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Abstract
Purpose  Older adults with hematologic malignancies (HM) have unique challenges due to age and fitness. The primary aim 
of this pilot study was to benchmark the ability of multiple biomarkers of aging (p16, epigenetic clocks, T cell gene expres-
sion profiles, and T cell receptor excision circles (TREC) to identify frailty as measured by a clinical impairment index (I2) 
in patients with HM.
Methods  70 patients newly diagnosed with HM had peripheral blood T lymphocytes (PBTL) analyzed for p16INK4a expres-
sion using the OSU_Senescence Nanostring CodeSet. PBTL epigenetic age was measured using 7 epigenetic clocks, and 
TREC were quantified by qRT-PCR. A composite clinical impairment index (I2) was generated by combining values from 
11 geriatric metrics (Independent Activities of Daily Living (iADL), physical health score, Short Physical Performance 
Battery (SPPB), Body Mass Index (BMI), Eastern Cooperative Oncology Group (ECOG) performance status, self-reported 
KPS, Blessed Orientation Memory Concentration (BOMC), polypharmacy, Mental Health Inventory (MHI)-17, Medical 
Outcomes Study (MOS) subscales). Clinical frailty was defined as a score of 7 or greater on the I2.
Results  Age-adjusted p16INK4a was similar in newly diagnosed patients and healthy controls (p > 0.1). PBTL p16INK4a 
levels correlated positively with the Hannum [r = 0.35, 95% CI (0.09–0.75); p adj. = 0.04] and PhenoAge [r = 0.37, 95% CI 
(0.11–0.59); p adj. = 0.04] epigenetic clocks. The discrimination ability of the I2 model was calculated using the area under 
the receiver operating characteristic curve (AUC). After adjusting for chronologic age and disease group, baseline p16INK4a 
[AUC = 0.76, 95% CI (0.56–0.98); p = 0.01], Hannum [AUC = 0.70, 95% CI (0.54–0.85); p = 0.01], PhenoAge [AUC = 0.71, 
95% CI (0.55–0.86); p = 0.01], and DunedinPACE [AUC = 0.73, 95% CI (0.57–0.88); p =  < 0.01] measures showed the 
greatest potential to identify clinical frailty using the I2.
Conclusions  Our pilot data suggest that multiple blood-based aging biomarkers have potential to identify frailty in older 
adults with HM.
Implications for Cancer Survivors  We developed the I2 index to quantify impairments across geriatric domains and discovered 
that PBTL p16, Hannum, PhenoAge, and DunedinPACE are promising indicators of frailty in HM.

Keywords  Hematologic Malignancy · Frailty · Aging biomarkers · p16

 *	 Ashley E. Rosko 
	 Ashley.Rosko@osumc.edu

1	 Division of Hematology, The Ohio State University, 
Columbus, OH, USA

2	 Department of Biomedical Informatics, The Ohio State 
University, Columbus, OH, USA

3	 Departments of Molecular Genetics, Cancer Biology 
and Genetics, The Ohio State University, Columbus, OH, 
USA

4	 Department of Psychiatry and Behavioral Health, Institute 
for Behavioral Medicine Research, The Ohio State 
University, Columbus, OH, USA

5	 Division of Medical Oncology, The Ohio State University, 
Columbus, OH, USA

6	 James Comprehensive Cancer Center, 300 West 10th Ave, 
Columbus, Ohio 43210, United States

http://crossmark.crossref.org/dialog/?doi=10.1007/s11764-024-01591-6&domain=pdf


	 Journal of Cancer Survivorship

Introduction

Older adults with hematologic malignancy (HM) are a 
growing demographic with an increased risk of frailty 
development [1]. Factors beyond the disease, such as age, 
comorbidities, and performance status, can impact treat-
ment intensity and tolerability. It is recommended that all 
adults 65 and older undergo a Geriatric Assessment (GA) 
to identify occult vulnerabilities that may influence treat-
ment outcomes [2, 3]. A GA more accurately measures 
health status than clinical judgment alone and can predict 
mortality and toxicity independent of performance status 
and age [4–8]. Yet, the adoption and dissemination of rou-
tine GAs has proven challenging. As such, hematologists 
would benefit from rapid and reliable blood-based bio-
markers to estimate physiologic age.

Several candidate biomarkers to estimate physiologic 
age derive from age-related declines in T cell function. 
These include markers of immunosenescence, exhaustion, 
and cellular senescence [9–12]. One of the most robust 
and well-studied markers of cellular senescence, p16INK4a 
(p16), increases more than 16-fold in peripheral blood T 
cells over the human lifespan, and higher p16 is associated 
with biologic aging [13]. Expression of p16 is triggered by 
cellular stressors such as DNA damage, replication errors, 
telomere erosion, and reactive oxygen species [14]. p16 is 
also impacted by lifestyle and environmental factors, such 
as physical inactivity, chemotherapy, and tobacco expo-
sure [13, 15, 16]. Autologous or allogeneic bone marrow 
transplant causes dramatic increases in T cell p16 levels 
and senescence-related gene expression signatures asso-
ciated with clinical frailty in patients with hematologic 
malignancies [15, 17]. However, the impact of cancer 
therapeutics on T cell senescence and physiologic health 
is unclear. T cell receptor excision circles (TRECs) pro-
vide another mechanism to measure age-related changes 
in T cell production. TRECs are episomal circular DNAs 
generated during T cell receptor gene rearrangement in the 
thymus. TRECs are not replicated during proliferation and 
are therefore diluted among the progeny of naïve T cells 
[18]. Thus, the ratio of TRECs to T cell genomic DNA is 
a surrogate for the relative number of circulating naïve T 
cells [18].

Epigenetic clocks offer a third means of estimating bio-
logical age. These algorithms, developed using regression 
and deep learning methods, define genomic DNA meth-
ylation patterns predictive of chronological age and age-
related health metrics. Three generations of clocks have 
been described. First-generation clocks are trained on 
chronological age and predict mortality better than mor-
bidity [19–21]. Second-generation clocks, like PhenoAge 
[22] and GrimAge [23] use serum and blood biomarkers 

to improve morbidity assessment. Distinct from their pre-
decessors, third-generation clocks, such as DunedinPACE 
[24], capitalize on longitudinal health and DNA methyla-
tion data to calculate an instantaneous rate of aging. In 
patients with HM, the reported effect of hematopoietic stem 
cell transplant on epigenetic age varies [25–27]. However, 
where accelerated epigenetic aging is observed, early 
studies suggest that exercise might partially mitigate these 
effects [28, 29]. Therefore, epigenetic markers may better 
identify patient vulnerabilities than chronological age.

In conjunction with clinical frailty assessments, molecu-
lar biomarkers of aging may help risk-stratify patients for 
cancer treatment and identify occult vulnerabilities that 
could influence clinical outcomes. The primary aim of this 
pilot study was to benchmark the ability of multiple bio-
markers of aging (p16, epigenetic clocks, T cell gene expres-
sion profiles, and TRECs) to identify frailty as measured by 
a clinical impairment index (I2) in patients with HM. As a 
secondary aim, we examined whether these biomarkers were 
associated with patient outcomes or altered by treatment.

Methods

Population and study design  We conducted a single-insti-
tution prospective study, approved by The Ohio State Uni-
versity's Institutional Review Board, enrolling 70 patients 
with HM, and collecting clinical and biomarker data (Fig. 1). 
Nanostring and epigenetic data were gathered at baseline (pre-
treatment for all but 3 samples) and at the End of Study (EOS) 
from 53 and 33 samples, and 68 and 37 samples, respectively. 
EOS visits occurred upon chemotherapy completion, disease 
progression, before stem cell transplant, or after 1 year on 
study (within 45 days). Additionally, 29 participants without 
cancer (median age = 47.1; range 22–86 years of age) were 
recruited from the community as healthy controls, undergoing 
only initial PBTL p16 and Nanostring profiling.

Creation of the clinical impairment index (I2)  Patients com-
pleted a baseline GA as outlined by the Cancer and Aging 
Research Group (CARG) [8, 30, 31]. GA metrics included 
Independent Activities of Daily Living (IADLs; [32]), the 
MOS physical function assessment [33], the MOS social 
support and activity survey [34], and the Mental Health 
Inventory (MHI [33];). Performance status was measured 
using patient-reported Karnofsky Performance Status (KPS) 
and ECOG performance status scores. A clinical research 
coordinator administered the Blessed Orientation Memory 
Concentration (BOMC) cognitive screen [35], and physi-
cal function was measured using the Short Physical Per-
formance Battery (SPPB) [36]. Patients received treatment 
(i.e., chemotherapy, immunotherapy, targeted agents, bone 
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marrow transplant, or other) as ordered by their physician. 
Medications were enumerated, and information on planned 
and actual drug dosing collected. Relative Dose Intensity 
(RDI) was calculated as the ratio of delivered dose intensity 
to the standard dose intensity [37, 38].
Thresholds for GA impairments were defined and/or adapted 
from Li et al. [5]. For non-binary variables without estab-
lished thresholds, we assigned a point for each metric falling 
within the worst quartile. For example, IADL values ≥ 75th 
percentile and SPPB values ≤ 25th percentile were each given 
a point. Patients were assigned one point for each binary met-
ric with a “yes” value. Assigned points from binary and non-
binary metrics were combined to generate a single composite 
impairment index (I2) ranging from 0–11. Composite scores 
were then dichotomized into high and low categories using 
the cohort’s third quartile value (7.0) as a cutoff.

p16 and T cell RNA expression profiling  To determine if bio-
logic aging was accelerated at the time of a HM diagnosis, 
we compared PBTL p16 levels across untreated baseline 
samples and healthy controls. Peripheral blood (10 ml) was 
collected in EDTA-coated tubes, and CD3 + T cells isolated 
via negative selection using RosetteSep reagents. RNA and 
DNA were extracted from purified PBTLs using the Zymo 
Research Quick DNA/RNA miniprep kit. T cell RNA quality 
and quantity were verified on a Bioanalyzer (Agilent) and only 
samples with an RNA Integrity Number (RIN) of > 7 were 
used for further analyses. Gene expression was measured using 
a custom Nanostring CodeSet (OSU_Senescence) comprised 

of 74 markers of T cell senescence (including p16), function, 
cytokine production, and differentiation with five housekeep-
ing controls [39]. Nanostring data were normalized to internal 
controls and across runs using Nanostring nCounter software.

Epigenetic analysis  DNA from isolated PBTL was sent to 
TruDiagnostics for epigenetic clock analysis. DNA methyla-
tion was measured on Illumina Infinium® MethylationEPIC 
850K BeadChips. Raw methylation data was processed using 
the minfi pipeline and low-quality samples identified using the 
default parameters of the qcfilter function in the ENmix pack-
age. A total of 105 samples passed QA/QC (p < 0.05). From 
these samples, low quality methylation probes (p < 0.05 out-
of-band) were identified and removed, resulting in 721,802 of 
866,239 probes being used for further analysis. The following 
epigenetic clock algorithms were run using these data: Han-
num [40], Horvath 1 (pan-tissue) [20], Horvath 2 (blood and 
skin) [23], GrimAge [23], PhenoAge [22], AltumAge [41], and 
DunedinPACE [42]. A combinatorial normalization processing 
using the Funnorm procedure (minfi package), followed by the 
RCP method (ENmix package) was performed to minimize 
sample to sample variation as previously described [42].

TREC analysis  TREC analysis was completed on the same PBTL 
DNA used for epigenetic profiling via Taqman-based quantita-
tive real-time PCR with the following primer-probe sets and Per-
feCTa FastMic II reagent: hTREC_Forward: 5′-CAT​CCC​TTT​
CAA​CCA​TGC​TGA​CAC​CTCT-3′; hTREC Reverse: 5′-CGT​
GAG​AAC​GGT​GAA​TGA​AGA​GCA​GACA-3′; hTREC Probe: 

Fig. 1   CONSORT Diagram: 
Flow chart illustrating partici-
pant consent, clinical data, and 
sample procurement
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5′-VIC-TTT​TTG​TAA​AGG​TGC​CCA​CTC​CTG​TGC​ACG​
GTGA-QSY-3′; hβ-Actin Forward: 5′-TCA​CCC​ACA​CTG​TGC​
CCA​TCT​ACG​A-3′; hβ-Actin Reverse: 5′-CAG​CGG​AAC​CGC​
TCA​TTG​CCA​ATG​G-3′; hβ-Actin Probe: 5′-FAM-ATG​CCC​
TCC​CCC​ATG​CCA​TCC​TGC​GT-QSY-3′. Samples were run in 
technical triplicates on a Bio-Rad CFX Maestro using standard 
cycling conditions. Relative TREC levels were calculated using 
the formula: TREC levels = [Ct hTREC] – [Ct hβ-Actin].

Statistical analysis  Primary aim: The correlations between 
baseline p16 and each epigenetic clock, TREC, or OSU_
Senescence mRNA were examined using Pearson correlation 
coefficients. Bivariate logistic regression models were used 
to assess the relationship between baseline I2 (outcome) and 
each biomarker or chronological age (exposures). Youden's 
J statistics were used to define each biomarker threshold for 
sensitivity and specificity calculations [43]. The relationship 
between each aging biomarker and baseline I2 was calcu-
lated with and without adjustments for chronological age 
and disease groups. To determine how each aging biomarker 
improved frailty discrimination, we used DeLong tests to 
compare the AUCs of each biomarker adjusted for chrono-
logical age and disease group to the AUCs of a model that 
included only chronological age and disease group.

Secondary aims: Descriptive statistics were used to sum-
marize baseline characteristics for all patients and for those 
with complete p16 data. Median and interquartile ranges 
were provided for continuous variables, and frequency and 
percentage calculated for categorical variables. Age-adjusted 
p16 levels were estimated using linear regression models. 
Specifically, we fit linear regression models using p16 as the 
outcome with 1) chronological age and disease groups or 2) 
chronological age and chemotherapy intensity groups as inde-
pendent variables. In addition, we examined the age-adjusted 
treatment-related changes in p16 for patients whose cancer 
was controlled by the of end of the study. In a posthoc analy-
sis, we further adjusted our linear regression models testing 
treatment-related changes in p16 to account for a potential 
effect of length of follow-up. We also used linear regression 
models to examine the association between p16 and RDI, 
adjusting for chronological age, disease, and treatment groups. 
In this analysis, a significance level of 0.05 for two-sided tests 
was considered statistically significant. All analyses were per-
formed using SAS version 9.4 and R version 4.2.0.

Results

Sample cohort  The mean age of the study population was 
71.1 [standard deviation (SD) = 7.0] and the mean baseline 
p16 level was 50.7 (SD = 65.6) (Table 1). Treatment was var-
iable and included targeted (44.3%), high-dose multi-drug 

(29.5%), hypomethylating and targeted (13.1%), low-dose 
multi-drug (9.8%), and hypomethylating only regimens 
(3.3%) (Supplemental Table 1).

Relationship of PBTL p16 levels with diagnosis and clinical 
outcomes  The mean baseline age-adjusted p16 was simi-
lar among patients and healthy controls (p > 0.11). How-
ever, the three patients with chronic lymphocytic leukemia 
[mean = 141.3, 95% CI (107.0–175.7)] had significantly 
higher baseline age-adjusted p16 levels than those with 
plasma cell disorders [mean = 28.4, 95% CI (13.7–43.2) 
p = 0.02]. A comparison of mean PBTL p16 levels [and 95% 
confidence intervals (CI)] by cancer type and of healthy con-
trols are shown in Fig. 2. We also examined whether base-
line p16 differed among patients who died during the study 
period (1 year; n = 10) versus those who did not (n = 46) and 
found no statistically significant difference (Supplemental 
Fig. 1).

Differences in PBTL p16 levels at baseline, with treatment, and 
RDI  The average p16 level was 50.7 (SD = 65.6) at baseline 
and increased to 67.5 (SD = 104.9) at EOS (p = 0.43). Treat-
ment-related changes in p16 were evaluated in 19 patients 
with disease control (therapy complete or therapy changed 
without disease progression) at EOS (N = 19). Therapy dura-
tion averaged 135.2 (median = 72.3) days with minimal dif-
ference between treatment groups [high-dose multi-drug 
median = 140.0 (interquartile range (IQR) 92.0–158.0), 
low-dose multi-drug median = 288.5 (IQR 273.0–304.0), 
hypomethylating with targeted therapy median = 129.0 (IQR 
123.0–135.0), targeted therapy only median = 133.5 (IQR 
91.0- 366.0)]. None of the therapies induced statistically 
significant changes in age-adjusted p16 among this small 
subset of patients (Supplemental Fig. 2). However, patients 
who received targeted therapy showed the greatest increase 
in p16 relative to baseline [mean = 0.40, 95% CI (-0.97–1.78)] 
whereas patients receiving a combination of hypomethylating 
and targeted agents had the largest decrease [mean = -1.09, 
95% CI (-3.47–1.29)]. These results remained largely 
unchanged when adjusted for the length of follow-up. Among 
the entire cohort, baseline p16 levels did not significantly cor-
relate with RDI [r = 0.15, 95% CI (-0.15–0.42)]. However, a 
unit increase in baseline p16 was significantly associated with 
an increase in mean RDI of 0.17 (95% CI 0.05 – 0.29) when 
adjusting for chronological age, disease, and treatment groups.

Relationship between PBTL p16 and other aging biomark-
ers  We next examined the relationship between baseline 
p16 and multiple aging indicators. p16 levels did not cor-
relate with chronologic age in our HM cohort [r = 0.04, 
95% CI (-0.24–0.30); p adj. = 0.90). However, p16 cor-
related positively with the Hannum [r = 0.35, 95% CI 
(0.09–0.57); p adj. = 0.04] and PhenoAge [r = 0.37, 95% 
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CI (0.11–0.59); p adj. = 0.04] clocks (Fig. 3). TRECs 
did not correlate with p16, suggesting that the relative 
frequency of circulating naive T cells was not related to 
PBTL cellular senescence in patients with HM [r = -0.13, 
95% CI (-0.40–0.16); p = 0.54]. In comparisons between 
baseline p16 and OSU_Senescence Nanostring values, 
the most significantly correlated markers (p ≤ 0.005) 
included mRNAs indicative of cellular senescence 
(Cdkn2A ARF, B3gat1 (CD57), Il-6), potential T cell 
exhaustion (Cd244, Cd276, Btla, Pdcd1, Pdcd1lg2, Pvr), 
T follicular helper cells (Bcl-6, Il-21), and terminally 
differentiated effector memory populations (Eomes) 
(Supplemental Fig. 3; Complete statistics provided in 
Supplemental Table 2).

P16 as an indicator of clinical frailty in hematological malig-
nancies  Nearly three quarters (73.3%) of study participants 
exhibited functional impairment as measured by the SPPB, 

and over half of patients (58.1%) had iADLS deficits at base-
line. Self-reported performance status was worse than phy-
sician-reported performance measures [self-reported KPS 
impairment (53.2%), ECOG impairment (26.7%)]. Polyp-
harmacy was present in over half of patients (62.9%), and 
patients were well supported but not socially active as meas-
ured by the MOS social support scales (Table 2). Individual 
geriatric metrics were not significantly associated with p16 
levels at baseline or when adjusted by age and disease group 
(Supplemental Table 3).
When adjusting for chronologic age and disease group, 
four aging biomarkers showed significant ability to 
identify impairment, as defined by an Impairment Index 
(I2) score of 7 or more: p16INK4a [AUC = 0.76, 95% CI 
(0.56–0.98); p = 0.01], Hannum [AUC = 0.70, 95% CI 
(0.54–0.85); p = 0.01], PhenoAge [AUC = 0.71, 95% CI 
(0.55–0.86); p = 0.01], and DunedinPACE [AUC = 0.73, 
95% CI (0.57–0.88); p =  < 0.01] (Table  3). Neither 

Table 1   Study sample 
characteristics

SD standard deviation
a One patient identified as African American, and one patient as American Indian/Alaskan Native

Variable  All
(n = 70)

With P16INK4a data (n = 53)

  Baseline 70 53
  End of study 37 31

Baseline chronologic age
  Mean (SD) 71.1 (7.0) 70.9 (6.8)
  Median (25th, 75th percentile) 70.2 (65.2, 76.4) 70.2 (65.3, 75.4)

Sex, n (%)
  Male 43 (61.4) 30 (56.6)
  Female 27 (38.6) 23 (43.4)

Race, n (%)
  White 68 (97.1) 51 (96.2)
  Other 2 (2.9)a 2 (3.8)a

Disease group, n (%) 
  Acute leukemia or Myelodysplastic syndrome 30 (42.9) 20 (37.7)
  Chronic lymphocytic leukemia 5 (7.1) 3 (5.7)
  Lymphoma 15 (21.4) 13 (24.5)
  Plasma cell disorder (myeloma, amyloid) 20 (28.6) 17 (32.1)

Chemotherapy intensity, n (%) 
  High-dose multi-drug 18 (29.5) 16 (34.8)
  Hypomethylating 2 (3.3) 2 (4.4)
  Hypomethylating, targeted 8 (13.1) 4 (8.7)
  Low-dose multi-drug 6 (9.8) 4 (8.7)
  Targeted 27 (44.3) 20 (44.5)

Relative Dose Intensity (RDI)
  Mean (SD) 75.7 (34.6) 78.3 (31.8)
  Median (25th, 75th percentile) 90.7 (70.1, 100.0) 92.2 (75.0, 100.0)

P16INK4a Baseline (n = 53) End of Study (n = 31)
  Mean (SD) 50.7 (65.6) 67.5 (104.9)
  Median (25th, 75th percentile) 67.5 (104.9) 33.8 (14.9, 98.1)
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chronologic age (AUC = 0.58), TREC values, nor the 
Horvath, GrimAge, and AtlumAge clocks, showed sig-
nificant potential to identify impairment (Table 3). To 
test whether each aging biomarker improved frailty dis-
crimination by chronological age and disease group, we 
performed DeLong tests comparing the AUCs of each 

biomarker adjusted for chronological age and disease 
group to an AUC model that included only chronologic 
age and disease group. Though not statistically signifi-
cant, p16 (p = 0.16) and PhenoAge (p = 0.15) led to the 
most dramatic improvements in I2 discrimination among 
aging biomarkers measured in this limited pilot cohort.

Fig. 2   Comparison of mean 
PBTL p16 levels [and 95% 
confidence intervals (CI)] by 
cancer type

Fig. 3   Correlations [95% confi-
dence intervals (CI)] of baseline 
PBTL p16 with chronological 
age and other aging biomark-
ers. PACE=Dunedin PACE, 
TREC= T cell receptor excision 
circles
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Discussion

Several factors, including comorbidities, reduced func-
tional reserves, and increased susceptibility to treatment-
related toxicities, complicate the treatment of older adults 
with HM. While the evidence is clear that a complete GA 
can identify occult vulnerabilities and improve clinical 

outcomes [3–5], such measures are not always clinically 
feasible nor routinely implemented [44]. Blood-based 
aging biomarkers could facilitate the identification of at-
risk individuals and aid in therapeutic decision-making. 
Multiple aging biomarkers have emerged in past decades. 
However, each marker has limitations in sensitivity and 
may be impacted by underlying diseases like cancer. Here, 

Table 2   Composite Impairment Index (I2) with included individual metric thresholds*

SPPB Short Physical Performance Battery, OARS Older Americans Resources and Services, ECOG Eastern Cooperative Oncology Group per-
formance status, KPS Karnofsky Performance Status, SD Standard Deviation
* Response to questions indicate at least one of the following: “all of the time” to “some of the time” on interference of physical health or emo-
tional problems on social activities—“much less socially active than before” in the past 6 months—“much more limited than others” compared 
to individuals who are the same age. *I2 scoring criteria and model described in Methods, impairment thresholds adopted and modified from Li 
E et al. [4]

Metric Score Definition of Impairment Number of Patients 
with Impairment (%) 

Mean (SD) Median (Q1, Q3)

Impairment Index (I2) Range 0–11  ≥ 7 13/50 (26.0%) 5.2 (2.3) 6.0 (4.0 to 7.0)
Instrumental activities of daily 

living (IADLs)
Range 0–14  < 14 36/62 (58.1%) 11.9 (2.5) 13.0 (10.0 to 14.0)

SPPB Range 0–12  < 9 44/60 (73.3%) 5.1 (5.1) 5.0 (0.0 to 11.0)
Physical Health Scale – OARS 

subscale
Range 0–22  ≥ 3 59/62 (95.2%) 5.7 (1.9) 6.0 (4.0 to 7.0)

Body Mass Index (BMI) Kg/m2 Impaired < 18.5 or ≥ 30 kg/m2 31/69 (44.9%) 31.1 (6.8) 29.1 (26.1 to 35.0)
ECOG PS Range 0–4  ≥ 2 16/60 (26.7%) 1.2 (0.7) 1.0 (1.0 to 2.0)
Self reported-KPS Range 30–100  < 80 33/62 (53.2%) 72.4 (18.2) 70.0 (60.0 to 90.0)
Blessed Orientation Memory 

Concentration
Range 0–28  ≥ 11 2/62 (3.2%) 3.7 (3.4) 3.0 (0.0 to 6.0)

Polypharmacy Range 0–14  ≥ 5 Medications 39/62 (62.9%) 5.9 (3.6) 5.0 (3.0 to 8.0)
Mental Health Inventory  Yes/No Response of “all of the time” or “a 

good bit of the time” to questions 
affirming anxiety or depression

24/62 (38.7%) N/A N/A

Social Activity Score Yes/No Response to queries* 44/62 (71.0%) N/A N/A
Social Support Score  Yes/No Response of “none of the time” or 

“a little of the time”
9/62 (14.5%) N/A N/A

Table 3   Area Under the Curve 
(AUC) for the crude and 
adjusted associations between 
selected aging biomarkers and 
the composite Impairment 
Index (I2)

TREC = T cell receptor excision circles
a  For the bivariate association between each aging biomarker and the composite Impairment Index
b  For the association between each aging biomarker and the Composite Impairment Index adjusted for 
chronologic age and disease group

Aging biomarkers Crudea Adjustedb

AUC (95% CI) P Value AUC (95% CI) P Value

p16 0.63 (0.39 to 0.87) 0.28 0.76 (0.56 to 0.98) 0.01
Horvath1 0.46 (0.27 to 0.64) 0.64 0.66 (0.49 to 0.83) 0.06
Horvath2 0.48 (0.28 to 0.68) 0.83 0.67 (0.50 to 0.83) 0.05
Hannum 0.52 (0.32 to 0.72) 0.86 0.70 (0.54 to 0.85) 0.01
PhenoAge 0.54 (0.33 to 0.75) 0.68 0.71 (0.55 to 0.86) 0.01
GrimAge 0.49 (0.28 to 0.70) 0.90 0.64 (0.47 to 0.82) 0.11
PACE 0.49 (0.30 to 0.70) 0.98 0.73 (0.57 to 0.88)  < 0.01
AtlumAge 0.51 (0.30 to 0.71) 0.96 0.66 (0.49 to 0.82) 0.06
TREC 0.52 (0.30 to 0.74) 0.88 0.65 (0.47 to 0.84) 0.11
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we measured p16, T cell mRNAs, TRECs, and seven differ-
ent epigenetic clocks in patients with comprehensive geri-
atric profiles using validated tools. Our goal was to assess 
the ability of PBTL p16 to identify clinical impairment 
and to benchmark this key aging biomarker against other 
biomarkers in the field. We discovered potential relation-
ships between PBTL p16 levels and two epigenetic clocks 
(i.e., Hannum and PhenoAge), as well as multiple mRNA 
markers of T cell senescence. We created a new tool, the I2 
index, to quantify and set thresholds for impairment across 
geriatric domains built from an evidence-based approach. 
Using this tool, we determined that among the aging bio-
markers measured, p16 and PhenoAge had the greatest 
potential to improve frailty detection beyond chronologic 
age and disease type in patients with HM.

PBTL p16 levels did not differ between patients with HM 
and healthy controls at diagnosis but were correlated with 
other markers of T cell senescence and aging. These data 
suggest that PBTL senescence is generally not accelerated 
among untreated patients with HM. This finding is consist-
ent with that of Wood et al., who saw no difference in PBTL 
p16 among newly diagnosed and pre-treated patients with 
distinct HM [17]. Prior studies reported that PBTL p16 lev-
els increased among patients receiving high-dose chemo-
therapy whereas therapy had no significant effect on PBTL 
p16 in our dataset [16, 45]. Several factors likely hindered 
our ability to detect treatment-related PBTL p16 increases, 
including the limited number of paired samples acquired 
due to COVID-19 restrictions and other events, therapeu-
tic diversity even within the same treatment group, and 
changes in disease burden since all the patients analyzed 
were responders. This diversity in the patient population 
and therapeutic regimens emphasizes the need for consistent 
approaches for estimating vulnerability and standardizing 
treatment in older adults with HM.

In our cohort, PBTL p16 levels correlated most closely 
with the Hannum and PhenoAge clocks. Interestingly, Phe-
noAge was one of the first clocks trained to predict mortal-
ity based on a combination of clinical lab metrics (albu-
min, creatinine, C-reactive protein, etc.) and chronologic 
age [22]. PhenoAge also correlates with the ratio of naïve, 
CD8 to CD4 T cells, suggesting a relationship between this 
clock and immunosenescence [46]. Notably, the relationship 
between PBTL p16 and the Horvath 1 clock (r = 0.23) was 
less robust than in our prior analysis of healthy individu-
als over 40 years of age (r = 0.82 [39],), suggesting that a 
HM diagnosis may decrease the contribution of chronologic 
age to PBTL p16 levels. Whether a novel epigenetic clock 
could better estimate the relative contributions of chrono-
logic and physiologic aging to PBTL p16 levels is unclear. 
However, as discussed below, such a metric could overcome 
some technical challenges associated with measuring p16 in 
broad clinical settings.

We focused our analysis on CD3 + PBTLs as p16 increases 
most dramatically in this subset of peripheral blood cells [13]. 
However, CD3 + PBTL are a mixture of functionally diverse 
subsets that change with age. Leveraging the OSU_Senes-
cence Nanostring platform, we gained a deeper understanding 
of the relationship between p16 and CD3 + T cell subsets. Our 
analyses revealed robust correlations between p16 and PBTL 
mRNAs associated with cellular senescence (Cdkn2a_ARF, 
B3gat1 (CD57), Il-6), exhaustion (Cd244, Cd276, Btla, Pdcd1 
(PD-1), Pdcd1lg2 (PDL-2), Pvr), T follicular helper cells 
(Bcl-6, Il-21), and terminally differentiated effector memory 
populations (Eomes). Correlations with markers of the senes-
cence-associated secretory phenotype (i.e., Il-6), reduced 
proliferative potential (B3gat1), and terminally differentiated 
effector T cells are consistent with the idea that PBTL p16 
measures age-related T cell phenotypes, including cellular and 
immunosenescence. In other studies of HM, a positive correla-
tion between PBTL p16 and Cd244 was observed (r = 0.284, 
p = 0.008 [39]. Whether CD244 could serve as a surrogate for 
PBTL p16 expression is unknown. However, its expression 
alongside other markers of exhaustion in patients with cancer 
[47] suggests an association with age-related T cell dysfunc-
tion that should be explored in the future.

Several clinical tools are used to characterize frailty in can-
cer, including a number that are specific to HM. The clinical 
impairment index (I2) we describe is a comprehensive tool with 
defined thresholds of impairment for each domain. This equips 
clinicians with a practical means to identify vulnerabilities 
across geriatric domains. Our work builds upon the Practical 
Geriatric Assessment (PGA) [2], recommended for all older 
adults with cancer, by summarizing deficits into a single score. 
Importantly, the I2 and defined thresholds for geriatric metrics, 
will need to be validated in future studies. In this cohort of older 
adults with HM, patients exhibited significant clinical impair-
ment at the time of diagnosis, emphasizing the importance of 
identifying and intervening on age-related deficits, particularly 
in high acuity illnesses like HM. When adjusting for chrono-
logic age and disease group, we defined thresholds of p16 that 
identifies frailty as measured by the clinical impairment index 
(I2). In addition, baseline p16, when adjusted by age and dis-
ease, was predictive of chemotherapy tolerance, as measured 
by RDI. Upfront treatment dose attenuations are often based 
on organ impairment (i.e. renal or liver function abnormali-
ties) or perception of poor treatment tolerance. Biomarkers of 
aging, like p16, may aid in identifying physiologic health and 
could serve as a more reliable indicator of treatment tolerance. 
Although p16 analysis has limitations, future studies integrating 
blood-based biomarkers to augment frailty assessments, may 
provide valuable insight on patient trajectories.

This report is a pilot study, which requires validation in 
a larger cohort where changes in p16 expression with treat-
ment and disease control can be better evaluated. The durabil-
ity of increased PBTL p16 expression also requires further 
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examination, although our prior data show that increases in 
p16 are sustained long term [15]. Most epigenetic clocks were 
developed using whole blood. However, our study used puri-
fied PBTL so that p16 and epigenetic age could be assessed in 
the same sample. We have seen a direct correlation between 
epigenetic clocks measured in blood or PBTLs from the same 
healthy donor [48], but recognize that PBTL-specific features 
and the lack of age-correction are limitations to the interpreta-
tion of these data. Despite these limitations, we successfully 
implemented a panel of aging biomarkers in a high-acuity can-
cer population, addressing technical challenges. For example, 
p16 levels differ based on cell type [13], making it necessary 
to isolate specific peripheral blood cell subsets on site. Equip-
ment and trained staff for isolation are often lacking, and ship-
ping samples offsite can lead to RNA degradation. Epigenetic 
clocks and TRECs are more stable but face barriers associ-
ated with cost and availability. One solution would be to create 
algorithms to estimate one measurement from another, but this 
will likely require further biotech investments to reduce cost, 
standardize assessments, and improve availability.

In summary, our pilot data suggest that molecular mark-
ers of aging, particularly PBTL p16 and PhenoAge, have 
the potential to characterize frailty in older adults with 
HM. Further research is needed to validate the utility of 
these and other molecular markers in larger cohorts and 
different cancer populations. Integrating molecular mark-
ers of aging into clinical practice could lead to more per-
sonalized and effective treatment approaches in this vul-
nerable patient population. We are actively refining our 
predictive model by combining multiple aging biomarkers, 
aiming to capture aging more comprehensively and opti-
mize the care of vulnerable cancer populations.
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