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Abstract. Accurate pancreas segmentation is critical for the diagnosis and management of

diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly vari-

ations in volume, shape and location. In recent years, coarse-to-fine methods have been widely

used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,

cascaded methods could be computationally intensive and the refined results are significantly

dependent on the performance of its coarse segmentation results. To balance the segmentation

accuracy and computational efficiency, we propose a Discriminative Feature Attention Network

for pancreas segmentation, to effectively highlight pancreas features and improve segmentation

accuracy without explicit pancreas location. The final segmentation is obtained by applying a

simple yet effective post-processing step. Two experiments on both public NIH pancreas CT

dataset and abdominal BTCV multi-organ dataset are individually conducted to show the ef-

fectiveness of our method for 2D pancreas segmentation. We obtained average Dice Similarity

Coefficient (DSC) of 82.82±6.09%, average Jaccard Index (JI) of 71.13± 8.30% and average

Symmetric Average Surface Distance (ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared

to the existing deep learning-based pancreas segmentation methods, our experimental results

achieve the best average DSC and JI value.

§1 Introduction

Organ segmentation usually refers to the process of extracting specific target organs from

medical images. Accurate organ segmentation is a prerequisite for organ measurement, surgical

guidance, and radiotherapy effect evaluation in computer-aided diagnosis technology [36]. The
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pancreas is a soft organ located on the periphery of the abdomen, which lacks a fixed shape and is

hidden behind the peritoneum [10]. Pancreas-related diseases are relatively hidden and difficult

to detect and cure, especially for pancreatic cancers, which is still accompanied by higher

mortality and lower postoperative survival rate [32]. In clinical practice, the pancreas volume

is manually delineated by radiologists for the diagnose of pancreas disease and quantitative

assessment. For example, the volume of pancreas enables the physicians to estimate endocrine

and exocrine pancreatic functions [1]. However, manual annotation is a highly time-consuming

and subject to operators. Hence, an accurate and robust automatic segmentation method of

pancreas is highly demanded in the clinical management of pancreas diseases, which can allow

to alleviate the workload of radiologists and improve the consistency of pancreas segmentation.

It is challenging to accurate segmentation of pancreas in CT images for the following reasons.

First, the intensity distribution between the pancreas and its surrounding structural tissues

is very close. As shown in Fig 1, the pancreas boundaries are difficult to distinguish even

after contrast adjustments. Second, the pancreas is a small and soft abdominal organ with

highly irregular shape, leading to severe class imbalance and difficulty in designing a method

to adaptively cover all possible pancreas variabilities [10]. Third, it can be seen from Fig 1 that

discontinuities exist in some pancreas slices, which is prone to over-segment and under-segment.

(a) Case #1 (b) Case #7 (c) Case #81

Figure 1. Examples of variations in appearance, shape and size of the pancreas. (a)-(c) de-
note example axial CT slice from three different patients and corresponding 3D ground truth,
respectively.

To address the aforementioned challenges, many pancreas segmentation works have been

proposed over the past few years, which can be categorized into two types: top-down and

bottom-up methods [11]. In the top-down methods, segmentation is performed by multi-atlas

registration and label fusion (MALF) [9, 16, 26, 31]. To reduce the misselection of similar

atlas caused by CT intensity, Karasawa et al. proposed a new atlas selection strategy based

on vessel structure around the pancreatic tissue for pancreas segmentation [9]. Experimental

results show the atlas selection based on vessel structure is much more effective in selecting

atlases with similar pancreatic shape and position. However, it is not trivial to select atlases

that is general enough to cover all possible pancreas variabilities due to the highly irregular
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shape and poor contrast with spatially adjacent abdominal tissues.

Recently, Dense prediction based on deep convolutional neural networks have achieved great

success in computer vision and medical imaging, such as FCN [15] and Deeporgan [19], which

also boost the pancreas segmentation. Since the pancreas often occupies a small proportion of

the whole abdomen, most pancreas segmentation methods rely on multi-stage [2, 12], cascaded

CNNs [6, 20, 21, 38], in order to improve the segmentation accuracy. Roth et al. firstly proposed

a bottom-up, coarse-to-fine approach for pancreas CT segmentation, utilizing multi-level deep

ConvNet model to learn robust pancreas features representation and effectively prune the coarse

pancreas over-segmentation [19]. This framework is further improved by the holistically-nested

segmentation networks [20, 21]. Zhou et al. proposed a 2D fixed-point models based on FCN-

8s [38], in which coarse segmentation provides pancreas location for further fine-scaled models

iteratively. Asaturyan et al. presented an approach for automatic pancreas segmentation based

on a hierarchical pooling of information by classifying extracted image patches, superpixels and

intensity distributions as pancreatic tissue or otherwise [2]. Li et al. proposed a new CAD

model for pancreas cancer on PET/CT images based on a gray interval mapping (GIP) method

and dual threshold principal component analysis [12]. Although, the multi-stage methods have

demonstrated significant improvements over the traditional methods, it is complex to train and

lack of generalization due to the presence of multiple learning stages [25].

Attention-based image classification [27] and semantic segmentation architectures [34] have

recently witnessed increased focus. Attention mechanisms aim at emphasizing important infor-

mation and filtering irrelevant information. Hu et al. proposed a compact module to explicitly

explore the relationship between channels. In their squeeze-and-excitation module, they per-

formed global average pooling to obtain channel-wise feature response vector [7]. Liu et al.

proposed an adaptively spatial feature fusion (ASFF) [14], utilizing spatial attention to opti-

mize the feature fusion process. Wang et al. presented non-local operations [28] to capture

long-range dependencies, which perform well in modelling contextual information. Woo et al.

proposed two simple and effective attention modules based on channel-wise and spatial-wise

attention, named Convolutional Block Attention Module (CBAM) [30] and Bottleneck Atten-

tion Module (BAM) [17], which can learn to selectively focus on the salient features in channel

and spatial dimensions, and then recalibrate the intermediate features expression effectively.

Oktay et al. proposed a 3D Attention U-Net architecture for abdominal organs segmentation,

by integrating additive gated attention module in the skip connections of the decoder part of

U-Net, which could implicitly learn to focus on more discriminant regions of the image and

suppress irrelevant information [24]. While 3D deep networks [22, 23, 33] can directly leverage

the inherent spatial information between slices, they are more prone to overfit, especially for

small datasets. In addition, large computational burden of 3D convolutional filters limit the

depth and receptive field of networks, which are two key factors for the improvement of network

performance.

Recently, the Discriminative Feature Network (DFN) [35] was proposed to tackle the intra-

class inconsistency and inter-class indistinction issues in most semantic segmentation methods.

Automatic pancreas segmentation is a semantic segmentation task. To address the challenges of

fuzzy boundaries and large shape variations in the pancreas segmentation, we design a Modified
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Discriminative Feature Attention Network (MDFAN) based on DFN to explore the strengths

of attention mechanism for the pancreas segmentation.

In summary, this work has the following contributions:

• We design a Discriminative Feature Attention Network to simultaneously address the

intra-class inconsistency and inter-class indistinction issues of the pancreas segmentation.

Quantitative evaluation on two publicly available datasets validates the effectiveness of

the proposed method.

• We apply attention mechanism in our network, which can enhance the discriminative

information of the pancreas structures by concentrating attention close to the pancreas,

which also contributes to remove the explicit pancreas location module or network.

• We propose a lightweight Improved Refinement Residual Block (IRRB), which can model

the importance of the spatial positions within each feature map and aggregate contextual

information over local features.

• We propose a simple but effective post-processing method to refine the segmentation

results of the proposed network.

To the best of our knowledge, this is the first attempt to segment pancreas under the

guidance of attention mechanism in a 2D single-step training network with a simple post-

processing.

§2 Materials and Methods

In this section, we propose a Discriminative Feature Attention Network for the pancreas

segmentation. Unlike cascaded methods–pancreas localization and pancreas segmentation, the

proposed network aims to utilize the attention mechanism to adaptively locate the pancreas

and improve the performance and efficiency of pancreas segmentation. Our proposed method is

based on the DFN proposed in [35], we utilized the modified DFN as our baseline by replacing

the pretrained residual block in the backbone ResNet-101 with the pretrained dense block in

the DenseNet-121, aiming at enhancing feature propagation and encouraging feature reuse. We

call the modified DFN as MDFN.

2.1 Network architecture

Fig 2 shows that the proposed network has three components: one shared attention-based

feature extraction branch, Smooth sub-network and Border sub-network. To improve the capa-

bilities of feature extraction, the four denseblocks and three transitions (denseblock1 ∼ dense-

block4, transtion1 ∼ transition3) from the pre-trained DenseNet121 network [5], along with

BAM [17] are utilized to enhance the learning of features and obtain discriminative hierarchical

features by exploiting spatial-wise and channel-wise independence. BAM is designed to explicit-

ly learn spatial (where) and channel-wise (what) attention separately. As shown in Fig 3, BAM

composes of spatial attention branch and channel attention branch. For the given input feature
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map F ∈ RC×H×W , BAM infers a spatial-and-channel attention map M(F) ∈ RC×H×W . The

refined feature map F ′
is computed as:

F
′
= F + F ⊗M(F) (1)

where ⊗ denotes element-wise multiplication. It can be observed that the BAM is placed at

each bottleneck of the proposed model to highlight features from different layers and select

relevant and useful features.

Figure 2. An overview of the proposed network (MDFAN II). The middle part of MDFAN II is
the feature extraction stage based on the DenseNet121 and BAM. Here, [’dense-1’, ’dense-
2’, ’dense-3’, ’dense-4’], [’trans-1’, ’trans-2’, ’trans-3’] denote (denseblock1 ∼ denseblock4,
transtion1 ∼ transition3) from the pre-trained DenseNet121 network. The top part of the
model is the structure of smooth sub-network, dealing with the intra-class inconsistency issue,
while the down part of the model is the border sub-network, resorting to make the bilateral
features of boundary distinguishable.

As shown in the top of Fig 2, the Smooth sub-network involves the Improved Refinement

Residual Block (IRRB) and Channel Attention Block (CAB). CAB aims to enhance seman-

tic consistency of the pancreas, it infuses high-level semantic information to low-level feature

maps by learning the global semantic information relationship on different channel images, and

generate discriminative feature representations (as shown in Fig 4). The goal of the Smooth

sub-network is to exploit the high-level features with strong consistency to guide the low-level

features prediction for intra-class consistency and retain boundary information. Specifically,

the channel attention block and the proposed improved refinement residual block are utilized

to recalibrate the feature maps separately along channel and space according to the response

of feature maps. The combination of CAB and IRRB adaptively reassign large weights to high

activation regions and useful channels to enhance the intra-class consistency. However, it is still

not trivial to delineate pancreas boundary due to the fuzzy boundaries of pancreas. To differ-

entiate the features beside pancreas boundary, we employed a bottom-up Border sub-network
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[35], which utilized the pancreas semantic boundary of the existing target labels to supervise

and recognize the shape of pancreas. Specifically, the feature maps obtained from lower stages

contain spatial details information, while those generated by higher stages with larger reception

fields contain more semantic context cues. The proposed IRRB can select more discriminative

spatial features to gradually help the border sub-network restore boundaries and enlarge the

edge discrimination, thus reduce the impact of inter-class indistinction.

Figure 3. Detailed BAM architecture. Given the intermediate feature map, the module com-
putes the BAM attention map through the channel attention branch and spatial attention
branch.

Figure 4. The structure of Channel Attention Block that utilizes channel attention to guide the
selection of low-level features.

2.2 Improved Refinement Residual Block

Spatial attention mechanisms is widely used in classification and semantic segmentation

[27], [34]. The goal of spatial attention is to assign large weight to target-related locations and
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aggregate contextual information within each feature map. Yu et al. [35] proposed a Refinement

Residual Block (RRB), which could enhance the recognition ability of each stage and refine the

feature maps, as shown in Fig 5.

Figure 5. The structure of Refinement Residual Block.

However, we observed that the original smooth sub-network and border sub-network in [35]

did not consider the spatial correlation within feature maps, which enlighten me to introduce

spatial attention to the Refinement Residual Block, termed Improved Refinement Residual

Block (IRRB). Fig 6 illustrates the architecture of the proposed IRRB. The IRRB consists of

continuous convolution, batch normalization and ReLu layers. To exploit spatial-wise interde-

pendencies, we first utilized two 1 × 1 convolution layers to gradually reduce the channels of

input feature maps to 1 before sigmoid operation. Then, one 3 × 3 convolution, followed by

BN and ReLu, as well as another 3 × 3 convolution are utilized to increase the receptive field

and improve the awareness of contextual information within feature maps, which is helpful for

the highly-varied pancreas size and position. To avoid information loss after spatial attention

and speed up convergence, the residual connection is employed. In short, the output feature

map of IRRB can be formulated as:

S(F) = ReLu(H(σ(g1×1(f1×1(F))) ∗ F) + (f1×1(F))) (2)

where σ denotes a sigmoid function, f1×1 and g1×1 are two convolution operation with the

filter size of 1 × 1, H is an operation, consisting of two 3×3 convolution, BN and ReLu, F is

an intermediate feature map. The IRRB learns a self-attention mask to enhance the targeted

regions within feature maps, and then helps the network to emphasize the regions, which are

more relevant to the semantic classes. For the smooth sub-network, the IRRB can attend to

relevant spatial locations in the feature maps of low-level layers and gradually recover the spatial

details in a top-down manner. For the bottom-up border sub-network, we gradually fusion

spatial detailed features from low- to high-levels by explicitly modeling spatial-wise attention at

various levels, which strengthens the semantic discrimination of high-level features with details,

thus boost edge classification. Fig 7 qualitatively demonstrates that our proposed IRRB can

effectively capture more detailed pancreatic features information during the decoding stage.
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Figure 6. The structure of Improved Refinement Residual Block.

2.3 Loss function

We employed a hybrid loss based on the Dice loss and Focal loss [13] for pancreas segmenta-

tion. The aim of Dice loss is to learn the imbalanced class distribution of Smooth sub-network,

which is defined as:

LDice = 1− 2 ∗
∑N

k=1 pkgk + ϵ∑N
k=1 pk + gk + ϵ

(3)

Because pancreas boundaries occupy a very small region of the whole CT scan and pixels on the

boundary are easy to misclassify. We adopt the Focal loss, a dynamically scaled cross entropy

loss, which can adaptively reduce the contribution of easy examples during training and focus

the Border sub-network on hard examples, it is defined as:

LFocal = − 1

N

N∑
k=1

gk(1− pk)
γ logpk (4)

In all experiments, we use the Dice loss in conjunction with the Focal loss:

L = LDice + λLFocal (5)

where gk ∈ {0, 1} and pk ∈ [0, 1] denote the manual annotations and automatic segmentations,

respectively. N denotes the total number of pixels in an image and ϵ provides numerical stability

to prevent division by zero. In our experiments, we trained all models with λ = 0.025 to balance

the boundary Focal loss and the regional Dice loss and set γ = 2.0.

2.4 Post-processing

Many prior studies [8, 18, 37] have demonstrated that post-processing is an efficient way to

improve the segmentation performance by refining the results of CNNs. Conditional random

field (CRF) algorithm is widely used as a post-processing step in [8, 37]. In this work, we

present a simple yet effective post-processing method to refine the predictions of the proposed

network. Our post-processing is based on connected component operation. Table 1 shows that

the MDFN II can produce relatively good pancreas predictions. However, it is difficult to avoid

over-segmentation due to the low contrast between pancreas and the complex surrounding tis-
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sues. Moreover, the pancreas only occupies a small part of the whole abdomen and has irregular

shape, which further increases the possibility of false segmentation. In order to separate the

over-segmented regions, which are weakly connected with pancreas, connected component algo-

rithm is utilized to to keep the largest connected component and reduce the false positives in the

predictions. Specifically, the pancreas segmentations from the MDFN II were post-processed

by eliminating connected component comprising <20% of the total label volume. As shown

in Table 1, the proposed post-processing significantly improves the average DSC and ASD of

the pancreas. Here, we termed MDFAN II with post-processing as MDFAN III. The average

inference time for post-processing per volume is 1.68 seconds.

2.5 Experimental setup

2.5.1 Data pre-processing

To quantitatively evaluate the effectiveness and generalization of the proposed model, two

different abdominal CT datasets are used:

(1) A public pancreas dataset, which contains 82 contrast-enhanced abdominal CT volumes,

is acquired at the National Institutes of Health Clinical Center from pre-nephrectomy healthy

kidney donors or patients with neither major abdominal pathologies nor pancreatic cancer

lesions [16]. The resolution of each CT volume is 512 × 512 × L, where L ∈ [181, 466] is the

number of sampling slices along the long axis of the body. The slice thickness varies from 0.5

mm to 1.0 mm.

(2) The ’Beyond the Cranial Vault’ (BTCV) segmentation challenge dataset

(https://www.synapse.org/#!Synapse:syn3193805/wiki/89480) consists of 30 training da-

ta, which have annotations of all abdominal organs except duodenum, and 20 unseen testing

data. The in-plane resolution of BTCV dataset varies from 0.54 mm to 0.98 mm and the slice

thickness ranges from 2.5 mm to 5.0 mm. 17 patients from the 20 unseen testing data have

manual annotations of eight abdominal organs, which is provided by Gibson et al.[4]. To quan-

titatively assess the generalization of the proposed model, we utilized 30 training data to train

our proposed model, and then test the segmentation performance on the 17 testing data with

annotations.

The image intensity values in a CT slice of both datasets were clipped to [−100, 240] HU to

filter out irrelevant information, and further normalized with zero mean and unit variance. It

is important to note only axial slices are used to train our models.

2.5.2 Evaluation metrics

Five metrics including the Dice Similarity Coefficient (DSC), Jaccard index (JI), Precision,

Recall and Symmetric Average Surface Distance (ASD) are used to quantitatively evaluate the

segmentation performance of different methods.

• Dice Similarity Coefficient (DSC) and Jaccard index (JI) measure the volumetric overlap

degree between manually labeled ground truths and network predictions. They are defined
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as [3]:

DSC =
2 ∥ Vgt ∩ Vseg ∥
∥ Vgt ∥ + ∥ Vseg ∥

(6)

JI =
∥ Vgt ∩ Vseg ∥
∥ Vgt ∪ Vseg ∥

(7)

• Precision measures the proportion of truly positive voxels in the predictions. It is defined

as:

Precision =
∥ Vgt ∩ Vseg ∥

∥ Vseg ∥
(8)

• Recall measures the proportion of truly positive voxels in the manually labeled ground

truths. It is defined as:

Recall =
∥ Vgt ∩ Vseg ∥

∥ Vgt ∥
(9)

• Average Surface Distance (ASD) measures the average distance between the surface of

manual and automatic segmentations [29]. It is defined as:

ASD =
(
∑

z∈Sseg
d(z, Sgt) +

∑
u∈Sgt

d(u, Sseg))

∥ Sgt ∥ + ∥ Sseg ∥
(10)

where Vgt, Vseg represent the voxel sets of manual annotations and automatic segmentations,

respectively, Sgt and Sseg are the corresponding surface voxel sets of Vgt and Vseg. d(z, Sgt)

denotes the minimum Euclidean distance of voxel z ∈ Sseg to all voxels in Sgt. For DSC, JI and

ASD metrics, the experimental results are all reported as the mean with standard deviation

over all testing samples. For precision and recall metrics, we reported the mean score over all

testing samples.

2.5.3 Implementation

We implement our method based on the PyTorch platform. An Adam optimizer with initial

learning rate of 0.0001 is used to train all models. For the NIH dataset, we trained our proposed

method for 16 epochs under the standard 4-fold cross-validation. For the 47 patients from BTCV

segmentation dataset, we utilized 30 training data to train the proposed method for 50 epochs,

and tested the model performance on the remaining 17 testing data. For both datasets, the

batch size is set to 4 and the learning rate is reduced by a factor of 10 every 10 epochs. All

models are trained with a NVIDIA Tesla P40 GPU of 24G memory for acceleration. During

training, each input image is randomly rotated (r ∈ [−45◦, 45◦]) and scaled (s ∈ [0.9, 1.1])

(with probability 0.5) in order to improve the generalization performance on the validation-set.

The reason why we set 50 epochs for the BTCV subset is that the number of training data is

smaller and the images resolution is lower, which requires more epochs to converge.



HUANG Mei-xiang, et al. Learning a Discriminative Feature Attention Network for... 83

§3 Experimental results

To evaluate the proposed method, we conducted two experiments on the NIH dataset [20]

and the ’Beyond the Cranial Vault’ (BTCV) segmentation challenge dataset. Experimental re-

sults demonstrate that the proposed method shows consistent performance on the two datasets.

3.1 Segmentation results on the NIH dataset

To assess the effectiveness of the Bottleneck Attention Block (BAM) and the proposed Im-

proved Refinement Residual Block (IRRB) in our method, we compared three models-MDFN,

MDFAN I, and MDFAN II. For fair comparisons, we kept model structure and settings un-

changed with only blocks being replaced or added. Fig 7 qualitatively shows the improvements

brought by the Bottleneck Attention Block (BAM) and the proposed Improved Refinement

Residual Block (IRRB). It is easy to note that our MDFAN II does a better job in the pancreas

localization and classification. Specifically, the comparison between third column and fourth

column in Fig 7 demonstrates the Bottleneck Attention Module (BAM) can force network to

pay more attention on the pancreas regions and extract more pancreas information. Similarly,

the comparison between the fourth column and the fifth column validates our proposed Im-

proved Refinement Residual Block( IRRB) can encode a wider range of contextual information

into local features, which enhances pancreas features recognition capability.

The quantitative comparisons of the Precision, Recall, DSC, JI and ASD of different models

are reported in Table 1. The MDFAN II outperforms the MDFN and MDFAN I with improve-

ments of average DSC up to 2.03% and 1.5%. It is worth noting our proposed MDFAN II

reports the highest average Recall with 83.54%, which demonstrates the proposed IRRB can

effectively filter the features spatially to get accurate saliency maps and aggregate spatial in-

formation within feature maps. Although MDFAN II can well recognize pancreas and extract

more detailed pancreas information, there inevitably exist over-segmentation. To handle the

over-segmentation problem, we utilized a simple connected component detection algorithm as

post-processing to refine the pancreas segmentations from MDFAN II. The experimental results

in Table 1 show the post-processing greatly improves the mean Precision, DSC, JI and ASD of

MDFAN II by 3.37%,1.6%, 2.3% and 1.9 mm, respectively. This is a result of balanced preci-

sion and recall scores, which denotes a good quality segmentation. Compared to the baseline

MDFN, our final model improves the average DSC by 3.63%. Additionally, our final model

takes about 1.864 seconds for each 3D scan, which consists of 0.184 seconds on the end-to-

end prediction by MDFAN II and 1.68 seconds on post-processing. Fig 8 visualizes the 3D

overlap of segmentations from different models with respect to the manually labelled ground

truths. Visual inspection shows MDFAN II can capture more pancreas details and enhance

the pancreas features response, and MDFAN II with post-processing can effectively prune the

over-segmentation regions to increase the average DSC and ASD measurements.

3.2 Segmentation results on the BTCV dataset

Since the NIH dataset is a widely used public dataset in previous pancreas segmentation

works, to enable fair comparisons with the existing pancreas segmentation methods, the same

4-fold cross-validation was employed for evaluating the performance of the proposed method.
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(a) Image (b) Label (c) MDFN (d) MDFAN I (e) MDFAN II

Figure 7. Examples of segmentation results of different models. Every row denotes a sample
CT axial slice. (a) Image. (b) Label. (c)-(e) denote the overlap between the labels and
segmentations of different models (Blue denotes segmentation results while red denotes label).

Table 1. Quantitative comparison of segmentation results of different models on the NIH dataset
based on Precision, Recall, DSC, JI (%) and ASD (mm) (The best results are marked in bold).

Method Precision Recall DSC JI ASD

MDFN 78.69 80.82 79.19 ± 7.0 66.1 ± 9.05 3.38 ± 1.67
MDFAN I 79.49 80.9 79.72 ± 6.45 66.78 ± 8.6 3.33 ± 1.56
MDFAN II 79.79 83.54 81.22 ± 6.12 68.83 ± 8.21 3.59 ± 1.59
MDFAN III 83.16 83.30 82.82 ± 6.09 71.13 ± 8.30 1.69± 0.83

However, 4-fold cross-validation may generate relatively ideal results. To further verify the

effectiveness and generalization of the proposed model, we conducted another experiment on the

47 patients from the ’Beyond the Cranial Vault’ (BTCV) segmentation challenge. As shown in

Table 2, compared with the baseline MDFN, the MDFN II improve the segmentation accuracy

by 1.59%, 1.96% and 2.31 mm in terms of average DSC, JI and ASD, which demonstrates

the attention mechanism can enhance the feature representations and improve segmentation

accuracy. Furthermore, we adopted the proposed post-processing to refine the segmentation

results from MDFAN II, in contrast to the baseline MDFN, the results significantly improved

to 79.34% and 1.15 mm in terms of average DSC and average ASD, yielding increase of 5.87%

and 5.22 mm respectively, which demonstrates the proposed post-processing can effectively

prune the false positive regions and then achieve more robust performance. Above all, although

the BTCV challenge dataset is smaller and has much lower image resolution than the NIH

dataset, we still achieves comparable performance. Specifically, the experimental results on

the BTCV dataset outperform the multi-stage models [2, 12] and cascaded models [19, 20, 21],
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which utilized the explicit location modules or networks. In addition, our pancreas segmentation

results on the BTCV challenge dataset achieve rank three in the Abdomen Leaderboard (https:

//www.synapse.org/#!Synapse:syn3193805/wiki/217785), which further demonstrates the

effectiveness of the proposed method.

Figure 8. Examples of 3D fusion maps between predictions from different models and the
ground truths, showing MDFAN II can capture more detailed information of pancreas, and
post-processing helps to prune the over-segmentation regions. The red denotes the ground
truths, the blue denotes network predictions.

Table 2. Quantitative comparison of different models on the BTCV subset using DSC, JI (%)
and ASD (mm) (The best results are marked in bold).

Method DSC JI ASD

MDFN 73.47 ± 6.46 58.48 ± 8.33 6.37± 3.37
MDFAN I 74.81 ± 6.76 60.24 ± 8.85 4.50 ± 2.91
MDFAN II 75.06 ± 5.84 60.44 ± 7.64 4.06± 1.53
MDFAN III 79.34 ± 4.80 66.02 ± 6.66 1.15± 0.48

3.3 Comparison with other state-of-the-art methods

We compared the final MDFAN III (i.e. MDFAN II with post-processing) with seven state-

of-the-art pancreas segmentation methods [2, 12, 19, 20, 21, 24, 38]. To ensure fair comparisons,

all methods were implemented on the NIH dataset. Note that the experimental results of other

seven methods were obtained directly from their corresponding literatures. As shown in Table

3, our method achieves the average DSC of 82.82% and average JI of 71.13%, which outperforms

all comparison methods. Despite the segmentation performance, the proposed method is more

efficient than most comparison methods. Specifically, [2, 12, 19, 20, 21, 38] are multi-stage,



86 Appl. Math. J. Chinese Univ. Vol. 37, No. 1

cascaded methods, which perform pancreas localization and pixel-wise classification separately,

leading to low computation efficiency and generalizability. In addition, different from our simple

post-processing, [20, 21] both rely on post-processing with random forest to further refine

CNN’s outputs. Overall, the experimental results show that our method has advantages over

the coarse-to-fine methods [19, 20, 21, 38], multi-level method [2, 12]. In particular, compared

to 3D method [24], our proposed method achieved slightly better segmentation performance in

average DSC, which is a good proof of the effectiveness of our proposed MDFAN III.

Table 3. Comparison of the DSC and JI results (%) with the state-of-the-art pancreas segmen-
tation methods on the NIH dataset (The best results are marked in bold).

Method Min DSC Max DSC Mean DSC Mean JI Protocol

Roth et al. [19] 23.99 86.29 71.42±10.11 N/A CV-4
Roth et al. [20] 34.11 88.65 78.01±8.20 N/A CV-4
Roth et al. [21] 50.69 88.96 81.27±6.27 68.87±8.12 CV-4
Li et al. [12] N/A N/A 78.9 65.4 CV-10
Asaturyan et al. [2] 72.8 86.0 79.3±4.4 65.7 CV-4
Zhou et al. [38] 62.43 90.85 82.37±5.68 N/A CV-4
Oktay et al. [24] N/A N/A 82.1±5.7 N/A CV-4
MDFAN III 51.88 89.44 82.82±6.09 71.13± 8.30 CV-4

§4 Discussion

The pancreas is an important digestive organ in the abdomen, which plays a significant

role in the decomposition and absorption of blood sugar and nutrients. Accurate pancreas

segmentation can provide useful information for clinicians. To address the inefficiency of coarse-

to-fine methods and unclear boundaries in the pancreas segmentation, we introduce attention

mechanism to realize implicit localization for the pancreas, and propose a composite loss to force

network pay more attention on boundary pixels. To the best of our knowledge, the proposed

algorithm outperformed all 2D pancreas segmentation approaches on the NIH dataset under

4-fold cross-validation without the help of explicit pancreas localization, which demonstrates

channel-wise and spatial attention can implicitly localize and highlight the pancreas regions, and

thus enhance the representation of pancreas features. What’s more, Table 3 shows the proposed

algorithm outperformed the 3D attention model [24] in term of average DSC, which indicates

the attention mechanism can automatically aggregate the contextual information over local

features, and then utilize spatial context to capture pancreas features, and thus improve the

performance of network. Overall, the proposed algorithm not only keeps a high segmentation

accuracy on the pancreas, but also improve the efficiency of pancreas segmentation.

In order to gain a better understanding of the Bottleneck Attention Block (BAM) and the

proposed Improved Refinement Residual Block (IRRB), we conducted the same post-processing

on the baseline MDFN, the experimental results are reported in Table 4. As shown in Table

4, under the same post-processing, the MDFAN II improves the average DSC, JI and ASD
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Table 4. Quantitative comparison of the post-process on the baseline MDFN and the proposed
MDFAN II based on DSC, JI (%), average ASD (mm) and run time (s) (The best results are
marked in bold).

Method DSC JI ASD Run time

MDFN 80.36 ± 7.78 67.87 ± 10.48 1.97 ± 1.18 1.61 s
MDFAN II 82.82 ± 6.09 71.13 ± 8.30 1.69 ± 0.83 1.68 s

Table 5. Quantitative comparison of the MDFAN II with cross entropy loss (abbreviate as CE)
and focal loss (abbreviate as FL) on DSC, JI (%) and average ASD (mm) (The best results are
marked in bold).

Method DSC JI ASD

MDFAN II+CE 81.20 ± 6.20 68.82 ± 8.27 3.77 ± 1.82
MDFAN II+ FL 81.22 ± 6.12 68.83 ± 8.21 3.59 ± 1.59

by 2.46%, 3.26% and 0.28 mm over the baseline MDFN, which demonstrates the combination

of the Bottleneck Attention Block (BAM) and the proposed Improved Refinement Residual

Block (IRRB) can effectively improve the segmentation accuracy. In addition, to validate

the effectiveness of focal loss used to guide Border sub-network training, we conducted another

comparison experiment between the focal loss and cross entropy loss under the same architecture

MDFAN II, as well as the regional Dice loss. As shown in Table 5, the MDFAN II with focal

loss improve the overall performance in terms of the average DSC, JI and ASD, especially for

ASD, which demonstrates the modulation factor in focal loss [13] can force network focus on

hard samples, such as boundary pixels, to better delineate pancreas boundary.

There are several limitations in this study. First, over-segmentation exists in the predictions

from the MDFAN II, this is mainly because attention mechanism may suffer from semantic

confusion due to the highly similarity in intensity between target pancreas and surrounding

organs and tissues. Next, we will consider how to design more discriminative attention modules

to effectively locate the pancreas and reduce the interference of background. Second, as shown

in Table 2, there still have space to improve the generalization of the proposed algorithm on

different dataset, such as the BTCV dataset. Since the number of training set in the BTCV

dataset is small and the resolution of images is low, the model with large numbers of parameters

is prone to overfit, and then degrade network performance, which pushes us to consider an

adaptive regularization technique in our future works.

§5 Conclusion

Accurate delineation of pancreas can assist doctors in the diagnosis of pancreas diseases. In

this paper, we propose a single-stage Discriminative Feature Attention Network for the pancreas

segmentation. Our method has two advantages: 1) we integrate channel-wise and spatial-wise

attention into the baseline MDFN to enhance feature extraction and eliminate the necessity of
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using explicit pancreas localization modules. 2) we adopt a simple yet effective post-processing

to refine the segmentation results. The experimental results show our network can effectively

handle the issues of intra-class inconsistency and inter-class indistinction in the pancreas seg-

mentation. Because the proposed method is a single-step end-to-end training framework with

simple post-processing, it is simple to implement. Above all, the proposed method achieves

consistently experimental results on the two pancreas datasets, which demonstrates the effec-

tiveness and generalization of our proposed method.
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