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Abstract
This paper briefly outlines current literature on evolutionary architectures and current links with microservices orchestration
and data integration. We also propose future research directions bridging the field of service-oriented architectures with the
data science domain.
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1 Introduction

The rapidly evolving landscape of computer and data science
entails the early adoption of new technologies in pre-existing
ecosystems. Evolution is not necessarily gradual, as this
might trigger a massive refactoring in pre-existing systems.
The major forces driving such changes are the piling-up of
additional business functionality required by the new cus-
tomer [1], the improvement of pre-existing functionalities
by delivering alternative solutions [2], or still the disrup-
tive introduction of a new technology requiring a massive
restructuring of the entire software ecosystem.1 In this sce-
nario, long-term planning is neither possible nor sustainable,
as the current trends suggest that any future technology will
drastically differ from the currently available ones. This
then motivates the adoption of evolutionary architectures,
which are usually characterised in terms of traditional soft-
ware architectures (topology) as well as of (non-)functional
requirements and the way to carry out computations through
explicitly wired or “linkable” components (governance).

Concerning the principles of evolutionary architecture
topology (Fig. 2), this proposes structuring highly decoupled
architectures to minimise the dependencies across com-
ponents. This was favoured by the recent emergence of
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platform as a service (PaaS) infrastructures such as Docker2

providing simulated development. Regarding Fig. 1, each
microservice would then allow to break apart traditional
monolithic architectures, where each component might have
different persistency requirements [1]. While a traditional
relational or graph database might be better suited for stor-
ing an Enterprise Resource Planning (ERP) tracking
all the crucial steps supporting Business Process Manage-
ment (sales, purchasing, physical warehouse management,
finance and accounting) [5], full-text documents might better
support internal reports written by business analysts, while
information related to social network data information gath-
ered to carry out market research on purchasing customers
might be better stored in a graph database. Then, the access
to the internal database and data representation is mitigated
through aMicroserviceMiddleware layer, thus providing the
querying interface to the database and mediating the access
through a procedural language.

Within the same scenario, suppose that the company of
interest handles a product purchase web service, which the
users might use to buy products and post reviews of such
products within the company’s internal social network. In
this scenario, we might outline three different kinds of ser-
vices satisfying different information needs [6]: a company
CEO might need access to all the information being gen-
erated by the organisation but might not necessarily need
to have direct access to the data processing and machine
learning algorithms, which can be then in turn used by the
other microservices for integrating the data into a human-

2 https://www.docker.com/.
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Fig. 1 An example of a data mesh architecture abiding by the evolu-
tionary architecture topology requirements [1]. As users with different
scopes and capabilities might access the same API layer (e.g. a CEO
and customer using the platform for purchasing products), the API layer

should selectively access the information to be processed and forwarded
to the user. This information can be explicitly encoded at the schema
level [3]

readable form; furthermore, such CEO might only read the
data but not maintain it, thus having read-only access to the
entire system. On the other hand, a purchaser using the com-
pany’s platform might want to merely navigate the online
catalogue without updating it and should not have access
to further enterprise data; such user shall be able to update
the enterprise social network via specific APIs while it shall

not be allowed to update pieces of information concerning
other users; they also shall have limited access to themachine
learning and data processing capabilities of the company, as
it might merely access to the product recommendation sys-
tem without necessarily using any further AI infrastructure
disrupting the company policies. Finally, a Data Scientist
might have full control and access to the API and Microser-
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Listing 1 Wright# [4], an example of an Architecture Description
Language (ADL) using calculi for representing the behaviour of com-
ponents and connectors. Arrows are used for prefixing.

connector CSConnector {
role client ( j ) =
request → req! j → res? j → process →
client ( j ) ;

role server () =
req?j → invoke → process → res ! j →
server ( ) ;

}

component SPClient {
port test () = precheck → output → test ( ) ;

}
component SPServer {

port run() = invoke → execution → run ( ) ;
}

system SampleCS {
declare cslink = CSConnector;
attach SPClient . test () = cslink . client ( ) ;
attach SPServer . run() = cslink . server ( ) ;
execute SPServer . run() | SPClient . test ( ) ;

}

Fig. 2 Expressing a simple architecture topology regarding the UML
component diagram. This represents a client directly forwarding a
request to a (micro)Service through a Connector. Squares reflect ports,
while circles identify roles [4]

vices layer, through which it might be able to deploy and
terminate specific microservices; such a user should also be
responsible for designing other client interfaces to the system
for corporate clients, which will only need the access to the
data processing and machine learning components of such a
system. With this example in mind, we can clearly see that
implementing a data science pipeline connecting clients to
microservices boils down to solving a multi-database inte-
gration and a service orchestration problem.

Evolutionary architecture governance is concerned with
verifying the goodness of the entire orchestrated architecture
basedonboundary conditions thatmight varydynamically. In
the context of microservices architecture, this reflects either
the behaviour associated with each single microservice or
the overall orchestrated components’ behaviour to satisfy
a client request (Listing 1). The discrepancy between the
adherence of the architecture to such configuration and the
expected outcome is then assessed through a multi-objective
user-defined fitness function F : S → R

+
≥0 [1] taking as

an input the configuration of the current software architec-
tureS and evaluating its fitness against an environment E in
terms of a numerical score to be maximised. This formula-

tion enables the inclusion of load balancing requirements as
crucial components for assessing the overall goodness of a
specific dynamic configuration of the architecture [7, 8].

Despite the extensive literature on both sides of the com-
puter science spectrum, a careful observation suggests that
these, due to force majeure, often describe orthogonal and
complementary approaches while a holistic solution encom-
passing all the features for both service orchestration and
data integration is still missing.

The paper is structured as follows: after providing some
historical remarks within the field of formal verification,
planning, and process composition (Sect. 2), we collect some
evidence on currently available features on the literature both
on evolutionary architectures and microservices orchestra-
tions (Sect. 3) and analyse some current challenges in the
field (Sect. 4).

2 Historical remarks

2.1 Calculi for communication systems

Most of the current service composition approaches rely
on the calculi for communication systems [9]. This is a
Turing-complete formalism expressing all the possible com-
putable actions performed by services within distributed or
concurrent systems. Still, more up-to-date literature on the
matter argues that being Turing-complete is insufficient for
expressing all the desiderata from concurrency problems,
such as enforcing the running of atomic operations required
for synchronisation operations. Due to this, such authors
proposed Multi-CCS [10], by extending the former calcu-
lus with the possibility of enforcing atomic operations for
correctly modelling well-known problems (e.g. the dining
philosophers). Multi-CCS can also express multi-part syn-
chronisation, which is not inherently provided by the DGDL
language for communicating agents.3 Therefore, the latter
protocol becomes relatively deficient in the required fea-
tures to adequately represent concurrent communications.
The resulting calculus is defined in Grammar 1, where 0
represents a process in deadlock or terminating, the prefix
notation denotes the operations that a process performs first,
the strong prefix defines atomic operations which, jointly
with the parallel composition, enable multi-party synchro-
nisation, as well as expressive alternative computations;
finally, the restriction operator makes some operations pri-
vate or enabling multi-process communication. By defining
the behavioural semantics of the language,we can express the
protocol expressed in such a calculus as a Labelled Tran-

sition System (LTS) defined as a tuple (A, S, T ), where
S is a set of states, A is the set of all the possible actions

3 https://www.arg.tech/index.php/research/dgdl/.
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S ::= 0 deadlock
| V .S prefix
| C.S strong prefix
| S + S ′ alternative

P ::= S all processes
| P|P parallel composition
| (νC)P synch. by restriction

C ::= α, β, . . . channel names
V ::= C ∪ C visible actions
A ::= V ∪ {τ } all actions

Grammar 1 Multi-CCS [10]

Fig. 3 LTS representation of the
simple coffee machine process
A = coin.coffe.A [10]

Fig. 4 LTS representing the protocol P = (ν{req, res})(C|S) for d ∈
{0, 1} and f (x) = x + 1. Please observe that synchronisation between
actions and signed actions leads to silent transitions τ

associable to transitions among states, and T ⊆ S×A× S is
the definition of the aforementioned transition. Such triplet
can be then graphically rendered as an edge-labelled graph
(Fig. 3).

For example, we can describe two processes, a client C
and a server S, where C sends a request d to S, which in turn
computes f (d) and returns its outcome back to the client,
which then prints the outcome. The two processes can each
be uniquely identified by the current system of process equa-
tions:

{
C = req(d).res 〈y〉 .printy .C

S = req〈d〉.compy← f (d).res(y).S

while the synchronisation between the two processes over
the request and the response action generates the protocol
(ν{req, res})(C|S). Figure 4 shows that the size of the result-
ing LTSwill be directly proportional to the size of the domain
D associated with the values parametrised through d.

Process calculi can also be further extended to express
message passing of data across processes, thus fully captur-
ing security and encryption protocols fully [11]. This can be
seen as a simple extension of the former, where the syntax
can be extended by replacing the prefix notation with the
message x send and receive operations via a communication
channel with a name in C as follows:

S ::= . . . C(x).S | C 〈x〉 .S . . .

Furthermore, the authors further extend the alternative pro-
cess running S + S ′ with a conditional execution branching
if cond then S else S ′, thus allowing the process to change
behaviour depending on some internal or externally received
data after associating it to a global variable.

We can easily observe that, when the domain associated
with the possible variables’ values is infinitely enumerable,
this leads to an infinitely enumerable Multi-CCS transfor-
mation of such a process; this goes hand in hand with
the transformation of any π -calculus algebraic process into
LTS. Still, this explosive problem can be easily solved by
extending such automata with registries holding the vari-
able’s values throughout the computation via the adoption
of Fresh-Register Automata in lieu of LTS [12].

2.2 Planners

(Task) planners ideally describe a sequence of actions to be
performed over an environmentE required to achieve a given
goal state; such actions can be used to express the removal
or substitution of specific operations [13, 14] as well as con-
necting and disabling components within a service-oriented
architecture represented as a software artefact [2]. As a trust-
worthy technology leading to predictable behaviour of the
to-be-automated component, planners are highly used in
robotics [15] for performing actions under themeetingof spe-
cific preconditions while predicting the possible outcomes
of such actions on the environment. Due to the possibility
of using such tools for clearly structuring behaviour, such
tools are also conveniently used for structuring Non-Player
Characters in video games [16].

Given an initial world configuration I (that might also
include numerical parameters referred to as fluents), the plan-
ning problemP aims at reaching a given goal configurationG
byperforming actions in�described in aplanningdomainD.
Such domain associates the aforementioned actions�with a
set of propositions P describing any world configuration of
interest. Each action ω ∈ � is parametrised over some vari-
ables αω describing the world (e.g. fluents), and over which
the precondition Testω(αω) is tested as requirements to possi-
bly performω on the environment; this will have as a possible
effect Effω(αω) an update of the previously bounded param-
eters αω. Furthermore, the overall goal of the planner will be
finding the goal solution minimising (or maximising) a spe-
cific fluent originally initialised in I , whose value is altered
by the execution of actions ω ∈ � [13]. Planning algorithms
using heuristic functions for selecting the most suitable plan
and not necessarily the first one being founded use such fit-
ness functions for ranking the plans being the solution to the
planning problem according to the problem domain formu-
lation.
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2.3 Data integration

Within the current field of database integration, we might
consider two different kinds of approaches: in-database
integration [3, 17], mainly related to data cleaning and
duplicate removal within the same relational database, and
multi-database integration [18–21], that properly pertains
onfinding a commondata representation across different data
sources. The latter can be postulated as the following prob-
lem [3]: “given a global Model G of reflecting my expected
final system and a query q written in a Language LG , eval-
uate q over multiple data sourcesD = { D1, . . . , Dn } being
associated to different Model { M1, . . . , Mn } while provid-
ing the results abiding by G”. As the focus of evolutionary
architectures does not rely on the design of each specific
component rather than finding suitable ways for orchestrat-
ing such microservices, we are going to focus on the second
type of database integration, as the first will rather occur
within each single microservice of interest.

An ontology [22] is a semantic interpretation of Data

across Models establishing relations among the Model’s
types and defines generic transformation or mapping rules
ς for converting objects representable within one ontology
concept into another [3]. Ontologies act as semantic domains
in denotational semantics [14, 23] and refer to concepts or
entities that are independent of language and representation
[24], thus appearing to be the ideal candidates for providing a
full description of a microservice [14].We are also interested
in assessing the correspondences between different ontolo-
gies to reason on the data coming across different domains.
In this context, an ontological alignment A(O, O ′) of a
source ontology O towards a destination ontology O ′ [3]
is a set of tuples called correspondences. Each correspon-
dence (δt, E, t, ςδt→t , s) maps a set of types or concepts δt
from O into one type or concept t in O ′ using a transcoding
function ςδt→t , where E is the explanation for the alignment
correctness in terms of Description Logic. Whenever ςδt→t

is a bijection, the inverse function ςt→δt = ς−1
δt→t is also pro-

vided. An uncertainty score s determines the accuracy of the
correspondence [19, 25], thus providing a valid fitness score
for the overall alignment effectiveness.

At this point, we should ask at which stage we prefer
to execute the query q, either on the still-to-be composed
microservices and then also after the data integration pro-
cess (Local As a View, [26–28]), or always at the end of
such composition process (Global As a View, [29–32]).
These two approaches are interchangeable within the data
integration task. The first possible approach for integrating
the outcome of distinct databases, known as Local-As-View
(LAV) integration, involves performing sub-queries in their
original distinct ontology and providing a uniform represen-
tation of the results. This is further used for running the rest
of the query on an intermediate representation abiding by G

[33, 34]. Global-As-View (GAV) integration is an alternative
approach that aligns the original sources to a chosen target
or hub ontology G before performing the overall query [35,
36]. In both LAV and GAV integration, finding G is cru-
cial in the microservice scenario and shall be determined
by dynamically aligning the client app ontology, sending
the request across the microservices that might be used to
answer the information request. The GAV approach allows
each microservice to run in a safer environment without the
need for internally running queries coming from a third-party
app: on the other hand, themiddleware layer will be in charge
of reformulating the user query into microservice function
calls, where resulting data is then reformulated in terms of the
querying user model. We therefore prefer GAV over LAV for
our microservice orchestration scenario, which can be then
formulated as follows [3]:

Definition 1 (Global As a View) Given a set of Data(bases)
D = { DA, . . . , DZ } having theirModel andMetaModel

expressed through ontologies O = {OA, . . . , OZ }, a user
query p could be run on multiple databases data sources at
the end of the data integration steps: after expressing each
microservice data view in terms of the hub ontology, we
can then aggregate all the entities and relationships using
a algorithm clustering similar data together ν∼= [37]. Such
aggregated data is then queried with p. As a result, a GAV-
driven query GAVp(D,O) can be defined as follows:

p
(
ν∼=

(
QA

Oν
A,G

(
DA

)
, . . . , QA

Oν
Z ,G

(
DZ

)))
(1)

where A expresses the alignment between microservices
ontologies and hub ontology G and QA

Oν
A,G

(
DA

)
represents

the transformation of the data provided by each database DA

under its own exposed ontology OA over the data represen-
tation required by the hub ontology G [3]. �

Please observe that, within a distributed environment, the
apparent sequential formulation of Eq.1 can be easily pro-
jected to different microservices and cloud nodes within an
orchestrated distributed architecture [38, 39].

3 Evolutionary solutions

An evolutionary architecture supports guided and incremen-
tal change, describing the building of the software to be
tested through fitness functions across multiple dimensions
(performance, security, code correctness, code quality) [1].
This idea can be, therefore, extended to the orchestration
of microservice components. This aims at supporting recent
software platformswhere single components collaborating to
the overall computation within a data pipeline might evolve
through time due to updated user requirements [2], while also
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providing computational alternatives for the same intended
result [40]. Still, a fully dynamic environment should be
able to dynamically reconfigure services due to the changed
assumptions at the boundaries. This then requires to com-
pose serviceswhile guaranteeing that the overall composition
satisfies the desired behaviour. We now describe current
attempts to address the evolutionary challenge in data inte-
gration and service-oriented architecture domains.

3.1 Evolving ontologies

Evolutionary data science literature assumes that each
microservice exposes its API with a basic RMI interface
[1, 41], which can conveniently be annotated through an
ontology (i.e. extended schema) representation [42]. Any
schema update of their internal database [43] might also
be reflected in an update of the exposed ontology-driven
communication interface [1]. Furthermore, the possibility of
directly injecting a third-party external component as addi-
tional microservices operating within the ecosystem entails
that each microservice might describe concepts with differ-
ent naming conventions and associated properties [44], thus
requiring to dynamically align all the exposed and interacting
ontologies to form a novel resulting hub ontology [45].

If we also assume that such microservice orchestration
architecture will soon become the backbone of futuristic
smart-city environments [14] where multiple agents roaming
around the city forward real-time requests to microservices
available in the cloud [46],we also need to support third-party
vendor user applications completely agnostic of the result-
ing hub ontology within the microservice ecosystem due to
privacy purposes. This requirement poses the problem of not
having one single target ontology of reference, but rather hav-
ing a final target hub ontology evolving through time while
adapting to disparate user requests.

In this context, ontology evolution is at the heart of data
evolution scenarios [47], as we need to characterise the evo-
lution of a Model for representing the Data of interest. To
do this, we need a modelling tool that describes not only
the concepts or types but also their relationships as well as
provides a suitable decidable inferencemechanism for better-
reconciling types across different representations of our data.
This can happen as the data representation might change by
extending or reducing the metadata information associated
with it [43]. As automated ontology alignments might come
with some uncertainty [47] referring to the data similarity
measures [21, 44], we can decide upon the best final hub
ontology to be used formicroprocess composition by ranking
those through the aforementioned ontology fitness function.

We can, therefore, extend the usual notion of alignments
as follows [3]:

Definition 2 (Multi-Soruce Data Integration System) A
multi-source data integration system [18, 19] is defined as
a triplet 〈G, I,O〉, where G is the hub ontology, represent-
ing the target of all the ontological alignments A(O,G) ∈ I
having O ∈ O as a source (or local) ontology. When G
needs to be found from O, G can be first determined by
cross-aligning all the ontologies inO for then coalescing the
alignment operations together in G via a μ operator [45].

3.2 Supporting run-time configuration evolution

Bybroadening the scale of the use case in Fig. 1 to the context
of a smart-city scenario where client requests are expressed
by IoT devices forwarding them to an osmotic architec-
ture [46], we can consider the aforementioned middleware
orchestration layer as pervasive within the cloud-to-things
continuum. As the number of available microservices and
potential users forwarding requests to them might dramati-
cally increase, the need for load balancing the computations
within the network becomes more pressing. In such contexts,
elasticity requirements [8] audit for specific metrics (e.g.
minimum/maximum CPU usage, memory usage, data fresh-
ness and granularity [48]) to guarantee the meeting of the
Quality of Service constraints through user-defined strategies
re-distributing processes within the osmotic infrastructure.
Asmultiplemetrics are consideredwithin this load-balancing
scenario, this can be easily expressed as a multi-objective fit-
ness function [7] ranking the best load-balancing strategy.

Such recently envisioned scenarios then require a huge
paradigm shift from Data Lakes [49, 50], where data is at
the centre of the service interface, to Data Meshes [51, 52]
where both data, data processing algorithms such as database
refactoring and data transformation through alignments, as
well as better supporting machine learning and business ana-
lytics tools, coexist within the same environment. This also
postulates that the underlying data representation should be
object-oriented4, so to potentially represent both time series
as well as more structured information [36].

3.3 Planning evolutionary architecture governance

Despite the aforementioned elastic data analytics solutions
being effective for achieving load balancing flexibility, these,
on the other hand, mainly assume that the data collection and
integration operations occur within each requesting client.
On the other hand, competing approaches assume to have a
thin client, where the microservice API middleware takes on
the task of performing the overall data analytics operations by
composing microservices, providing either data transforma-
tion operations or data silos, to satisfy an information need.

4 https://web.archive.org/web/20140306143204/http://odbms.org/
Introduction/history.aspx.
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To achieve this, it is also necessary to compose the different
services appearing in the cloud and orchestrate their execu-
tion in a pipeline similar to already-existing distributed data
processing platforms [38, 39].

This section describes two orthogonal approaches in
microservice composition and reconfiguration: the first pro-
vides a first microservice orchestration and composition
by considering both the services’ interfaces through their
exposed ontologies and the user’s requirements (Sect. 3.3.1),
the second focus assumes to have an already-existing service
configuration to be re-shaped under the updated user’s func-
tional requirements (Sect. 3.3.2).

3.3.1 Establishing microservice composition

State-of-the-art literature expresses the service composition
problem in terms of a planning problem via an intermedi-
ate ontology hub [14]. To do so, authors assume that all
services abide by the same Upper Ontology as an Archi-
tecture Description Language, thus describing a process and
its computations in terms of input–output components. This
notion can be further refined by assuming that each input/out-
put data concept describing part of a service interface can
subsume others [42] thus assuming a preliminary align-
ment step across concepts. Given this, the planning problem
of choice for establishing an architecture configuration is
then formalised by considering the user’s provided input
concepts and functional requirements as an initial configura-
tion; actions embody the execution of a single microservice
remote invocation, where preconditions reflect the accepted
input data types and data conditions and the effects describe
the output produced by a specific microservice; the overall
planning goal reflects the user’s expected execution output.
As a consequence, the resulting plan reflects the intended
orchestration of the overall components as well as the asso-
ciated evolutionary architecture governance, thus identifying
which microservices need to be activated and which are the
links to be established across components. When the result-
ing orchestration can be described as a Direct Acyclic Graph
due to the missing Iterate operators, the microservice orches-
tration can be subsequently structured in a layered execution
[42] where each layer will contain all the atomic microser-
vices which can be executed contemporarily as they do not
have execution interdependencies [53].

In this domain, the algorithm used for searching the most
appropriate plan describing the achieved services and their
connections can be structured as either an A� multisource
and multi-layer search, where each node is a service and
each edge is a possible connection across components [42],
or as a genetic algorithm where each chromosome reflects
a candidate plan [14], and each gene reflects an activated
scheduled microservice. While for the former the overall
fitness function F is inversely proportional to the cost of

traversed paths considering the number of overall active ser-
vices and number of steps for carrying out the computation,
in the latter F reflects both the feasibility of combining the
services as well as the suitability over the user’s require-
ments. This characterisation allows the planner to choose the
specific evolutionary architecture governance solution that
maximises the user requirements.

3.3.2 Dynamic architectural reconfiguration

Evolutionary architectures require changing their architec-
ture configuration to adapt to new user requirements. This
requires the machine the ability to problem-solving and,
across all of the possible solutions, to find the one abid-
ing by novel computational requirements, thus potentially
requiring restructuring the link across the components. This
avoids the need to pre-determine the target service com-
position while still requiring the full knowledge of the
current target architecture configuration.Differently from the
aforementioned approaches where microservices are mainly
assumed to be simple input/output functions, the Architec-
ture Description Language of choice (Wright#, Listing 1)
models both microservices and connectors across those via a
specialised process calculus with message passing. This dra-
matically differs from the aforementioned approach, where
most microservices are assumed to be “atomic and inde-
composable”, thus “directly satisfying a single intention”.
Still, this calculus does not formalises the interfaces of these
components and links in terms of ontology concepts, thus
not being possibly used for data-driven process composition
while still providing an orthogonal approach to the former.

After describing each microservice as a specific software
engineering component within an evolutionary topology
while connectors bridge and link different (active) compo-
nents, authors in [54] showed for the first time the possibility
of determining the operations required to transform one net-
work configuration to another through a planning problem
where the actions for (re/dis)connecting and (dis)activating
components within the architecture; the initial configuration
describes the state of activation of each microservice and
the linking between communication channels, allowing the
information to flow for a specific client request; finally, the
planning goal is derived from the functional user require-
ments over the overall architecture functional requirements
in LTL f .

To alleviate the overbearing programmer task of manually
reconfiguring the whole infrastructure due to the changes of
the fitness function F [55], authors in [2] envision a new
approach where F determines the total number of functional
[2] or security [56] requirements being met expressed in
LTL f , where the planning algorithm is set-up to prefer the
minimum amount of architecture restructuring operations.
F is then computed as follows: after providing a multi-trace
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representation of the resulting protocol as per the previous
subsection (Sect. 2.1), an LTL f satisfiability solver evalu-
ates the resulting process resulting over the new functional
requirements to be met, while potentially enforce a further
restructuring of the architecture until all the desired new
requirements are met.

4 Challenges and future works

4.1 Data science

4.1.1 Evolutionary architectures for machine learning
pipelines

Concerning the data science field, given the resemblance of
such architectures’ fitness functions with Machine Learn-
ing ones determining the satisfactory training/fitting of a
model, evolutionary principles were merely applied in the
context of neural network architecture search [57] and hyper-
parameter search, where services are referring to specific
neural network layers, which services provide only one
functionality (computing an output over an input data rep-
resentation), and where data is just represented in terms of
vector embeddings [58] – and not in complex object-oriented
representation. Although later approaches also attempted to
consider tabular CSV data that might undergo transforma-
tion operations, these merely consider data operations over
one single data source, such as missing values imputation
and one-hot-encoding transformations [59]. When consider-
ing multiple data sources, authors assume already reconciled
data with a compatible schema (i.e., an ontological specifi-
cation), where single relationships (i.e., data tables) might
be easily joined into a universe relationship through natural
joins [60]. This does not adequately reflect the generic archi-
tecture proposed by full data mesh and evolutionary database
architectures [43], as it also needs to support schema evolu-
tion on the services’ side [41] resulting in database schema
restructuring operations. Still, the possibility of perform-
ing data integration operations in current machine learning
pipelines is unchallenged, thus requiring the explicit injec-
tion of pre-existing data integration and schema alignment
solutions for automating data reconciliation and integration
processes [3]. As a matter of fact, data integration pipelines
and transformation pipelines [61] often rely onmassiveman-
ual intervention for specifying correct record linkage and
specifying the actual dimension of interest for carrying out
the final analysis.

Please consider that, to the best of our knowledge, current
microservices platforms such as Jolie [62] or even distributed
data pipelines such as PlinyCompute [38] or Apache Flink
[63] are not natively supporting automated data integration
procedures, as they assume the direct intervention of the pro-

grammer to conduct data transformations. Still, this section
will show how this is a required feature for orchestrating dif-
ferent microservices together with the aim of reducing the
task of user query rewriting for any future user information
need. Similar considerations are also given in the current
elastic architecture framework, where the major information
being currently collected mainly involves time series [48] or
numerical data (e.g. images [8]) rather than structured data as
the one encompassed by the use case scenario from this paper.
This then postulates that current distributed data pipelines or
microservices languages are not yet ready to automate evolv-
ing data integration functionalities fully. Therefore, further
work towards this direction is supportedby reusingprior tools
as a substantial building block for the envisioned microser-
vice middleware.

4.1.2 Data integration as a microservice middleware

To exploit the aforementioned distributed processing facil-
ities, we need, as previously mentioned, to exploit the
projection of a sequential computation within a distributed
environment so to support microservices better acting as
external system to be called (e.g. interoperation between
Apache Flink and Apache Kafka5), also supporting the com-
position and pipelining of intermediate computations. To do
this, we might attempt at directly express the service compo-
sition task for satisfying a user information need as a GAV
query rewriting in Eq.1, while each microservice exposes
both data and the access to model facilities as a restful API,
also representable as a query over a distributed database DA.
Furthermore, to adapt to the high variability of the data, unsu-
pervised approaches for ontology alignments are a desirable
feature [44, 64].Due to the similarity of this set-up toCORBA
and pre-existing middleware, we can freely assume to adopt
the Model Object Facility for representing data, mod-
els, and meta-models [3], thus abiding to the object-oriented
representation of data also currently assumed in modern evo-
lutionary architecture literature [41].

In this exercise, we can also overcome the limitations
in current microservice literature by freely assuming that
each microservice can be considered as a library serving dis-
parate functions (i.e., queries) to be called via RMI (e.g.
Apache Kafka). Each method exposed by a microservice
A through its public interface might be considered a query
q A
i (d) parameterizable over some input argument values d
and run over an internal database DA. We can, therefore,
represent A as a finite collection of parameterizable queries
A = {

q A
1 (�), . . . , q A

n (�)
}
; as each of such queries over

DA provides a view over such database definable by finitary
extending the all the possible inputs d described in DA, we

5 https://nightlies.apache.org/flink/flink-docs-release-1.4/dev/stream/
operators/asyncio.html.
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can then describe DA in terms of the global database exposed
through an exhaustive search through the input parameters,
thus defining a function δA(d) = ∪q A

i ∈Aq
A
i (d) for each

d ∈ DA.
Given that δA might accept a limited amount of param-

eters and return only certain entities from the database,
we might expose, for external documentation purposes,
only the concepts/types being accepted as parameters of
the microservices and being returned by it, thus obtaining
a restricted ontology Oν

A describing the interface exposed
by each microservice, thus providing preliminary map-
ping conventions for the local data so to abide by the
microservice platform data schema G [24]. As we might
consider data models generated by AI algorithms as also
data features, future works will address the challenge of
extending microservices’ Upper Ontologies to support the
description of training machine learning algorithms, thus
allowing the usage of machine learning models throughout
the microservice middleware. This will allow the effective
implementation of data meshes pipelines.

Last, this approach will also permit encoding the con-
nectors between microservices as transformation functions
ς , which is currently not explicitly supported by service-
oriented literature.

If considering a LAV approach instead, each client request
p can be decomposed through sub-queries p′ of p, where
each p′ reflects the exposed interface of a microservice.

4.2 Certified fitness functions

At the time of the writing, current evolutionary architecture
literature prescribes the adoption of continuous benchmarks
and fitness function testing for assessing the algorithms’
adequacy over each novel hardware and network configura-
tion, as well as assessing the change related to microservices
update and reconfiguration.

On the other hand, by restricting the expressive power
of the programming languages in use within the archi-
tecture by guaranteeing the coding of always-terminating
procedures, we can extract from all programmes relevant
properties through static code analysis, thus limiting the need
for dynamically testing the architecture to the bare essen-
tials. Thiswill also helpmaximise automation concerning the
overall infrastructure fitness while minimising human inter-
vention in code development and deployment.

4.2.1 Certified computational complexity

Static code analysis can estimate the clock cycles each part
of the code will take after being compiled over a specific
architecture [65]. Still, a reasonable estimate of algorithmic
performance can only be achieved through time complexity

analysis, onwhich the algorithm’s scalability can be assessed
independently from the data load being used in the current
set-up. In order to achieve this through code static analysis,
it is therefore required to restrict the expressive power of
the programming language so that it is always guaranteed to
terminate, therefore requiring a language that is not Turing
complete. These theoretical considerations are in line with
the W3C specifications, prescribing programmers to use the
least-powerful programming language for a given purpose
(Rule of Least Power [66]), and with hard real-time com-
puting requirements, where developers aim for subroutines
that are guaranteed to both finish and doing so before a given
deadline while providing insight of a worst-case scenario
analysis [67].

The C compilers designed for the Certified Complexity
(CerCo) projects [67] showed that it is not only possible to
estimate the clock cycles for running the code on a given
architecture but also determine its overall time and space
complexity when a programme does not contain unbounded
iterations. In fact, if those were allowed, we might end up
with a programme using the fully Turing-complete set-up of
the language, over which it is impossible to have a decidable
halting problem (as we also need to check the terminat-
ing condition within the code if any through static analysis
otherwise). This further corroborates that any language for
supporting evolutionary architectures should definitively be
a total language and, therefore, not Turing complete.

Future works should also attempt to deliver novel method-
ologies for certified distributed computational complexity
assessment by estimating the order of magnitude of the over-
all number of messages being exchanged within a distributed
environment controlled by the microservice middleware.

4.2.2 Decidable Calculi for osmotic computations

Notwithstanding the expressiveness of the previously refer-
enced calculi adequately capturing process synchronisation
and data communication, most of these are Turing-complete:
some property (such as process equivalence based on the
indistinguishability of the programmes on their actions, e.g.
bisimulation) is semidecidable. As decidable programming
languages lead to an extensive expressive power for deciding
on specific programme properties, we also seek fragments of
such calculi adequately capturing communication of remote
processes while being decidable.

One of the first contributions in this regard was the
polyadic π -calculus [68], which achieved such a goal by
preventing the parallel composition of processes within the
recursive definition of processes. Concerning Fig. 1, each
microservice might only run one process (or thread) at a
time, thus completely excluding communications between
sub-processes within each “recursive” microservice. On the
other hand, walking on the footsteps of software with hard
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real-time computing [65], we can easily achieve decidable
computations by bounding the number of active ambiences,
i.e. named collections of running processes that can be also
nested [69]. This is a fairer assumption, as we can always
both estimate the number of processes and resources required
to carry out the computation in realistic cloud and edge
scenarios, thus including the ones considering real urban
settings [46]. Future works should address these challenges
by designing a novel ADL language supporting both cloud
and edge computing environments while also including the
specificities of elastic smart-city scenarios within such envi-
ronments.

Future research directions should also aim to extend such
process calculi with ontological concepts referring to data
input and output (e.g. communication variables): this might
be achievable by decorating existing ADL languages with
notions from Upper Ontologies. This should be the pre-
lude to the definition of a holistic architecture description
language, fully encompassing the description of data prop-
erties with process behaviour specifications through explicit
data-driven technologies. At the time of the writing, Apache
Kafka does not support ontological alignment within their
service discovery process. As a minor note, such novel
ADLs should also support describing data transformations
ς through services via connectors as required by originated
client requirements for data integration purposes.

4.2.3 Certified code and orchestration correctness

The constant addition of new technologies and services
makes the code-correctness guarantee a necessity, as ensur-
ing such data-processing correctness will also guarantee the
correctness of the provided results. As current studies remark
that most OpenSource platforms are severely affected by
such bugs, this need becomes even more pressing in cur-
rent pipeline architectures [70]. So, in the best of the possible
worlds,wewould like to detect bugs before the code goes into
production. This section discusses which are the desired fea-
tures of a programming language supporting the automation
of fitness functions so as to provide correctness guarantees.
We show that this boils down to providing current data sci-
ence practitioners with adequate support for theorem proving
through total and non-Turing complete languages (or, alter-
natively, with termination checking support) providing full
support for dependant types.

The properties sought for such languages are ones that
cannot be just determined through model checking but that
strictly rely on the structural properties of the programming
language and their behaviour. In practice, let us assume that
we must test the algorithm’s ability to effectively return a
sorted list after providing an arbitrary list as an input. Cur-
rent theorem provers allow to test these properties over safe
iterative fragments of programming languages [71] and to

implement recursive algorithms guaranteeing to terminate
by only allowing recursive calls over “subsets” of the data
received as an input [72]. These theorem provers can also
verify the abidance of the specific programme to a given
communication protocol after encoding the latter within the
programming language’s type system [73]. It would be then
interesting to adopt such technologies to guarantee the over-
all correctness of the planned orchestration, thus in terms of
the communication protocol and over the type transformation
required for composing third-party microservices exposing
differently shaped types.

Future work should also consider enabling the interop-
eration between legacy microservices and novel ones [1],
as well as guaranteeing that microservices abide by formal
specifications as addressed by the client’s requests [2, 14].
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