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Abstract
Purpose Irradiation of the brain regions from nasopharyngeal carcinoma (NPC) radiotherapy (RT) is frequently unavoid-
able, which may result in radiation-induced cognitive deficit. Using deep learning (DL), the study aims to develop prediction 
models in predicting compromised cognition in patients following NPC RT using remote assessments and determine their 
relation to the quality of life (QoL) and MRI changes.
Methods Seventy patients (20–76 aged) with MRI imaging (pre- and post-RT (6 months–1 year)) and complete cognitive 
assessments were recruited. Hippocampus, temporal lobes (TLs), and cerebellum were delineated and dosimetry parameters 
were extracted. Assessments were given post-RT via telephone (Telephone Interview Cognitive Status (TICS), Telephone 
Montreal Cognitive Assessment (T-MoCA), Telephone Mini Addenbrooke’s Cognitive Examination (Tele-MACE), and 
QLQ-H&N 43). Regression and deep neural network (DNN) models were used to predict post-RT cognition using anatomi-
cal and treatment dose features.
Results Remote cognitive assessments were inter-correlated (r > 0.9). TLs showed significance in pre- and post-RT vol-
ume differences and cognitive deficits, that are correlated with RT-associated volume atrophy and dose distribution. Good 
classification accuracy based on DNN area under receiver operating curve (AUROC) for cognitive prediction (T-MoCA 
AUROC = 0.878, TICS AUROC = 0.89, Tele-MACE AUROC = 0.919).
Conclusion DL-based prediction models assessed using remote assessments can assist in predicting cognitive deficit follow-
ing NPC RT. Comparable results of remote assessments in assessing cognition suggest its possibility in replacing standard 
assessments.
Implications for Cancer Survivors Application of prediction models in individual patient enables tailored interventions to be 
provided in managing cognitive changes following NPC RT.
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Introduction

Radiotherapy (RT) in combination with or without adju-
vant chemotherapy is the primary treatment for patients 
with nasopharyngeal carcinoma (NPC) [1]. Nevertheless, 
neurological complications have been reported in patients 
following NPC irradiation that induces late cognitive deficits 
such as attention, short-term memory, language abilities, and 
executive function years after irradiation [2, 3]. As its seri-
ous complication could impact patient prognosis and quality 
of life (QoL), thus, it is essential to understand the effect of 
radiotherapy on brain pathophysiology.

The notion QoL has become increasingly paramount in 
patient treatment, given that RT could negatively impact on 
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cognitive functioning and be deleterious to QoL [4]. Despite 
the advances in radiation treatment which improves patient 
life expectancy [5], maintaining health-related QoL and 
cognitive function following head and neck cancer RT are 
also imperative [6]. The affected regions are typically in the 
domains of attention, memory and executive functions [7] 
as well as numerous aspects of QoL including functional 
deficits such as speech, swallowing, hearing and breathing 
which are vital in daily functioning [6]. These changes are 
the underlying effect in the alteration of patients overall 
well-being.

In typical clinical practice, cognitive and QoL evaluations 
are performed with the physical presence of both patients 
and assessors. However, such methods are not feasible 
during pandemics or other limitations preventing face-to-
face sessions. Therefore, validated remote telephone-based 
cognitive screening tools have been developed to cater for the 
needs in such circumstances, including Telephone Interview 
for Cognitive Status (TICS), Telephone Montreal Cognitive 
Assessment (T-MoCA), and Telephone-Mini Addenbrooke’s 
Cognitive Examination (Tele-MACE). According to previous 
studies, removing visual components from the assessments 
still exhibits reasonable sensitivity and specificity in mild 
cognitive impairment (MCI) diagnoses [8–10]. Given its 
high accuracy and validity in assessing patients for MCI and 
dementia, [11, 12], implementation of the telephone-based 
cognitive screen is plausible and appears useful in clinical 
practice when in-person assessments are impossible. For QoL, 
European Organization for Research and Treatment of Cancer 
(EORTC) QLQ-H&N 43 is used to assess head and neck 
carcinoma patients [13] which evaluates the tumour effects, 
treatment symptoms, functions, and health-related QoL [14].

Studies have established the utility of quantitative volu-
metric magnetic resonance imaging (MRI) features to detect 
radiation-induced changes in normal-appearing brain tissue 
[15]. These changes were observed either specific to brain 
structures such as the hippocampus [16], cerebellum [17], 
temporal lobes (TLs) [18], or the white and grey matter 
structures [19, 20]. Several studies reported the correlation 
of brain volume loss to cognitive decline where the extent 
of radiation-induced brain injury varies depending on the 
duration of RT completion [18, 21]. Besides, radiotherapy-
associated brain structural changes in NPC patients were 
also dose-dependent [18]; thus, reducing irradiation dose to 
vulnerable regions is important.

In this study, we aimed to build prediction models using 
multiple linear regression (MLR) and deep neural network 
(DNN) in predicting the possibility of compromise cognition 
in patients following NPC RT using remote or teleconsulta-
tion assessments in assessing cognitive status and QoL of 
NPC patients while evaluating their correlates to anatomical 
volume change and dosimetry parameters.

Materials and methods

Subjects

A total of 70 healthy controls (HC), randomly selected 
and 70 NPC patients who received RT treatment from 
2015 to 2021, had two MRI sessions (pre- (before the ini-
tiation of RT) and post-RT (6 months to 1 year)) were 
identified from the National Cancer Institute database 
with staging from T1N0M0 to T4N2M0. Patients were 
planned for radiotherapy using three-dimensional (3D) 
conformal, intensity-modulated radiotherapy (IMRT) or 
Tomotherapy with a dose prescription of 69.96 Gy in 33 
fractions or 70 Gy in 35 fractions. The inclusion criteria 
were NPC patients aged between 20 and 76 years, able to 
understand and communicate in Malay or English. Exclu-
sion criteria were brain metastases, other brain abnormali-
ties, neurological or psychiatric diseases, without RT and 
flow-up scan, claustrophobic, and contraindicated for MR 
imaging. Ethical approval was given by the Institutional 
Review Board (or Ethics Committee) of Malaysia Ministry 
of Health and patients provided their informed consent to 
participate in this study.

Remote neurocognition and quality of life (QoL) 
assessment tools

Remote neurocognition tools

The TICS is a brief, standardized test of cognitive functioning 
administered via phone with eleven test items. Each item’s 
scores are summed to obtain the TICS total score, which 
provides a measure of global cognitive functioning and can 
be used to monitor changes in cognitive functioning over 
time. It takes less than 10 min to administer and score. The 
optimal cutoff score is ≤ 31 to separate subjects with MCI 
from normal cognition [22]. T-MoCA [23] assesses several 
cognitive domains which are used for the detection of MCI. 
The domains are memory, attention, language, abstraction, 
delayed recall, and orientation (to time and place). It contains 
a 22-point test and takes 10 min to administer. A score of 
18 and higher are generally considered normal cognition. 
As for Tele-MACE, the cognitive screening test evaluates 
three main cognitive domains (orientation, memory, and 
language). It is an adaptation of Mini-Addrenbrooke’s 
Cognitive Examination with the omission of visuospatial 
domain. The test denominators were reduced to 25 with a 
score of 19 and higher considered normal cognition. Remote 
neurocognitive assessments were given at a time frame of 
3.8 (1–7) years following the completion of NPC RT which 
complements the study on cognitive deficit that often occurs 



Journal of Cancer Survivorship 

1 3

at the late-delayed phase (more than 6 months post-RT). 
While the assessments of healthy controls were done prior to 
NPC patients assessment.

Quality of Life (QoL) tools

The EORTC QLQ H&N43 has 43 items with six multi-
item scales and thirteen single-item symptom subscales 
[14]. Each item is rated on a 4-point Likert scale and each 
subscale score ranges from 0 to 100 where higher scores 
indicate greater symptoms. It is used jointly with QLQ-
C30 that consists 30 items with functional, symptom 
and global health status scales. The validated Malay and 
English version of the QLQ-C30 and QLQ-H&N43 were 
used [24]. All the tests and assessments were responded by 
patients without assistance. Clear and precise instructions 
and explanations were given to patients before conducting 
questionnaire.

Implementation of tests

All the tests were performed in the original form once by 
a single caller to avoid variability and the results from the 
remote assessments were analyzed blindly by the neuropsy-
chologist. Data analyses were also done blindly, with neu-
rocognitive tests performed prior to image delineation and 
dose-volume extraction.

Data collection and ROIs dose features

Information such as age, gender, education and staging; based 
on International Classification of Diseases, Tenth Revision, 
Clinical Modification (ICD-10-CM) were retrieved from 
the institutional database. Regions of interest (ROIs) were 
delineated and dose-related parameters of the hippocampus, 
left and right TLs, cerebellum, caudate nucleus (CN), corpus 
callosum (CC), amygdala, thalamus, optic chiasm (OC), 
spinal cord (SC), and brain stem (BS) were collected by a 
single trained radiation therapist. Regions selected are based 
on their proximity to the tumour within the treatment area, 
institution standard protocol and previous studies [25, 26]. 
Dose-volume histograms (DVH) features of each delineated 
structures were extracted, including the volumes, mean/
maximum/minimum dose (Dmean/Dmax/Dmin), aV10 
(absolute volume receiving more than 10 Gy), aV10-aV60 
in aV10 increments, D10 (dose to 10% of volume), D10-D60 
in D10 increments and each evaluated structure was assumed 
to be independent. These were done using Monaco 5.1 and 
TomoHD 5.1.1.6 treatment planning systems. Information 
extracted was used as predictive measures in prediction 
models.

Image acquisition

Siemens Magnetom Verio 3 Tesla (3 T) MRI machine was 
used to scan pre- and post-RT brain images on each patient. 
Patients laid supine on MRI couch and 8-channel RF head 
coil was used. The standardised protocol includes pre- and 
post-contrast 3-dimensional (3D) volumetric T1-weighted 
multi-echo magnetisation-prepared rapid-acquisition 
gradient echo (MPRAGE) and 3D T2-weighted fluid-
attenuation inversion recovery (FLAIR) images. MR images 
parameters applied were TR = 1900  ms, TE = 2.52  ms, 
T1 = 900 ms, flip angle = 9°, voxel size = 1.0 × 1.0 × 1.0  mm3, 
with no interslice gap. During scanning, subjects were 
instructed to remain calm and keep their eyes closed. The 
scans took approximately 45 min.

Statistical analysis

Pearson’s correlation analysis was performed to assess the 
correlation between the remote cognitive assessments and 
remote assessments to QoL. Additional correlation analyses 
were performed to measure the association between clinical 
factors (age, gender, education and post-RT volumes) and 
cognitive assessments. Independent t tests and chi-square 
tests were used to analyze demographic differences between 
NPC patients and HC at baseline for continuous variables 
(age, cognitive, and QoL) and categorical variables (gender 
and education). To assess the volumetric changes following 
RT, paired t tests and Wilcoxon signed-rank tests were used. 
P < 0.05 was considered statistically significant.

Multiple linear regression (MLR) analysis was done to 
determine the risk factors for radiotherapy-related cognitive 
deficits, with brain volume changes, DVH factors, education 
and overall stage as the contributing factors using the 
backward stepwise method. Hold-out sample cross-validation 
was done to test the model’s performance. Estimation of R2 
index, which is the amount of the variation in the dependent 
variable explained or predicted by the independent features 
was done for all the neurocognitive tests and all the 
assumptions of regression modeling were tested. To test for 
multicollinearity, we estimated the variance inflation factors 
(VIF) for each model (< 10) [27] and tolerance indices 
(> 0.1) [28].

Deep neural network (DNN)

DNN was performed by SPSS with two hidden layers using 
hyperbolic tangent as the activation function and softmax 
in the output layer for rescaling the dependent variables in 
predictors associated with the incidence of cognitive deficit. 
The dataset was randomly divided into a train set (70%) 
and a test set (30%) using hold-out cross-validation. We 
estimated the specificity, sensitivity, area under the receiver 
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operating curve (AUROC), Variable Importance Index and 
the proportion of accurately classified groups for the DNN. 
Normalised Importance Index (NII) ranges between 0.00 
and 100% showing the weightage of each independent 
variable in predicting the cognitive groups (deficit and 
normal cognitive groups). Higher indices of the variable 
exhibit a more substantial influence in predicting cognitive 
groups.

Results

Demographic tests

There were no significant differences in age, gender, and 
education between NPC patients to HC recruited in the study 
(Table 1).

Remote assessments

Significant differences were shown (p < 0.001) in all remote 
assessments of HC to NPC patients (Table 1). The remote 
cognitive assessments of NPC patientswere significantly 

inter-correlated but negatively correlated to QoL (Table 2). 
Additionally, age was negatively correlated (TICS, 
r =  − 0.387; T-MoCA, r =  − 0.36; Tele-MACE, r =  − 0.366, 
all p < 0.001) with neurocognitive assessments but not sig-
nificant with QoL. Years of education was positively corre-
lated with the neurocognitive assessments (TICS, r = 0.759, 
T-MoCA, r = 0.693; Tele-MACE, r = 0.711, all p < 0.001) 
and negatively correlated to QoL (r =  − 0.457, p < 0.001).

Cerebral volume

Cerebral volumes in NPC patients’ post-RT decreased 
significantly in the delineated ROI (Table 3). Significant 
differences were shown in the mean and standard deviation 
(SD) value between pre- and post-RT volumes. Both left 
(difference, Δ = 6.89 ± 2.1) and right (Δ = 7.12 ± 2.18) TLs 
and cerebellum (Δ = 2.52 ± 1.15) showed the most changes 
significantly (p < 0.001), given their large area and proxim-
ity to irradiated volume.

Table 1  Descriptive data

 Note: ~ Chi-square, *Independent t-test

Mean ± SD

Variable RT + NPC (n = 70) HC (n = 70) p-value

Gender, M/F 49/21 42/28 0.749~

Age, years 52.76 ± 12.73 
(20–76)

49.13 ± 11.03 
(20–65)

0.074*

Education, level 11.83 ± 1.77 13.23 ± 0.77 0.314~

Overall Stage 3.37 ± 0.75
TICS 30.31 ± 11.51 44.94 ± 4.23 0.001*

T-MoCA 13.99 ± 5.30 18.99 ± 1.47 0.001*

Tele-MACE 15.21 ± 4.93 20.90 ± 2.05 0.001*

QoL 52.56 ± 17.31 36.51 ± 6.42 0.001*

Table 2  Correlation of TICS, 
T-MoCA, Tele-MACE, and 
QoL

Correlations

TICS T-MoCA Tele-MACE QOL

TICS Pearson correlation 1 0.920 0.913  − 0.626
Sig. (2-tailed)  < 0.001  < 0.001  < 0.001

T-MoCA Pearson correlation 0.920 1 0.978  − 0.614
Sig. (2-tailed)  < 0.001  < 0.001  < 0.001

Tele-MACE Pearson correlation 0.913 0.978 1  − 0.652
Sig. (2-tailed)  < 0.001  < 0.001  < 0.001

QoL Pearson correlation  − 0.626  − 0.614  − 0.652 1
Sig. (2-tailed)  < 0.001  < 0.001  < 0.001

Table 3  Cerebral volume differences pre- and post-radiotherapy (RT) 
of NPC

Note: *Paired t-test,  ~ Wilcoxon-signed rank

Pre-RT
(mean ± SD)

Post-RT
(mean ± SD)

p value

Hippocampus 3.28 ± 1.8 3.08 ± 1.69  < 0.001*

Right temporal lobe 73.63 ± 13.25 66.51 ± 11.29  < 0.001*

Left temporal lobe 71.22 ± 12.35 64.33 ± 10.47  < 0.001*

Cerebellum 49.81 ± 12.67 47.29 ± 11.53  < 0.001*

Corpus callosum 3.95 ± 1.67 3.82 ± 1.62  < 0.001*

Amygdala 3.06 ± 1.26 2.96 ± 1.21  < 0.001*

Caudate nucleus 2.16 ± 1.11 2.04 ± 1.02  < 0.002*

Thalamus 7.33 ± 2.12 6.96 ± 2.2  < 0.001~

Spinal cord 21.24 ± 9.6 20.75 ± 9.36  < 0.001*

Brain stem 25.83 ± 4.05 24.28 ± 3.8  < 0.001*

Optic chiasm 0.61 ± 0.28 0.58 ± 0.27  < 0.001*
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Correlation between volume changes 
and neurocognitive tests

Volume changes in hippocampus and SC were significantly 
correlated to TICS (hippocampus: r = 0.265, p = 0.027; SC: 
r = 0.288, p = 0.016), T-MoCA (hippocampus r = 0.303, 
p = 0.011; SC: r = 0.250, p = 0.037) and Tele-MACE (hip-
pocampus r = 0.238, p = 0.047; SC r = 0.239, p = 0.045). No 
significant correlation between cerebral volumes and neu-
rocognitive assessments was shown in other ROI regions.

Dose and volume‑related cognition‑response 
in irradiated patients

T‑MoCA

The post-RT volume of delineated brain regions and 
DVH factor values were fitted into multiple linear regres-
sion (MLR) to explain cognitive score. For T-MoCA, the 
overall model explains 79.4% (R2 = 0.794) variation of 
the cognitive score and is significantly useful in explain-
ing the T-MoCA score, F (19,50) = 10.115, p < 0.001. With 
a one-unit increase in the post-RT volume, the T-MoCA 
score increases by 1.584 in the hippocampus, t(50) = 4.906, 
p < 0.001, 0.08 in the left temporal lobe (LT TL), 
t(50) = 2.371, p = 0.025 and 6.002 in the OC, t(50) = 3.443, 
p = 0.001. In addition, with a one-unit increase in dose to the 
region examined, the cognitive score decreases by − 0.012 
in the SC Dmin, t(50) =  − 3.726, p < 0.001, − 0.004 in 
the OC Dmin, t(50) =  − 4.825, p < 0.001, − 0.005 in the 
BS Dmin, t(50) =  − 3.193, p = 0.002, − 0.003 in the hip-
pocampus Dmean, t(50) =  − 6.118, p < 0.001, − 0.003 in 
the right temporal lobe (RT TL) Dmean, t(50) =  − 3.591, 
p = 0.001, − 0.001 in the RT TL Dmax, t(50) =  − 3.633, 
p = 0.001, − 0.003 in the OC Dmax, t(50) =  − 2.792, 
p = 0.007 and − 0.002 in the SC Dmax, t(50) =  − 2.186, 
p = 0.034. Besides that, the T-MoCA score also increases 
by 3.674 (t(50) = 6.269, p < 0.001) with one unit increase in 
the education years and decreases by − 0.735 with one unit 
increase in age (t(50) =  − 2.131, p = 0.038) and by − 1.387 
with one unit increase in staging (t(50) =  − 2.076, p = 0.043).

TICS

A different set of regression modeling was shown in 
TICS with the overall model of 77.1% (R2 = 0.771, F 
(18,51) = 9.545, p < 0.001). Significant changes were 
observed in the post-RT volume of the hippocam-
pus (t(51) = 4.57, p = 0.001), the LT TL (t(51) = 3.858, 
p < 0.001), the OC (t(51) = 4.013, p < 0.001) and the 
CN (t(51) =  − 4.617, p = 0.002), treatment dose in the 
RT TL Dmean and Dmax (t(51) =  − 4.116, p < 0.001; 
t(51) =  − 4.271, p < 0.001) and the Dmin of the OC 

(t(51) =  − 4.436, p = 0.001), the SC (t(51) =  − 3.489, 
p = 0.001), the cerebellum (t(51) =  − 2.517, p = 0.015) 
and the CN (t(51) = 2.598, p = 0.012) and the Dmean of 
the hippocampus (t(51) =  − 4.529, p < 0.001). Significant 
changes was also observed in education years (t(51) = 8.282, 
p < 0.001) and gender (t(51) =  − 2.536, p < 0.014).

Tele‑MACE

The overall model of Tele-M  ACE explains 78.4% 
(R2 = 0.784) of the cognitive score and is statistically signifi-
cant (F (19,50) = 9.547, p < 0.001). Significant changes were 
also shown in post-RT volume; hippocampus (t(50) = 4.001, 
p < 0.001), LT TL (t(50) = 3.157, p = 0.003), CN 
(t(50) =  − 2.024, p = 0.048), OC (t(50 = 3.561, p = 0.001), 
treatment dose Dmin; BS (t(50) =  − 2.823, p = 0.007), SC 
(t(50) =  − 2.654, p = 0.011), CN (t(50) = 3.627, p = 0.001), 
cerebellum (t(50) =  − 4.45, p < 0.001), OC (t(50) =  − 4.48, 
p < 0.001), Dmax; RT TL (t(50) =  − 3.591, p = 0.001), SC 
(t(50) =  − 2.608, p = 0.012), OC (t(50) =  − 2.182, p = 0.034), 
Dmean; RT TL (t(50) =  − 3.904, p < 0.001), hippocampus 
(t(50) =  − 5.51, p < 0.001), education years (t(50) = 5.947, 
p < 0.001), and age (t(50) =  − 2.848, p = 0.006).

DNN

DNN layers and weight indices

The neural network diagrams of T-MoCA, Tele-MACE and 
TICS comprised of 4 factors, 28 to 36 input variables, 11 
neurons in the first hidden layer and 8 neurons in the sec-
ond hidden layer, and 2 output levels (deficit and normal 
cognitive scores). The input variables comprised of post-
RT volumes, stage, education years, gender, age, and DVH 
factors with cognitive-related dosimetric predictors selected 
in MLR.

Weight indices of the input and output variables for the 
networks is shown in Supplementary 1 [a–c]. The DNN 
weight statistics have intra-variable variation, unlike the 
β coefficients of the regression models. An example, the 
weights of LT_TL_P (left temporal lobe post-RT vol-
ume) across eleven neurons in the hidden layer, notated as 
H(1:1–1), is 0.026, 0.064, − 0.063, − 0.049, 1.71, − 0.184, − 
0.154, − 0.03, − 0.354, − 0.384, and 0.15 in Tele-MACE net-
work indicating high degree of nonlinearity between vari-
ables and cognitive classification. The relatively high intra-
variable variance was also noted in other input variables 
across T-MoCA and TICS networks. By contrast, intra-vari-
able variance is low in BS_D40 (0.184, 0.738, − 0.045, 0.35, 
0.19, 0.017, 0.366, − 0.37, 0.534, 0.23, and 0.211) indicating 
some degree of linearity in the TICS network. Similarly, the 
weights of connection between the hidden and output layers 
have a relatively large range, indicating high nonlinearity. For 
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example in neuron H(2:3) with cognitive deficit item, group 
0 and normal cognitive item, group 1 (Tele-MACE group 
0 =  − 0.962, group 1 = 1.232; T-MoCA group 0 =  − 0.265, 
group 1 = 0.344; TICS group 0 =  − 0.408, group 1 = 0.2). 
Supplementary tables also present the bias statistics for both 
hidden and output layers, which bias helps the network to 
learn the underlying data patterns more effectively. In this 
case, all network bias coefficients exhibited some degree of 
variation.

Sensitivity and specificity

Overall, the networks had reasonably high accuracy, evi-
denced by the percentage of incorrect classifications in the 
testing and training stages (Table 4). The specificity of both 
testing and training subsamples is significantly high in most 
of the networks but moderate in the sensitivity statistics. The 
area under the ROC (AUROC) in the testing and training 
subsamples curve is between 0.8 and 0.9, which is consid-
ered good [29].

Normalised Importance Index (NII)

Table 5 presents the 10 most important independent vari-
ables for each network which influenced cognitive group-
ing to deficit and normal cognition. Hippocampus, BS, SC, 
and cerebellum dose and volume parameters had the most 

influence on all the cognitive assessments (Tele-MACE, 
T-MoCA, and TICS) as indicated by its NII. Spinal cord_
Dmin played major importance in the prediction output of 
all the networks (T-MoCA 92.6%, TICS 90%, Tele-MACE 
71.2%). Only Tele-MACE reported the left TL (76.6) and 
the right TL (74.1) dosimetry as the top important varia-
bles in prediction output. Emphasis was given more on SC 
parameters in the T-MoCA and hippocampus parameters in 
the TICS cognitive assessments in estimating the prediction 
output. Additionally, age also showed the importance in the 
prediction output given the NII more than 50% (TICS 54.8%, 
Tele-MACE 51.7%) but not in gender (Tele-MACE 34.2%, 
T-MoCA 31%, TICS 7.6%). The NII of the remainder of the 
input variables gradually decreases but never reaches zero 
suggesting each variable made a significant contribution 
to the test group’s cognitive. Overall, the DNN modeling 
yielded different Importance Indices with good sensitivity 
and specificity and outperformed the linear regression mod-
els of Tele-MACE, T-MoCA, and TICS.

Discussion

Demographic factors such as gender, age, and education 
were matched-sample between HC to NPC RT treated 
patients showed that patients have worse cognitive function 
than HC following RT. A significant decrease in post-RT 

Table 4  Classification accuracy, 
specificity, and sensitivity 
estimated by the DNN model

Percentage of incorrect 
predictions

Specificity Sensitivity AUC-ROC

T-MoCA Testing 26.1% 79.4% 73.9% 0.878
Training 21.7% 83.3% 82.3%

Tele-MACE Testing 12.0% 94.7% 66.7% 0.919
Training 11.8% 91.7% 88.2%

TICS Testing 23.1% 80.0% 74.1% 0.890
Training 16.7% 83.3% 85.7%

Table 5  The DNN-estimated importance of independent variables in classifying cognitive group in Tele-MACE, T-MoCA, and TICS

Tele-MACE Importance T-MoCA Importance TICS Importance

1 Brain stem_D30 100 Spinal cord_V60 100 Hippocampus_D30 100
2 Thalamus_V10 84.6 Optic chiasm post-volume 99.1 Hippocampus_V60 95.9
3 Left temporal lobe_D60 76.6 Brain stem_Dmin 98.7 Spinal cord_Dmin 90
4 Right temporal lobe_Dmax 74.1 Amygdala_D20 92.8 Brain stem_Dmin 83.1
5 Cerebellum_D30 72 Spinal cord_Dmin 92.6 Thalamus_V20 79.5
6 Cerebellum_Dmin 71.8 Spinal cord_V20 80.6 Hippocampus post-volume 76.6
7 Spinal cord_Dmin 71.2 Spinal cord_D20 74.1 Cerebellum_D50 67.1
8 Hippocampus_V60 70.4 Hippocampus_Dmin 71.8 Caudate nucleus post-volume 62.8
9 Spinal cord_Dmax 69.8 Spinal cord_Dmax 68.7 Hippocampus_D10 60
10 Cerebellum_V20 67.8 Hippocampus_D60 67.9 Spinal cord_V60 59.1
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brain structure volumes relative to pre-RT was shown in 
all the delineated ROI and both hippocampus and SC were 
also significantly correlated to cognition. Moreover, cogni-
tive changes were also shown in the irradiated ROI regions 
of NPC patients. This suggests the impact of radiation on 
human cognition that arises and slowly worsen in patients 
after RT completion with the diminishing brain volume. In 
addition, cognition was also correlated to the patient’s age 
and education, which implies that both factors could affect 
the patient’s perception and understanding of the neurocog-
nitive assessments. The study presented a moderate negative 
correlation between cognitive outcomes to QoL, which pro-
poses that reducing the cancer burden or being cancer-free 
outweighs the effect of cognitive deficit.

Nonetheless, it is important to recognize that cognitive 
deficit is multifactorial, as deficit may be caused by the 
tumour itself, number of interventions, assessment time after 
treatment, functional deficit, preexisting cognitive abnor-
malities, and other adjuvant treatments [30–32]. Thus, it is 
not possible to precisely designate cognitive dysfunction to 
an isolated factor. According to Piai et al. [33], moderate to 
severe cognitive impairment is already shown at baseline of 
head and neck cancer patients when compared with healthy 
controls. The deficit was evident in the domains of delayed 
recall, letter fluency, psychomotor speed and executive func-
tion [33]. Furthermore, cognitive deficit was also associated 
with RT [19] and the extent or injury varies depending on 
the duration of RT completion [18, 34, 35] with the memory 
and executive function domains being the most affected [36, 
37]. In some studies, cognitive deficit was more pronounced 
in patients receiving 2 Gy fraction doses [38–40]. Besides 
that, cerebral volume atrophy is also dose-dependent. This 
is validated by prior studies [18, 19, 34, 41]. According to 
Seibert et al. [42], radiation dose-dependent atrophy was 
observed in the hippocampus 1-year post-RT compared to 
baseline with a higher radiation dose (30 Gy) induced ear-
lier and severe histological changes than a lower radiation 
dose (25 Gy) [18]. Dose-dependent atrophy is also shown in 
the bilateral TLs and cerebellum, suggesting that radiation-
induced changes may not be confined to the target area but 
also to other encephalic regions [3, 43]. Significant radia-
tion dose-dependent volume loss is also determined in other 
cerebral structures with a loss of 0.16 to 1.37%/Gy in the 
amygdala [44], thalamus, putamen, and globus pallidus [16].

Moreover, damage to cerebral volume after RT also cor-
relates to cognitive function. This was observed between 
the dilation of the ventricles that correlates with grey mat-
ter loss [45] and cognitive impairment [18, 46]. Further-
more, bilateral hippocampal doses greater than 7.3 Gy was 
also associated with long-term cognitive deficit [47]. As 
radiation induces inflammation and microvascular dam-
age thereby altering the hippocampal neurogenesis, this 
is thought to contribute to a deficit in memory function 

following RT [48, 49]. Increased radiation dose to the 
bilateral TLs and cerebellum were also significantly cor-
related to worsen memory performance, executive ability 
and motor coordination [3, 21, 50]. Due to their proximity 
to the radiation field of NPC RT, both the TL and cerebel-
lum are susceptible to radiation damage, with the TL being 
associated with the default mode network (DMN), which is 
highly sensitive to radiation [21, 51]. In addition, cerebel-
lar atrophy was also correlated to oral and written process-
ing speed and depended significantly on the mean dose, 
time after radiotherapy, and patient age [52–54]. Delayed 
neurological complications of cranial nerve palsies, cer-
vical myelopathy and temporal lobe necrosis (TLN) may 
also occur from NPC RT [55]. Having said that, changes 
in the central nervous system (CNS) that disseminate 
with time could form irreversible structural abnormali-
ties that could cause permanent cognitive disability [39, 
56]. Since dose-volume parameters are highly correlated 
to developing TLN [57, 58], it may cause cognitive deficit 
and severely affect a patient's quality of life (QoL) [59]. 
Therefore, this suggests that the tumour and radiation 
could influence cognitive functioning.

Consequently, radiation-induced brain injury can occur 
as early as a few days or weeks after RT, which has time 
continuity and does not halt even with the termination of 
radiation. The pathophysiological changes fluctuate within 
the three phases (acute (few days to weeks), early-delayed 
(1 month to 6 months) often with reversible injuries, and 
late-delayed (more than 6 months to few years) after RT) 
with severe functional deficits that is usually permanent, 
irreversible and progressive [15, 60]. In this study, focus 
is on late-delayed reactions, as cognitive deficit is usually 
observed during this period. Besides, this is to limit con-
founding factors underlying the acute and early delayed 
injury likely due to edema with an increase in nerve cell or 
stromal size [61]. Notably, during the late-delayed phase, 
patients tend to experience deficits in memory, spatial 
relations, visual motor processing, quantitative skills and 
attention, including somnolence syndromes [48, 62]. Inter-
estingly, in the present study, a negative correlation was 
observed between the neurocognitive tests and QoL. This 
suggests that patients might have good resilience by allevi-
ating emotional distress and thus might not have a decrease 
in their QoL as they were better at coping with cancer [63, 
64]. The better resilience and acceptance could be due to 
the patients’ ages (52.76 ± 12.73 years), as previous studies 
had shown that patients aged more than 50 years showed 
a drop in physical domain rather than social domain [37] 
and emotional domain [65, 66]. However, given that patients 
were taken from a government institution where only very 
minimal medical fees are required, thus, the financial burden 
was not a factor, contrary to studies suggesting financial dif-
ficulty is a factor in affecting QoL [64, 67].
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Due to the recent COVID-19 pandemic with movement 
restrictions and in-person constraints, neuropsychological 
assessments were done remotely, thus the absence of stand-
ard assessments. Regardless, validation of the teleconsulta-
tion assessment was done in previous studies [8–10]. Besides, 
evidence concerning the feasibility and utility of telephone-
based psychological and health assessments were also shown 
in brain tumour [68], hematologic malignancies [69] and head 
and neck cancer patients [70]. This is the first-ever study that 
uses remote neurocognitive assessments in monitoring NPC 
patients' cognitive functions following RT and correlating 
them with morphological changes and dose-volume param-
eters. From the study, all the regression models showed a rela-
tively strong effect size (R.2 > 0.7) [71] which results were 
similar to conventional neurocognitive assessments in post-
RT patients [3, 17, 20]. This suggests that the implementation 
of remote cognitive assessments could perhaps be comparable 
to standard cognitive assessments, therefore, the possibility 
of replacing or use as an alternative during situation that pre-
clude from standard implementation. Furthermore, compari-
son between standard and tele-consultation assessment had 
been performed in previous studies [10, 72, 73] and showed 
that tele-consultation assessments were able to independently 
distinguish MCI from normal cognition with high sensitiv-
ity and specificity in predicting and assessing dementia and 
MCI even with removal of visual items from the assessment 
scale [9]. Therefore, implementation of remote neurocognitive 
assessments is feasible in clinical settings.Two methods were 
implemented in constructing the predictive models of the 
study, MLR and MLP-DNN, with each method contributing 3 
neurocognitive endpoints (TICS, T-MoCA and Tele-MACE). 

From the regression models, demographic factors and 
dose-volume parameters were the variables in the predic-
tion models. All three regression models included education 
as a predictive variable predicting neurocognitive function 
deficit. Besides, age was also associated with compromised 
cognition in the regression models. The findings were simi-
lar to previous studies that suggested higher age and lower 
education negatively affect cognitive results [74, 75], which 
were associated to language and motor dexterity (age at RT 
and education years), executive function and speed (age 
at RT), verbal and working memories (education years) 
domains [76]. Moreover, higher age, lower educational level, 
initiation of radiotherapy and years since diagnosis were pre-
dictors for long-term health-related QoL or neurocognitive 
deficit in NPC patients [77–79]. From the regression mod-
els, apart from education and age, lower hippocampus, LT 
TL, and OC volumes, higher Dmean in the hippocampus 
and higher Dmean and Dmax in the RT TL were predictors 
for neurocognitive deficits. Nevertheless, not all variables 
were independently related to the measured outcomes, such 
as gender and overall staging. This is in line with previous 
studies [75, 80] that stated gender was not associated with 

cognitive function and not a significant determinant of QoL 
for head and neck cancer patients [65, 66]. It is possible that 
the severity of other conditions masked the potential impact 
of gender on cognition. Clinical variables such as tumour 
grade, type and lesion volume were not significantly corre-
lated to cognitive function, but correlation to cognition was 
found in RT type; thus, tumor characteristics may likely have 
less of an impact on cognitive functioning than radiation 
treatment and its side effects [7, 81]

In radiation oncology, DNN can be divided according 
to the primary purpose, such as image fusion, image seg-
mentation, prognosis and outcome prediction. Application 
of DNN predictions in predicting the toxicity following RT 
were shown in several studies, for example, xerostomia in 
head and neck RT [82], radiation pneumonitis in thoracic RT 
[83] and late genitourinary system toxicity in prostate can-
cer [84], where the neural networks showed good prediction 
results. Besides, DNN was also applied in predicting tumour 
recurrence in non-small-cell lung cancer (NSCLC) that dem-
onstrated a better-performed prediction model compared to 
the conventional model, with an AUROC of 0.842 [85] and 
dose-distribution in breast cancer patients with doses pre-
dicted by the neural networks were superior to conventional 
knowledge-based planning [86]. From the study, the DNN 
analysis showed that dosimetric features could substantially 
contribute to differentiating cognitive groups of patients fol-
lowing NPC RT with high accuracy. The application of artifi-
cial neural networks is also superior to conventional methods 
such as discriminant and regression analyses [83, 87, 88] pro-
vided its significantly high precision [89]; thus, its expansion 
in radiation oncology.

It is acknowledged that this study has several limitations. 
First, the cross-sectional design limits the interpretation of 
the study results as the absence of baseline cognitive assess-
ments. Second, the relatively low number of patients accrued 
in this study may be a deterrent in concluding the study out-
come, limiting the ability of the DNN models and measured 
outcomes. Even so, good prediction models were generated 
from the study. Even with small data sets, deep neural nets 
can achieve superior classification accuracy without overfit-
ting [90]. Third, the causative factor of the impaired cogni-
tive function is ambiguous as we cannot clearly distinguish 
it from the chemotherapy or RT although chemotherapy did 
not instigate volumetric brain changes [18]. Nonetheless, the 
synergy between chemotherapy and RT may have affected the 
results in the present study; thus, a future study segregating 
chemotherapy and RT should be conducted to elucidate such 
effects. Fourth, as cognitive assessments were done remotely, 
administration procedures might be affected by poor line con-
nection, difficult for patients with hearing impairment and 
loss of visual cues, and those with poor communication skills 
and shorter attention spans [8, 10]. Despite the intrinsic limi-
tations, remote assessments can potentially increase sample 
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size by reaching a broad range of populations, minimizing 
costs, reducing selection bias and conducting longitudinal 
follow-ups [8, 91]. Nevertheless, test-retest and parallel-test 
reliabilities of the assessments should be evaluated in future 
studies [8]. Finally, the discrepancies in DVH generated from 
multimodal treatment planning systems could overestimate 
the structure volumes and parameters. Regardless, dose dis-
tributions were almost identical, and no significant dose dif-
ferences were observed [92].

Radiation-induced brain impairments in NPC patients fol-
lowing RT is dose-dependent and volume-dependent, sug-
gesting the possibility of early biomarkers in cognitive defi-
cit. Given the streamlined approach and comparable result of 
remote neurocognitive assessments, monitoring a patient’s 
cognitive status could be easily integrated into current pri-
mary care settings and probably to even replace standard 
assessments. The prediction models can be used to identify 
individual patients with the possibility of suffering from 
cognitive deficits following NPC RT, thus, enabling tailored 
interventions and supportive care services to be provided in 
managing cognitive changes following NPC RT.
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