni , T
2xni) = d(Tz, T 2z) ≺ Ad(z, Tz) +Bd(Tz, T 2z) + Cd(z, Tz),

which implies

b = d(Tz, T 2z) ≺ d(z, Tz) = b,

a contradiction. Thus, b = θ and z = Tz. That is, z is a fixed point of T . Moreover,

d(xn+1, z) = d(Txn, T z)

≺ Ad(xn, Txn) +Bd(z, Tz) + Cd(xn, z)

= Ad(xn, xn+1) + Cd(xn, z)

≼ (A+ C)d(xn, xn+1) + Cd(xn+1, z).

Therefore, (e − C)d(xn+1, z) ≼ (A + C)d(xn, xn+1) → θ and the iterated sequence {Tnx}
converges to z, i.e., T is a Picard operator.

Now we shall show the fixed point is unique. If there is another fixed point y, then from

(2.2), we obtain

d(y, z) = d(Ty, Tz) ≺ Ad(y, Ty) +Bd(z, Tz) + Cd(y, z) = Cd(y, z),

which is a contradiction, which yields the result.

Theorem 2.5. Let (X, d) be a T -orbitally compact cone metric space over Banach algebra A
with a unit e, where T : X → X is orbitally continuous and satisfies

d(Tx, Ty) ≺ Ad(x, Tx) +Bd(y, Ty) + Cd(x, y),

for all x, y ∈ X with x ̸= y, where A,B,C ∈ P with A+ B + C = e and (e− B)−1, (e− C)−1

exist. Then T has a unique fixed point z ∈ X and for each x ∈ X the iterated sequence {Tnx}
converges to z, i.e., T is a Picard operator.

Proof. Similar to Theorem 2.4, we get the sequence xn = Txn−1 = Tnx0, n ≥ 1. If there exists

an integer n ∈ N such that xn = xn+1 = Txn, then T must have a fixed point. Now, we

assume that xn ̸= xn+1,∀n ∈ N. It is easy to prove that sn → b ≽ θ (n → ∞). Since X is

T -orbitally compact, there exist a convergent subsequence {xni} of {xn} and z ∈ X such that

xni
→ z as n → ∞. By orbitally continuity of T , we obtain Txni

→ Tz. The rest proof is

similar to Theorem 2.4.

Corollary 2.6. Let (X, d) be a boundedly compact cone metric space over Banach algebra A
with a unit e. Let T : X → X be a generalized Kannan-type contraction mapping which is

orbitally continuous. Then T has a unique fixed point z ∈ X and for each x ∈ X the iterated

sequence {Tnx} converges to z, i.e., T is a Picard operator.

Proof. Taking A = B = e
2 and C = θ, we obtain the conclusion by Theorem 2.4.

Corollary 2.7. Let (X, d) be a T -orbitally compact cone metric space over Banach algebra A
with a unit e, where T : X → X is a generalized Kannan-type contraction mapping and orbitally

continuous. Then T has a unique fixed point z ∈ X and for each x ∈ X the iterated sequence

{Tnx} converges to z, i.e., T is a Picard operator.
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Proof. The proof is analogous.

Example 2.8. Let A = R2 with the norm ∥(x1, x2)∥ = |x1|+ |x2|. The multiplication is defined

by

xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1),

where x = (x1, x2), y = (y1, y2) ∈ A. Then A is a Banach algebra with a unit e = (1, 0). Let

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0}. Then P is a normal cone with a normal constant K = 1. Let

X = [0, 1) ∪ {2} × [0, 1) ∪ {2} and define the cone metric d : X ×X → A by

d((x1, x2), (y1, y2)) = (|x1 − y1|, k|x2 − y2|) ∈ P,

for all x = (x1, x2), y = (y1, y2) in X, where k > 0 is a constant. Furthermore, define the

mapping T : X → X by:

Tx =

{
( 16x1,

1
4x2), x ̸= 2;

(0, 0), otherwise,

where x ̸= 2 is equivalent to x = (x1, x2) ̸= (2, x2) and x = (x1, x2) ̸= (x1, 2). Obviously, T is

not continuous but T -orbitally continuous. We make a conclusion that (X, d) is an incomplete

cone metric space over Banach algebra A but T -orbitally compact. There are the following three

cases.

(i) For x ̸= 2, y = 2,

d(Tx, T2) = (|1
6
x1 − 0|, k|1

4
x2 − 0|)

= (
1

6
x1,

1

4
kx2)

≺ (
5

12
x1,

3

8
kx2)

= (
1

2
, 0)[(

5

6
x1, k

3

4
x2) + (0, 0)]

= (
1

2
, 0)[(|x1 −

1

6
x1|, k|x2 −

1

4
x2|) + (0, 0)]

≼ e

2
{d(x, Tx) + d(2, T2)}.

(ii) For x, y ∈ X with x ̸= 2, y ̸= 2 and x ̸= y,

d(Tx, Ty) = (|1
6
x1 −

1

6
y1|, k|

1

4
x2 −

1

4
y2|)

≺ [
5

12
(x1 + y1),

3

8
k(x2 + y2)]

= (
1

2
, 0)[(

5

6
x1 +

5

6
y1), k(

3

4
x2 +

3

4
y2)]

= (
1

2
, 0)[(|x1 −

1

6
x1|, k|x2 −

1

4
x2|) + (|y1 −

1

6
y1|, k|y2 −

1

4
y2|)]

=
e

2
{d(x, Tx) + d(y, Ty)}.

(iii) For x = 2 and y = 2,

d(Tx, Ty) = (0, 0) ≺ e

2
{d(x, Tx) + d(y, Ty)}

is obviously true. Therefore, we can apply Corollary 2.7 to obtain that T has a unique fixed

point (0, 0) ∈ X.
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§3 Asymptotic regularity

In the following, we obtain the fixed point theorems of generalized contractive mapping in

complete cone metric spaces over Banach algebras, under the condition of asymptotic regularity.

The regularity or normality of the cone is not necessary. At first, the definition of asymptotic

regularity is given, which is a sharp generalization of the counterpart in metric spaces.

Definition 3.1. ([2]) Let (X, d) be a metric space. The mapping T : X → X is said to be

asymptotically regular, if limn→∞ d(Tn+1x, Tnx) = 0 for all x ∈ X.

Definition 3.2. Let (X, d) be a cone metric space over a Banach algebra A. The mapping

T : X → X is said to be asymptotically regular, if for every c ∈ A with c ≫ θ, there is a natural

number N such that for all n ≥ N, x ∈ X, d(Tn+1x, Tnx) ≪ c. That is, {d(Tn+1x, Tnx)} is a

c-sequence for all x ∈ X.

The continuity of the mapping is not necessary in the following theorems.

Theorem 3.3. Let (X, d) be a complete cone metric space over Banach algebra A. Let T :

X → X be an asymptotically regular mapping and satisfy

d(Tx, Ty) ≼ Ad(x, Tx) +Bd(y, Ty) + Cd(x, y), (3.1)

for all x, y ∈ X, where A,B,C ∈ P with r(B) < 1 and r(C) < 1. Then T has a unique fixed

point z ∈ X and for each x ∈ X the iterated sequence {Tnx} converges to z, i.e., T is a Picard

operator.

Proof. Let x0 be an arbitrary point in X and set xn = Txn−1 = Tnx0, n ≥ 1. If there exists an

integer n ∈ N such that xn = xn+1 = Txn, then T must have a fixed point. Now, we assume

that xn ̸= xn+1,∀n ∈ N. By asymptotic regularity of T , {d(xn, xn+1)} is a c-sequence. So for

all m > n, we get

d(xn, xm) ≼ d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)

= d(xn, xn+1) + d(Txn, Txm) + d(xm+1, xm)

≼ d(xn, xn+1) +Ad(xn, xn+1) +Bd(xm, xm+1) + Cd(xn, xm) + d(xm+1, xm).

Since r(C) < 1, (e− C) is invertible. It follows that

d(xn, xm) ≼ (e− C)−1{(e+A)d(xn, xn+1) + (e+B)d(xm, xm+1)}.
From Lemma 1.5, it is obvious that {xn} is a Cauchy sequence in X. Since X is complete,

there exists z ∈ X such that xn → z as n → ∞. Then

d(z, Tz) ≼ d(z, Txn) + d(Txn, T z) ≼ d(z, xn+1) +Ad(xn, Txn) +Bd(z, Tz) + Cd(xn, z),

which means that

d(z, Tz) ≼ (e−B)−1[d(z, xn+1) +Ad(xn, xn+1) + Cd(xn, z)].

Then, the right side is a c-sequence, so z = Tz. Similar to Theorem 2.4, it is easy to prove that

z is unique.

Corollary 3.4. Let (X, d) be a complete cone metric space over Banach algebra A. Let the

mapping T : X → X be an asymptotically regular mapping and satisfy

d(Tx, Ty) ≼ M [d(x, Tx) + d(y, Ty) + d(x, y)],
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for all x, y ∈ X, where M ∈ P with r(M) < 1 . Then T has a unique fixed point z ∈ X and

for each x ∈ X the iterated sequence {Tnx} converges to z, i.e., T is a Picard operator.

Now, we show that if T is orbitally continuous, then the condition r(B) < 1 can be deleted.

Theorem 3.5. Let (X, d) be a complete cone metric space over Banach algebra A. Let T :

X → X be an asymptotically regular mapping and satisfy

d(Tx, Ty) ≼ Ad(x, Tx) +Bd(y, Ty) + Cd(x, y), (3.2)

for all x, y ∈ X , where A,B,C ∈ P with r(C) < 1. If T is orbitally continuous, then T has a

unique fixed point z ∈ X and for each x ∈ X the iterated sequence {Tnx} converges to z, i.e.,

T is a Picard operator.

Proof. From Theorem 3.3, we know that there exists z ∈ X such that xn → z as n → ∞.

Because T is orbitally continuous, xn+1 = Txn → Tz as n → ∞. Then z = Tz. Similar to

Theorem 3.3, the conclusion is true.

Corollary 3.6. Let (X, d) be a complete cone metric space over Banach algebra A. Let T :

X → X be an asymptotically regular mapping and satisfy

d(Tx, Ty) ≼ K[d(x, Tx) + d(y, Ty)] +Md(x, y)

for all x, y ∈ X, where K,M ∈ P with r(M) < 1. If T is orbitally continuous, then T has a

unique fixed point z ∈ X and for each x ∈ X the iterated sequence {Tnx} converges to z, i.e.,

T is a Picard operator.

Remark 3.7. Theorem 2.4 and Theorem 2.5 greatly improve Theorem 2.3 in [7]. The assump-

tions of compactness and continuity considered in Theorem 2.3 of [7] are relaxed by bounded

compactness or T -orbital compactness and T -orbital continuity, respectively. Corollary 2.6 and

Corollary 2.7 mainly improve and generalize Theorem 2.2 in [7] and Theorem 2.1, Theorem 2.2

in [6]. Corollary 3.4 is a generalization of Theorem 3.1, 3.3 in [7]. Similarly, Corollary 3.6 is

an extension of Theorem 2.6 in [9] and Theorem 2.1 in [1]. Due to the non-equivalence of cone

metric spaces over Banach algebras and metric spaces, the conclusions in this paper are focused

on fixed point theorems in cone metric spaces over Banach algebras instead of theorems only

in usual metric spaces (see [1, 6, 7, 9, 13]) or cone metric spaces (see [12, 18]), which are more

meaningful. Moreover, the completeness of (X, d) is deleted in Theorem 2.4, 2.5 and Corollary

2.6, 2.7, which is quite different from the corresponding results in [12, 16].

Example 3.8. Let X = [0, 1] and A be a set of all real valued function on [0, 1] which also have

continuous derivates on [0, 1] with the norm ∥x∥ = ∥x∥∞ + ∥x′∥∞ and the usual multiplication.

Then A is a Banach algebra with a unit e = 1. Let P = {x(t) ∈ A : x(t) ≥ 0, t ∈ [0, 1]}. It

is clear that P is a non-normal cone. Define the cone metric d : X ×X → A by d(x, y)(t) =

|x− y| · 2t ∈ P, ∀x, y ∈ X. It is obviously seen that (X, d) is a complete cone metric space over

Banach algebra A. Take A(t) = 2t+ 3, B(t) = 3t+ 4 and C(t) = 1
3 t+

1
3 . We observe that

Cn(t) = (
1

3
t+

1

3
)n, (Cn(t))′ =

n

3
(
1

3
t+

1

3
)n−1,

we have (t=1)

∥Cn∥ = ∥Cn∥∞ + ∥(Cn)′∥∞ = (
2

3
)n +

n

3
(
2

3
)n−1 =

n

3
(
2

3
)n−1(

3

n
· 2
3
+ 1) =

n

3
(
2

3
)n−1(1 +

2

n
).
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Further, we get

r(C) = lim
n→∞

∥Cn∥ 1
n = lim

n→∞
(
n

3
)

1
n (

2

3
)

n−1
n (1 +

2

n
)

1
n =

2

3
.

Thus, it is easy to obtain

r(C) =
2

3
< 1.

Furthermore, define the mapping T : X → X by:

Tx =

{
x
4 sin x

4 , x ∈ Q ∩X;
x
5 , x ∈ (R \Q) ∩X.

Obviously, T is asymptotically regular but not continuous. Next, we will prove that (3.2) is

satisfied. There are the following several cases.

(1) If x, y ∈ Q ∩X, then we have

d(Tx, Ty)(t) = |x
4
sin

x

4
− y

4
sin

y

4
| · 2t

≼ (
1

16
x+

1

4
)|x− y| · 2t

≼ 5

16
|x− y| · 2t

≼ (2t+ 3)|x− x

4
sin

x

4
| · 2t + (3t+ 4)|y − y

4
sin

y

4
| · 2t + (

1

3
t+

1

3
)|x− y| · 2t

= Ad(x, Tx)(t) +Bd(y, Ty)(t) + Cd(x, y)(t).

(2) If x, y ∈ (R \Q) ∩X, then we have

d(Tx, Ty)(t) = |x
5
− y

5
| · 2t

≼ (2t+ 3)|x− x

5
| · 2t + (3t+ 4)|y − y

5
| · 2t + (

1

3
t+

1

3
)|x− y| · 2t

= Ad(x, Tx)(t) +Bd(y, Ty)(t) + Cd(x, y)(t).

(3) If x ∈ Q ∩X, y ∈ (R \Q) ∩X, then we have

d(Tx, Ty)(t) = |x
4
sin

x

4
− y

5
| · 2t

= |y
5
− x

4
sin

x

4
| · 2t

≼ |y
5
| · 2t

≼ (2t+ 3)|x− x

4
sin

x

4
| · 2t + (3t+ 4)|y − y

5
| · 2t + (

1

3
t+

1

3
)|x− y| · 2t

= Ad(x, Tx)(t) +Bd(y, Ty)(t) + Cd(x, y)(t).

Similarly, it is not difficult to prove that d(Tx, Ty)(t) ≼ Ad(x, Tx)(t)+Bd(y, Ty)(t)+Cd(x, y)(t)

when x ∈ (R \ Q) ∩X, y ∈ Q ∩X. Therefore, all conditions of Theorem 3.5 are satisfied and

consequently T has a unique fixed point 0 in X.

§4 Completeness and fixed point

Now, we prove an important theorem that the completeness in cone metric spaces over

Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in
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X.

Theorem 4.1. Let (X, d) be a cone metric space over Banach algebra A with a unit e. Let P

be a normal and strongly minihedral cone. If every self-mapping T satisfying

d(Tx, Ty) ≺ e

2
{d(x, Tx) + d(y, Ty)} (4.1)

for all x, y ∈ X with x ̸= y, has a unique fixed point, then (X, d) must be a complete cone

metric space over Banach algebra A.

Proof. We prove it by contradiction. Assume that (X, d) is not complete. Then, there must be

a Cauchy sequence {xn} in X, which is not convergent. If there exists a convergent subsequence

{xnk
} of {xn} such that xnk

→ z ∈ X, we have

d(xm, z) ≼ d(xm, xnk
) + d(xnk

, z)

for all m ≥ nk. It is a c-sequence while {d(xm, xnk
)} and {d(xnk

, z)} are c-sequences. Thus, we

can suppose that all terms of the sequence {xn} are distinct. Let M = {xn : n ∈ N}. Since the

sequence {xn} does not converge in X, we obtain d(x,M) ≻ θ for all x ∈ X −M . Let x ∈ X

be an arbitrary point. If x ∈ X −M , then there is an integer nx ∈ N such that

d(xm, xnx) ≺
e

2
d(x,M) ≼ e

2
d(x, xn),

for all m ≥ nx and arbitrary n ∈ N. That is
d(xm, xnx) ≺

e

2
d(x, xn), ∀m ≥ nx and ∀n ∈ N. (4.2)

Suppose x′ ∈ M , then x′ = xn0 for some n0 ∈ N. As {xn} is a Cauchy sequence, we can find

some n′
0 ∈ N such that

d(xm, xn′
0
) ≺ e

2
d(xn′

0
, xn0), ∀m ≥ n′

0 > n0. (4.3)

Now, we define T : X → X by

Tx =

{
xnx , if x ∈ X −M ;

xn′
0
, if x ∈ M and x = xn0 .

Set x, y ∈ X be arbitrary elements with x ̸= y. There are three cases for the proof.

Case 1. If x, y ∈ X − M , then Tx = xnx and Ty = xny . Without loss of generality, we

assume that ny ≥ nx. By (4.2), we get

d(Tx, Ty) = d(xnx , xny ) ≺
e

2
d(x, xnx) =

e

2
d(x, Tx).

That is, d(Tx, Ty) ≺ e
2{d(x, Tx) + d(y, Ty)}.

Case 2. If x, y ∈ M , then x = xn0 and y = xm0 for some n0,m0 ∈ N. Then Tx = xn′
0
and

Ty = xm′
0
. Without loss of generality, we assume that m′

0 ≥ n′
0. Then, by (4.3), we have

d(Tx, Ty) = d(xm′
0
, xn′

0
) ≺ e

2
d(xn′

0
, xn0) =

e

2
d(Tx, x),

which implies that d(Tx, Ty) ≺ e
2{d(x, Tx) + d(y, Ty)}.

Case 3. If x ∈ X − M,y ∈ M , then y = xn0 for some n0 ∈ N. Therefore Tx = xnx and

Ty = xn′
0
. If n′

0 ≥ nx, from (4.2), we obtain

d(Tx, Ty) = d(xnx , xn′
0
) = d(xn′

0
, xnx) ≺

e

2
d(x, xnx) =

e

2
d(x, Tx),

which implies that d(Tx, Ty) ≺ e
2{d(x, Tx) + d(y, Ty)}. If nx ≥ n′

0, from (4.3), we deduce

d(Tx, Ty) = d(xnx , xn′
0
) ≺ e

2
d(xn′

0
, xn0) =

e

2
d(y, Ty),

which also gives that d(Tx, Ty) ≺ e
2{d(x, Tx)+d(y, Ty)}. Thus, for all x, y ∈ X with x ̸= y, we
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have d(Tx, Ty) ≺ e
2{d(x, Tx)+d(y, Ty)}. Therefore, T is a generalized Kannan-type contraction

mapping which has no fixed point in X. It is a contradiction. So the assumption does not hold

and (X, d) must be a complete cone metric space over Banach algebra A. Then, the conclusion

is true.

Remark 4.2. From the proof of Theorem 4.1, it is clear that the inequality (4.1) can be

replaced by the following condition: d(Tx, Ty) ≼ k{d(x, Tx) + d(y, Ty)}, for all x, y ∈ X and a

fixed k ∈ P .
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[10] H Huang, G Deng, S Radenović. Some topological properties and fixed point results in cone

metric spaces over Banach algebras, Positivity, 2019, 23: 21-34.
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