Service Oriented Computing and Applications (2023) 17:25-37
https://doi.org/10.1007/s11761-022-00356-2

ORIGINAL RESEARCH PAPER l‘)

Check for
updates

A core loT ontology for automation support in edge computing

Sahar Ghrab'(® - Imene Lahyani? . Sami Yangui® - Mohamed Jmaiel?

Received: 28 July 2022 / Revised: 20 December 2022 / Accepted: 31 December 2022 / Published online: 10 February 2023
© The Author(s) 2023

Abstract

Service providers provision more and more Internet-of-Things (IoT) services in the cloud for dynamicity and cost-effectiveness
purposes. This is made possible thanks to the introduction of edge computing that brings additional computing and resources
for analytics close to the data sources and thus enables meeting the low latency requirement. Edge nodes should support (i) the
heterogeneity of IoT devices (e.g., sensor, actuator) and (ii) characteristics (e.g., mobility, location awareness). [oT is already
integrated to the hybrid cloud/edge environment. However, the ecosystem lacks of automation due to the previously mentioned
characteristics. Indeed, edge nodes are often manually selected during deployment time, and most of the regular Quality Of
Service (QoS) management procedures remain difficult to implement. This paper introduces a comprehensive semantic model
called EdgeOnto. It encompasses all concepts related to IoT applied in the context of edge computing. The ultimate goal
of EdgeOnto is to automate the several steps that make up the IoT services lifecycle in hybrid cloud/edge environment. On
the one hand, semantics enable an automatic discovery of the relevant edge nodes that are suitable to host and execute IoT
services considering their requirements. On the other hand, it allows supporting the specific QoS procedures that are related
to such setting (e.g., low latency, mobility, jitter). The core ontology was designed with the Protégé open-source tool. A smart
strawberry farming use case was implemented and evaluated for illustration purposes. The results validate the accuracy and
the precision of the designed semantic matchmaker.

Keywords Edge computing - Internet of Things (IoT) - Ontology - Quality of Service (QoS) - Semantic matchmaking

1 Introduction

Internet-of-Things (IoT) service owners are more and more
leaning on hyperscale cloud providers to provision IoT ser-
vices, as well as, to store and to process the generated data.
This trend is motivated by the several advantages that the
cloud computing paradigm brings such as dynamicity, flexi-
bility and cost-effectiveness. However, with the ever-growing

X Sahar Ghrab
ghrab.sahar @ gmail.com

Imene Lahyani
imen.lahyani @enis.tn

Sami Yangui
yangui @laas.fr

Mohamed Jmaiel

mohamed.jmaiel @redcad.org
I MIRACL Laboratory, University of Sfax, Sfax, Tunisia
2 REDCAD Laboratory, University of Sfax, Sfax, Tunisia

3 LAAS-CNRS, Université de Toulouse, INSA, 31400
Toulouse, France

workloads that is tied to 5G telco network, automation,
real-time analytics and IoT, service owners started looking
elsewhere for their computing needs.

Notably, edge computing enables meeting these comput-
ing needs. In fact, edge computing is currently reshaping IT
and business computing. It brings additional resources close
to the end-users and data sources so that the latency-sensitive
computing and data analytics could be processed within a
low network latency [24]. Nevertheless, this brings additional
challenges that need to be tackled to provision IoT services
in such setting. Indeed, edge nodes are highly heterogeneous
in terms of computing capabilities (e.g., supported run-time,
CPU and RAM workload, storage capacity, autonomy), net-
work interfaces (e.g., supported communication protocols),
behavior (e.g., mobile or motionless, online or offline). These
characteristics make the operation of edge computing diffi-
cult and costly [24], in particular for IoT where applications
are latency-sensitive and services are often bound through
complex gateways and overlay networks.

IoT is already integrated to the hybrid cloud/edge envi-
ronments. However, the existing works mainly focus on

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-022-00356-2&domain=pdf
http://orcid.org/0000-0002-1516-7896

Service Oriented Computing and Applications (2023) 17:25-37

Cloud level v m
fona
maQtT
. "D 2= N
. i
Edge level — " %
q— User equipement
Collector node by &
e | Decision support
Analytics
| LORA Alerts and massages
— User access
‘ © ! B
Device level ‘ V -
nsornode %

Fig.1 Smart strawberry farming

specific features (e.g., see [8] for IoT services deployment,
see [22] for 10T services rescheduling) and fail to fully sup-
port the whole steps that make up the 10T services life cycle.
The reader should note that IoT services inherit the same
Service-Oriented Architecture (SOA) life-cycle phases (i.e.,
discover, deploy, execute and manage during run-time) [34].
SOA principles (e.g., service abstraction, discover ability,
and composability) ensure the viability of network services’
ecosystem that could be dynamically and flexibly provi-
sioned, thus coping with changeable IoT needs and dynamic
Quality Of Service (QoS) requirements along with context
conditions. In addition to these limitations, the current edge
frameworks for IoT lack of automation when implementing
these steps. Edge nodes are often manually selected during
deployment time, and most of the regular QoS manage-
ment procedures remain difficult to implement. The QoS
procedures need to be executed during run-time and aim
to optimize a set of metrics based on predefined service-
level objectives. The latter might vary from one use case to
another depending on the involved data and IoT devices and
expected outcomes. The objectives could, for instance, range
from faster response time to less network costs, low latency,
less service breakdown or better flow control of data, com-
munication, efficiency and accuracy [10].

1.1 Motivating use case

The motivating use case is from smart agriculture research
field. It is inspired from the use case introduced in [12]
where the authors propose an edge framework to handle the
collection, analysis, prediction, and detection of heteroge-
neous data in strawberry farming. Strawberries are sensitive
fruits that are afflicted by various pests and diseases. There-
fore, there is an intense use of agro-chemicals and pesticides
during production. Due to their sensitivity, temperatures or
humidity at extreme levels can cause various damages to the
plantation and to the quality of the fruit.

The proposed framework is depicted in Fig. 1. This frame-
work monitors, collects and processes data in real time to (i)
detect seven of the most common strawberry diseases and (ii)

@ Springer

determine the required type and amount of chemical fertilizer
and medication depending on the strawberry size, age and
disease. To that end, it relies on several sensor nodes, a col-
lector node and actuators. These devices communicate with
the computing nodes through the collector module that plays
the role of IoT gateway. The communication relies on LoRa
protocol. The computing nodes integrate machine learning
capabilities for capturing outliers in collected data and exe-
cute a computer vision model using Yolo v5 architecture to
identify the prospective disease.

The provisioning of this framework in large strawberry
farms requires, in addition to the deployment of the sensors
and actuators, the deployment of several computing entities
(e.g., raspberry nodes) that could host the computer vision
and machine learning algorithms. These nodes must be suf-
ficient in number to cover the whole farm and to allow close
and fast interactions between the devices and the algorithms.
The end-to-end selection should optimize the data trans-
fer time and the system reaction (e.g., detecting a disease,
control an irrigation actuator for plant watering with med-
ication) as fast as possible and with minimal energy cost
to save devices autonomy and durability. Furthermore, one
can imagine the deployment of monitoring mobile robots
over the farm. The robots will be responsible of holding the
monitoring sensors and the actuators instead of having them
motionless. In that case, the system should be able to sup-
port the devices mobility and dynamically select the most
appropriate gateway and computing nodes to optimize on-
the-fly the previously mentioned service-level objectives. A
precise and relevant semantic description of the nodes capa-
bilities and current workload is the considered alternative in
this work to automate and enable efficient selection of the
edge nodes while optimizing the QoS metrics.

1.2 Contributions and obtained results

This paper introduces a comprehensive ontology (called
EdgeOnto). This ontology involves semantic concepts for
both IoT domain and edge domain. It supports edge com-
puting features and integrates high-level abstraction of the
complex information and incremented knowledge at the net-
work edge (e.g., ad hoc topology, breakdown, mobility). The
ultimate goal is to support the automation of the QoS man-
agement procedures in such environment. Specifically, this
is achieved by enabling the instantaneous semantic matching
between the IoT services requirements, from one side, and
the edge nodes workload/position on the other side.

The core domain of EdgeOnto was designed with Pro-
tege,! a free, open-source ontology editor and framework for
building intelligent systems. As for the validation, the smart
strawberry farming use case was implemented and evalu-

1 https://protege.stanford.edu/.

https://protege.stanford.edu/

Service Oriented Computing and Applications (2023) 17:25-37

27

ated. The results validate the accuracy and the precision of
the designed semantic matchmaker.

2 The state of the art

This section firstly summarizes the different ontologies pro-
posed in [oT domain. The reviewed ontologies cover sensor,
security, and applications ontologies. These ontologies focus
on devices (sensor, actuator), its lifecycle, etc. The detailed
IoT ontologies do not support the concepts of security, loca-
tion, place, or time in the exception of some which do not treat
it deeply. These important concepts are especially useful in
IoT domain in the context of edge computing (see Sect. 1).
For thus, some ontologies related to location, context, and
time are integrated in this section.

2.1 Ontologies for sensors

Existing ontologies for sensors in the literature aim to solve
heterogeneity problems associated with the hardware, soft-
ware, and the data management aspects of sensors (sensor
capabilities, extensibility, data access and sharing, sensor
data description, sensor discovery).

The SSN (Semantic Sensor Network) ontology [11] des
cribes sensor resources and the data collected through these
sensors. The main concepts proposed are sensor, observation,
and device.

The SOSA (Sensor, Observation, Sample, and Actuator)
ontology [19] is a redesigned SSN ontology. The SAREF
(Smart Appliance REFerence) ontology [33] reuses and
aligns concepts and relationships in existing appliance-based
ontologies and is dedicated to the management of energy
and services in smart homes. Its main proposed concepts are
Device, Service, Energy, Task, Function and Measurement.

Semantic actuator network (SAN) ontology [26] is used
for the description of the actuator concept and its charac-
teristics (Actuator, Actuating Device and Actuation). The
OntoSensor ontology [28] extends concepts from other
ontologies (SensorML, Sumo, ISO-19115) to allow con-
cepts for the identification of sensor categories, behavior,
relationships, functionalities, and meta-data regarding sensor
characteristics, performance, and reliability. The MyOn-
toSens ontology [25] is an extension of OntoSensor. It
describes sensor observations and capabilities to reason over
the collected data for the domain of wireless sensor networks
(WSN).

2.2 Context-aware ontologies
Context-aware ontologies aim to identify information about

context like place, agent, event, latitude, longitude, altitude,
and location. In the computation context, they express that

“context is any information that can be used to characterize
the situation of an entity. An entity is a person, place or object
that is considered relevant to the interaction between a user
and an application”.

Context can be classified on the one hand as external
or internal and the other hand as physical or logical [5].
External or physical contexts are those that can be measured
using physical sensors, while internal or logical contexts
are those that are explicitly specified by users or captured
by monitoring user interactions. Context awareness bridges
the gap between real things and the virtual world in the
IoT through acquiring, analyzing, and interpreting relevant
context information [23]. [27] defines an Internet-of-Thing
context-awareness model that accurately represents context
in IoT. The context model is a hierarchical structure showing
contexts related to Resources, Actors, Ambients and Poli-
cies. This context model includes User context, Location
context, Activity context, Personal context, Mood context,
Time context, System context, Environment context and
Device context. Context-aware ontologies are classified into
generic ontologies (information provided by mobile device
sensors) and specific domain ontologies (university domain,
smart information provided by mobile device sensors, both
physical (e.g., WiFi, Bluetooth, etc.) and virtual (e.g., user
schedule, web-logs, etc.) to support context-aware services.
The proposed ontology defines the relations between differ-
ent user locations and the contexts identified. The ontology
proposed by [3] supports the devices’s discovery and their
location in smart-home domains using concepts like Person,
Sensor, Device, Location, etc. The ontology CONON (CON-
text ONtology) proposed by [32] models context in pervasive
computing environments and supports logic-based context
reasoning.

2.3 Location-aware ontologies

Location-aware ontologies describe locations of things like
geographical coordinates (altitude, latitude, and longitude).
Location is used to describe the context location, its indoor
and outdoor space, and the property of the environment
(external context). Location is used to describe the spatial
context (partly, physical context) of users/devices [4]. Loca-
tion and context are closely linked and dependent. Different
models can be used for defining entities locations [15]. The
considered models are as follows:

e Geometric models (comprising Cartesian coordinates)

e Set-theoretic models (for defining location as an element
of a set, e.g., cellular location, WiFi AP location, etc.)

e Graph-based models (for defining locations in physically
grounded networks, social networks, etc.)

e Semantic models (for defining locations defined using
human-friendly notations)

@ Springer

28

Service Oriented Computing and Applications (2023) 17:25-37

InIoT domain, location informations are often collected from
sensor data (like users’ mobile devices to estimate device
location). WGS84 ontology describes abstract concepts for
defining spatial things (buildings, people, etc.) and tempo-
ral things (events, or time duration). It also describes the
geographical locations of these things by using concepts for
defining the geo-coordinates using latitude, longitude, and
altitude.

2.4 Time-based ontologies

Time-based ontologies are used to describe the temporal con-
text which include time, duration, and some temporal aspects.
Time modeling detects the behavior of a system at an interval
or duration or point of time or the actions to be performed
in specific temporal entity. The most popular and commonly
used time based-ontology is OWL-Time [17]. It is reused to
propose other time-based ontologies. It is focused on describ-
ing date-time information specified in Gregorian calendar
format.

DAML-Time ontology [18] is focused on concepts to pro-
vide a common understanding of time, whereas DAML-S
ontology [1] provides temporal concepts required to define
a web service such as profile, process, and time. The
KSL-Time (Knowledge System Laboratory) ontology distin-
guishes between different types of intervals and granularity.
The Timeline ontology [20] extends Time Ontology by pro-
viding various concepts representing granularity of time to
provide more flexibility to the annotations.

2.5 Security and QoS ontologies

STAC ontology [16] is an IoT security ontology. It defines
the main security concepts (cryptographic concepts, security
protocols, security tools, security properties) and classifies
threats and countermeasures by domain and according to the
OSI model. The main purpose of this ontology is to be reused
in numerous domains such as security of web applications,
network management or communication networks (sensor,
cellular and wireless).

In IoT domain, cloud computing and edge computing are
widely used to store, deploy and analyze data coming from
IoT devices. Due to network overload and changing trans-
mission delay, the QoS offered can be different. That’s why,
it is important to measure the QoS, which is dependent on
many factors like availability, network, robustness, security,
scalability, performance, etc. In the literature, different QoS
ontologies are proposed. QoS is the description or measure-
ment of the overall performance of a service (like telephony,
computer network) particularly the performance seen by the
users of the network. Jiang and Aagesen [21] propose a
QoS ontology based on functional properties representing
service functionality, which are modeled in terms of oper-

@ Springer

ations, inputs, outputs, preconditions and effects. However,
while non-functional properties comprise business policies,
QoS properties as well as context policies. QoS properties
include QoS parameters and QoS policies (rule). QoS param-
eters represent security, availability, scalability, reliability,
performance, etc.

[31] proposes an ontology for knowledge representation
in the Internet of Things composed of different modules like
IoT services, IoT resources, QoS and Qol. In IoT domain,
QoS and Qol (Quality of information) are important, which
exhibit a much higher level of dynamicity. In this work, [31]
enumerates all the QoS parameters and Qol that are common
to many applications domains. Reference [31] reuses DUL
ontology for ontology building. This ontology will be reused
for EdgeOnto building and precisely for the QoS.

2.6 Ontologies for loT applications

In IoT domain, many ontologies are proposed: IoT ontology
[13], IoT Lite [7], and IoT-O [29].

IoT ontology [13] is based on the reuse of other existing
ontologies like SSN ontology, DUL (DOLCE Ultralite Upper
ontology) ontology and QUDT (Quantities, Units, Dimen-
sions and Data Types) Ontology, whereas IoT-Lite ontology
reuses SSN ontology. The description of IoT concepts is
based on three classes: objects, system or resource and ser-
vices. IoT devices are classified into three classes: sensing
devices, actuating devices, and tag devices.

IoT-Lite is focused on sensing, although it has a high-level
concept on actuation that allows any future extension on this
area. Services are described with a coverage representing the
2D-spatial covered by the IoT device.

IoT-O ontology presents connected device networks and
semantically describes devices and data in order to make
systems aware of their environment, its evolution, and the
changes they can bring to it. Such a description allows smart
agents to transform their environment thanks to connected
actuators, according to the perceptions they have of it through
connected sensors. IoT-O is based on following modules:

e Sensing module: describes the input data. Its main classes
come from SSN ontology (ssn:Observation, ssn:Sensor,
ssn:Device, etc.).

e Acting module: describes how the system can interact
with the physical world. Its main classes come from SAN
(san:Actuator and san:Actuation). It also reuses SSN
classes that are not specific to sensing such as ssn:Device

e Life-cycle module: models state machines to specify sys-
tem life cycles and device usage. Its main classes are
lifecycle: State and lifecycle:Transition.

e Service module: represents web service interfaces. Its
main classes come from msm:Service and msm: Opera-

Service Oriented Computing and Applications (2023) 17:25-37

29

tion. Services produce and consume msm:Messages, and
RESTHful services can be described with hRest.

e Energy module: IoT-O’s energy module is defined by
PowerOnt. It provides the poweront:PowerConsumption
class, and a set of properties to express power consump-
tion profiles for appliances.

3 Requirements and related work review

The previously discussed ontologies summarize the most
important concepts used in IoT domain (sensor, actuator,
device, service, etc.). Data generated from the different
devices are important and should be stored, treated and ana-
lyzed through the nearest edge nodes in order to increase
high bandwidth, faster treatment, less transmission delay and
less packet loss. That’s why different concepts should be
tacked into consideration in IoT ontologies proposed. These
concepts are related to edge computing characteristics. In
fact, edge node should support mobility, data heterogeneity,
context-awareness (time and location), security and QoS.

The assessment of existing IoT ontologies regarding the
presence of key concepts is summarized in Table 1. These
ontologies are evaluated among a set of conceptual require-
ments detailed below (see paragraph 3).

A set of symbols are used to determine whether the con-
ceptual requirement is supported by the ontology or not:

e *: The conceptual requirement is not supported by the
ontology.

e ** : The conceptual requirement is quite supported by
the ontology.

e **%: The conceptual requirement is well supported by
the ontology.

Requirements The evaluation of related ontologies is based
on conceptual requirements identified as follows:

e CR1: “Cloud” constitutes the servers accessible on the
Internet as well as software and databases which run on
these servers. The servers located in the cloud are hosted
in data centers distributed around the world.

e CR2: “Edge” constitutes a computer that acts as an end
user portal for communication with other nodes. In this
paper, edge node allows the communication between
cloud and IoT device.

e CR3: “Location” constitutes context location of an entity
in general (e.g., device, actuator, cloud, edge). A distinc-
tion is made between physical place and virtual place.

e CR3.1: “Physical place” constitutes an absolute position
with geographic coordinates.

e CR3.2: “Virtual place” constitutes a relative position of
an entity.

e CR4: “Time” constitutes the information’s given for time
description (point in time, interval, duration, etc.).

e CRS: “Security” constitutes a characteristic of using data.
Data can be accessed only to suitable persons in suitable
time and location and with some privilege.

e CRO6: “QoS” constitutes the quality of service offered in
terms of properties and metrics used.

None of the above-reviewed work meet all the require-
ments (Table 1). More specifically, some ontologies meet
partially the third, fourth, fifth and seventh requirements
(time and context-awareness). None meets even the first, the
second and the third requirements (edge, cloud, virtual loca-
tion).

Nowadays, the use of IoT devices is coupled by the use of
cloud computing and edge computing for many reasons.

First, it is an opportunity to analyze data generated by loT
devices locally (the nearest edge node used) without sending
it to cloud. This can facilitate useful data identification and
reduce packet loss and transmission delay. Some applications
need real-time treatment, which can be guaranteed by edge
computing.

Second, edge node support data heterogeneity of IoT
devices.

Finally, it is an opportunity to know the localization of an
object which can be physical or virtual, the quality of service
offered and information’s about time.

To put it in a nut shell, an Iot ontology based on the use
of edge computing should integrate other concepts useful in
addition to the concepts already presented in the literature in
relation to device, life cycle, consumption and other.

The next section gives an overview about these concepts
and the different requirement which should be respected on
the one hand. On the other hand, it details reused ontologies
for the design process of our EdgeOnto ontology.

4 EdgeOnto principles and design model

The design process of EdgeOnto is based on the NeOn
methodology presented in [14]. The NeOn methodology
is used for building ontology networks and is based on
the “divide-and-conquer” strategy which decomposes the
general problem to be solved in different sub-problems rep-
resented by nine scenarios combined among them [14].

The first step of the NeOn process is to define conceptual
and functional requirements (detailed in Sect. 4.1). Con-
ceptual requirements determine the concepts that should be
present in the EdgeOnto and are used to analyze existing [oT,
time-based, location-based, context-awareness and security
ontologies detailed in Sect. 3.

@ Springer

30

Service Oriented Computing and Applications (2023) 17:25-37

Table 1 Existing ontologies

.revie\.:v in the li.ght of the Type Ontology CR1 CR2 cRAL CR3 cR3A CR4 CR5 CR6
identified requirements

Sensor SSN * * * * * * %
SOSA * * * * * * *
SAREF * * * * * * *
SAN * * #* * * * *
Onto Sensor * * * * * * *

Time DAML-Time * * * * sk % %
DAML-S * * * * Hkk * *
KSL-Time * * * * skk % %
OWL-Time * * * * Hokok * *
Timeline ontology * * * * gk *

Location WGS84 ontology * * ok * Hk * %

Context CONON * * ok * % * *
Ontology of [3] * * * * % * *

Security STAC * * #* * * ok *

QoS Ontology of [31] * * #* * * LS ok
QoS ontology [21] * * * & * skt EEE

IoT IoT ontology * * * * * # *
IoT-Lite * * ok * * # *
1oT-O * ® * sk ok * *

As recommended by NeOn, reusable ontologies that are
compliant with parts of the requirements are integrated in our
design process and presented in Sect. 4.2.

4.1 Functional requirements

Functional requirements regard the ontology structure and
design principles. Reusability is an important aspect of
ontology. Many approaches can be used to solve ontology
reusability.

e Modularization: designing ontologies in separated mod-
ules makes them easier to reuse and/or extend [2]. In IoT
applications, many domains can be integrated and it is
difficult to capture them in the same ontology. Accord-
ing to specific needs and goals, modular ontologies can
be combined together [29].

e Reuse of Existing Sources: in order to avoid redefinition
and prevent redefined concepts from having to align a
posteriori [29].

e Alignment to Upper Ontologies: The concepts expressed
by upper ontologies are intended to be basic and univer-
sal to ensure generality and expressivity for a wide range
of domains especially for IoT domain. These concepts
are meta, generic, abstract and philosophical. The advan-
tage of top-level ontologies is to gather lots of available
knowledge and create super structures for information
that provide interoperability for many applications [9].

@ Springer

4.2 Reused ontologies for EdgeOnto

For the design process of EdgeOnto, we reuse some existing
ontologies: The IoT-O ontology [29], the description ontol-
ogy for knowledge representation in the IoT domain [31], as
well as, the DUL ontology.?"3

4.2.1 DUL ontology

DUL relies on DOLCE+DnS Ultralite ontology.* It is a sim-
plification and an improvement of some parts of DOLCE
Lite-Plus library,’ and Descriptions and Situations ontol-
ogy.® The DUL ontology main concepts are presented in
Fig. 2.

The main abstract classes of DUL ontology are:

e DUL:Abstract: Any entity that cannot be located in
space-time (like mathematical entities: formal semantics
elements, regions within dimensional spaces, etc.).

2 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.

3 https://www.w3.0rg/2005/Incubator/ssn/wiki/ Alignement_to_
DUL_Upper_Ontology.

4 https://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_
Ultralite.

> https://dolce.semanticweb.org.

© https://www.ontologydesignpatterns.org/wiki/Ontology:DnS.

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://www.w3.org/2005/Incubator/ssn/wiki/Alignement_to_DUL_Upper_Ontology
https://www.w3.org/2005/Incubator/ssn/wiki/Alignement_to_DUL_Upper_Ontology
https://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
https://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite
https://dolce.semanticweb.org
https://www.ontologydesignpatterns.org/wiki/Ontology:DnS

Service Oriented Computing and Applications (2023) 17:25-37

31

V@ Thing
v Entity
V- Abstract
. p@ 'Formal entity’
\ Region
Amount
'Physical attribute’
'Social attribute’
'Space region’
SpatioTemporalRegion
: 'Time interval’
b0 Event
p-- @ InformationEntity
V- Object
p---@ Agent
, ObjectAggregate
Y 'Physical object’
. = 'Physical agent’
b 'Physical artifact’
b 'Physical body’
: 'Physical place’
v 'Social object’
p--@ Collection
b0 Concept
b Description
‘Information object’
= Place
b 'Social agent’
Quality
b Situation

.2 DUL ontology tree concepts

DUL:Event: Any physical, social, or mental process,
event, or state. More theoretically, events can be clas-
sified in different ways, possibly based on "aspect’ (e.g.,
stative, continuous, accomplishment, achievement, etc.),
on ’agentivity’ (e.g., intentional, natural, etc.), or on ’typ-
ical participants’ (e.g., human, physical, abstract, food,
etc.).
DUL:InformationEntity: A piece of information, be it
concretely realized or not. It is a catchall class, intended
to bypass the ambiguities of many data or text that could
denote either an expression or a concrete realization of
that expression.
DUL:Object: Any physical, social, or mental object, or
a substance. Following DOLCE Full, objects are always
participating in some event (at least their own life), and
are spatially located.
DUL:Quality: Any aspect of an Entity (but not a part of
it), which cannot exist without that Entity. For example,
the way the surface of a specific PhysicalObject looks
like, or the specific light of a place at a certain time, are
examples of Quality, while the encoding of a Quality into,
e.g., a Physical Attribute should be modeled as a Region.
DUL:Situation: A view, consistent with (’satisfying’) a
Description, on a set of entities. It can also be seen as a

‘relational context’ created by an observer on the basis
of a ’frame’ (i.e., a Description).

For the rest of the paper, we have identified some conven-
tions to follow. The concepts’ names related to each ontology
used are in bold and have the sans serif font different from
the normal text. The concepts’ names are proceeded by the
name of the corresponding ontology.

4.2.2 10T-O ontology

Reference [29] presents a core-domain modular IoT ontol-
ogy with a vocabulary to describe connected devices and
their relation with their environment. IoT-O is reused in our
EdgeOnto because it is based on DUL ontology as well as
other reference existing related to IoT (like SSN, life cycle,
msm, PowerOnt, SAN). More informations are given about
I0T-0O in Sect. 2.6. The IoT-O OWL file is available at the
following address.”

4.2.3 Knowledge representation ontology

Reference [31] presents an ontology for knowledge represen-
tation in the IoT domain and discusses how it can be used to
support tasks such as service discovery, testing and dynamic
composition (see Sect. 2.5). The main concepts reused of the
description ontology [31] are QualityOfService, loTService
and loTResource. For facilitating concepts’ referencing, we
give the acronym DO to the Description Ontology of [31].
The next section details the core domain EdgeOnto ontology
applied for IoT domain in the context of edge computing.

5 EdgeOnto architecture and specifications

This section firstly discusses the several modules (i.e., [oT,
location and time-awareness, and QoS management) that
make up the EdgeOnto core domain. Our ontology is OWL-
based (ontology web language). For each module, we detail
the multiple defined concepts, as well as, the relations
between them. Then, the second subsection formalizes the
end user requests to query EdgeOnto. This is followed by the
description of the associated semantic matching procedure.

5.1 EdgeOnto core-domain
EdgeOnto answers to the following questions: What domain
EdgeOnto will cover (IoT domain applied to Cloud and Edge

Computing)? For what EdgeOnto will be used (searching the
nearest edge to the IoT device and choosing the most suitable

7 https://www.irit.fr/recherches/ MELODI/ontologies/IoT-O.html.

@ Springer

https://www.irit.fr/recherches/MELODI/ontologies/IoT-O.html

32

Service Oriented Computing and Applications (2023) 17:25-37

one)? For what types of queries, EdgeOnto should provide
answers (proximity, similarity)? A deep analysis is under-
taken to extract the main concepts related both to cloud,
edge computing and its use in IoT. Related fields used in
this analysis are fog computing, multi-access edge comput-
ing, time-based, location and IoT ontologies. The concept
extracted is represented already by the conceptual require-
ments.

Secondly, an abstraction exercise is undertaken for iden-
tifying the main common concepts shared by various IoT
applications and using cloud and edge computing. Concepts
are organized as a class hierarchy where abstract concepts
will be refined with more concrete ones specific to each
domain application. They are also described with properties
and connected to other concepts with semantic relations. We
tried not to reinvent the wheel, so we further reuse existing
ontologies (see Sect. 4.2).

The design process of EdgeOnto is based on:

e the formal specification of the functionalities achieved
by EdgeOnto. It reuses both DUL, [oT-O and DO [31]
ontologies and describe the main concepts related to IoT
domain applied in the context of edge computing (see
Sect. 4.1).

e the formal specification of what precisely the EdgeOnto
needs/requires for identifying time, location and QoS,
edge, cloud. In fact, EdgeOnto covers the conceptual
requirements CR1, CR2, CR3, CR4, CRS5 and CR6.

. After importing reused ontologies, a matching process is
undertaken to integrate (i) new concepts to added and (ii)
align concepts reused.

EdgeOnto is based on three modules:

e [oT module: describes the main concepts related to IoT
(IoT-Thing, device, actuator, sensing device, etc.) and
edge computing (edge, cloud).

e Time and location module: describes the main concepts
related to time and location of each object in EdgeOnto
(for example, location of an IoT-Thing in point of time,
location of an edge node in instant t, location of a cloud
node, etc.)

e QoS module: describes the quality of service between
EdgeOnto objects (IoT devices, edge and clouds).

A set of semantic relations are defined in EdgeOnto rep-
resented in Table 2.

5.1.1 loT module
This dimension encompasses four main concepts, namely

EdgeOnto:Cloud, EdgeOnto:Edge, EdgeOnto:Resource and
loT-O:loT-Thing (Fig. 3).

@ Springer

@ Cloud

* 9 Entity

— Resource

A N iR BN Ehysu:alResourc

2 'Physical
object’

© Object =

 loT-Thing

i " Device - - p :

[

o Server] 4 [Actuator]
& Computing_devic

I
Q

loT-Gateway [W] e

.3 EdgeOnto concepts related to IoT

IoT-Thing refers to device (loT-O:Sensing_device,
EdgeOnto:Actuator, EdgeOnto:Mobile_device and
EdgeOnto:Computing_device)

DO:loT-Resource which can be a server or an Iot -
Gateway.

A resource can be physical (EdgeOnto:PhysicalResource)
or virtual(EdgeOnto: VirtualResource) and is used by a
cloud or an edge.

Cloud or edge (represented, respectively, by EdgeOnto
by EdgeOnto:Cloud and EdgeOnto:Edge) are nodes pro-
grammed enabling recognition, processing or forwarding
transmission to other nodes.

— A node cloud (datacenter, database, server, etc.) is
related to cloud computing which is defined by NIST
as “a model for enabling convenient, on demand
network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provi-
sioned and released with minimal management effort
or service provider interaction’.

— Anedge node (switcher, router, small/macro base sta-
tion, etc.) is a node that acts as an end user portal
for communication with other nodes (cloud node or
device node).

— Edge nodes are located between device
(EdgeOnto:Device) and cloud (EdgeOnto:Cloud)
and can facilitate computations nearer to the source
of data (or where data is generated) and can incorpo-
rate strategies for remotely enhancing capabilities of
front-end devices [30].

Service Oriented Computing and Applications (2023) 17:25-37 33
-rr:lgiieozns EdgeOnto’s semantic Dimension Relation Range Target
IoT EdgeOnto:communicate Edge Cloud
EdgeOnto:access Device Edge
Dul:is used by Resource Object
Location, Time DUL: is location of Entity Entity
DUL: near to Entity Entity
DUL.: is region for Region Entity
QoS DUL: offers Object Service
EdgeOnto: hasQoS Service QualityOfService
[e] N It TR] " I ———] | ® 'space region’ DUL:Region and DUL: Entity.The inverse relation of DUL:ls

@ ‘Time interval'

& SpatioTemporalR
egion

*® Physical —
object! ——) Phys!cal

place

* @ 'social object’

Fig.4 Concepts related to location and time dimensions

*® object |

1 Place ‘

5.1.2 Location and time-awareness module

The concepts proposed in this dimension are inherited from
the DUL ontology (Fig. 4). For time dimension, we reuse
mainly the concept of DUL:Time Interval defined as “any
region in a dimensional space that aims at representing time”.

For representing location, three types of place can be dis-
tinguished:

e Dependent location (represented by DUL: Place): is geo-
graphic entities and non-material locations determined
by the presence of other entities or of pivot of events and
signs as well as identified as complement to other entities.
For example, the area where the mobile phone is located,
surrounding of a temperature sensor

e Non-dependent location (represented by DUL: Physical
place): can exist independently. It refers to a physical
place where a physical object is inherently located. For
example, a room, a building.

e Abstract or dimensional location (represented by DUL:
Space Region): is any specific region in a dimensional
space thatis used to localize an entity (for example, cloud,
edge node, device, etc.).

The semantic relation DUL: is region for is defined
between DUL:Region and DUL: Entity. In EdgeOnto, this
relation is available between DUL:Space Region, which is a

region for is DUL:Has region

The semantic relation DUL:Has location is defined between
DUL:Entity and DUL:Entity. In EdgeOnto, this relation
is available between any entity (like EdgeOnto:Cloud,
EdgeOnto:Edge, EdgeOnto:Device, etc.) and DUL: Place or
DU:LPhysical place which are DUL:Entity. The inverse rela-
tion of DUL:Has location is DUL:ls location of. To ensure
a consistent instantiation of concepts, Semantic Web Rule
Language (SWRL) rules (including axioms) help enforce
restrictions on attribute values and semantic relations, as
well. Hereafter, we only exemplify SWRL rules referring to
concepts. For example, Eq. 1 formally reflects the following
statement: “Any EdgeOnto (?x) has location a place (?y) or a
physical place (?z) and has region some space region (?p) dur-
ing a time interval (?t)”. Informally, each concept related to
EdgeOnto (like Edge, Cloud or device) should have at least a
location (which can be a physical place or a dependent place)
during a time interval or a point of time.

EdgeOnto(?7x) —
hasLocation(?x, (place(?y, 7x) |

physicalplace(?z, 7x)))A n
hasRegion(?t, SpaceRegion(?x, ?p),

Timelnterval(?t))

5.1.3 QOS management module

QoS is the description or measurement of the overall perfor-
mance of a particularly the performance seen by the users of
the network.

Different measurements are taken into account to char-
acterize and evaluate QoS like availability, performance,
reliability, scalability, and security.

The ontology proposed by [31] uses the DUL ontology and
define the concept of Quality of Service (DO:QualityOfService)
as a DUL:Information Object.

@ Springer

34

Service Oriented Computing and Applications (2023) 17:25-37

P * @ InformationEnti
Ly
'Information
object'
QualityOfServic
E
Pa , & -
RobustnessQoS AvailabilityQoS \

Fig.5 Concepts related to QoS dimension

NetworkQualityO
fService

In IoT-O, reference [29] reuses also the DUL:Information
Object which is a piece of information, be concretely real-
ized or not. It is intended to bypass the ambiguities of many
data or text”.

By aligning ontology of [31] and IoT-O, DO:

QualityOfService is treated in this paper as an DUL:Information

Object which is DUL:Information Entity (Fig. 5).

In I0T-O, a semantic relation l0T-O:hasQoS is defined
between loT-O:Service and DO:QualityOfService. In [29],
loT-O:Service is “a set of operation and provides a user a way
to issue requests through an interface. Underlying implemen-
tation need not to be known by the end user”.

SWRL rules are defined to infer new semantic relations
between instances during concept instantiation related to
QoS dimension. For instance, Eq. 2 formally reflects the fol-
lowing statement: “Any EdgeOnto (?x) that offers a service
(?y) should has a specific quality of service (?u)”. Informally,
each EdgeOnto concept defined as an object (like device,
cloud, or edge) offers a certain service which has a quality.
The quality of service offered is already measured by differ-
ent metrics in the literature.

EdgeOnto(?x) AN of fers(1x, Service(?y)) @
— has QoS (?x, Quality O f Service(?z, Tu))
- x corresponds to the EdgeOnto instance(s) to be retrieved.
5.2 User request building
We define requirement (REQ) as a set of concepts in
EdgeOnto requested by the user U;. We have already detailed
the set of requirement in Sect. 3. Formally, Eq. 3 represents
the syntax used for specifying REQ.
REQ; = EdgeOnto(?x)[AConcept;(?x, y)]j=1.n 3)

where

e Concept; € EdgeOnto (concepts related to this ontol-
ogy).

@ Springer

e Note U; can refine EdgeOnto into concrete concepts
related to a specific domain.

5.3 Semantic matching

Semantic matching is a technique used to identify informa-
tion (concepts in the case of ontology) which is semantically
related. The semantic match maker algorithm takes an OWL-
S request for the user as input and iterates every OWL-S
advertisement in its repository in order to determine a match
[6]. In the OWL-S approach, functionality of a service is
described in terms of inputs, outputs, preconditions and
effects. Input and output terms of the service are expressed as
concepts belonging to a set of ontologies. An advertisement
(Advt) and a query (Query) match if their outputs and inputs
match.

e For every input parameter in Advt, there is one input
parameter in query. Let Query;, and Advt;, represent
the list of input concepts of query and the advertisement,
respectively. The service can correctly perform the task
if all the input concepts defined in the advertisement are
satisfied by the requester (Eq. 4).

e For every output parameter in Query, there is one output
parameter in Advt. Let Query,,; and Advt,,; represent
the list of output concepts of query and the advertisement,
respectively. The service can be used by the requester if
all the output concepts defined in the query are satisfied
by the advertisement (Eq. 5).

Yc € Advti,, 3d € Queryiy,, s.t.match(c,d) # Fail (4)
Ve € Queryoy:, 3d € Advtyy,, s.t.match(c,d) # Fail (5)

6 Use case implementation and
experimentation

This section briefly describes the considered test collection
and presents the EdgeOnto’s population. Then, it discusses
the performed experiments to evaluate and validate our find-
ings. Finally, it presents the obtained measurements in terms
of performance and robustness.

6.1 Test collection

Table 3 shows an excerpt of EdgeOnto’s population. There
are three dimensions: IoT, location, time and QoS dimen-
sions. To conduct experiments on EdgeOnto semantic dis-
covery, we first proceed with the test collection creation.

Service Oriented Computing and Applications (2023) 17:25-37

35

Table 3 Excerpt of EdgeOnto’s population

Dimension Concept Instances
ToT Edge Collector node, Collector nodel
Server VNC server, VNC viewer

Physical Resource
Virtual Resource

Sensing-device

Computing-device

Mobile device

Location, Time Physical place
Space region
Place

Timelnterval

QoS QualityOfService

Service

Raspberry Pi 4B, InfluxDB, Grafana, Creality Ender Pro
GRAD-CAM algorithm

Humidity and temperature sensor DHT11, Soil humidity
sensor hygrometer, HD USB camera

YOLO 5

Smart agriculture drone 1, Smart agriculture drone 2, robot
1

Strawberry farm1,placel, place2

Position (50,40), position (100.120)

Middle of the strawberry farm,at the end of strawberry farm

Duration between the informations’ reception coming from

the node collector and its treatement on the node collector,
13am

Quality of communication between collector node and
device node, quality of identifying humidity and
temperature measurements, quality of computing soil
humidity

Computing humidity and temperature, computing soil
humidity

Table 4 Excerpt of EdgeOnto’s user request

Query User request

REQI VDevice(?x) AnearTo(?x, Edge(?y)

REQ2 VDevice(?x) A access(x?, (collector Node V collector Nodel))

REQ3 VDevice(?x) A access(x?, (collector Node V collector Nodel)) A hasLocation(?x, Place(?z)or Physical Place(?p))
REQ4 VDevice(?x) A access(x?, Edge(?y)) Aoffers(x?, Service(?z))

REQ5S VDevice(?x) A access(x?, Edge(?y)) A of fers(x?, Service(?z)) A has QoS(?z, Quality Of Service(?q))
REQ6 Service(?x)) A has QoS(x, Quality O f Service(?y))

REQ7 Place NisLocationOf (?x, Entity(?y))

REQS8 Place(?x)or Physicalplace(?y)orSpaceregion(?z) AisLocationOf (?x, Entity(?y))

REQ9 Resource(?x) NisUsedBy(?x, Object(?y))

REQI0 Entity(?x) A hasregion’(2x,’ Spaceregion’(?y)

For a clarity purpose, Table 4 presents an excerpt of the
user request identified in the smart strawberry farming use
case introduced in the Sect. 1.

SWRL rules are defined to infer new semantic relations
between instances during EdgeOnto’s population.

For instance, Eq. 6 states that “Any Device (?x) that offers
a Service (?y) at a point of time or Interval Time (?t) located
on a Physical place or Place or Space region (?1) should access
to some Edge (?z) the nearest to this device.

VDevice(?x) N of fers(1x, Service(?y))
— JEdge(?z) A access(x, Edge(?z)) (6)
AnearTo(?x, Edge(?z))

6.2 Performance analysis

To assess the proposed approach’s performance, we use two
metrics, namely completeness and efficiency. The former
describes how well our Protégé matchmaker identifies the
relevant EdgeOnto concepts compared with the total number
of such EdgeOnto concepts that exist in the test collection.
The latter describes how well Protégé identifies only those
relevant EdgeOnto concepts, by comparing the number of
target EdgeOnto-identified concepts with the total number
of EdgeOnto-retrieved concepts. The main preference met-
rics are True Positive (TP), False Positive (FP), and False
Negative (FN) where

@ Springer

36

Service Oriented Computing and Applications (2023) 17:25-37

e TP contains the retrieved EdgeOnto concepts that are rel-
evant

e FP contains the retrieved EdgeOnto concepts that are not
relevant

e FN contains the relevant EdgeOnto concepts that are not
retrieved (i.e., discarded by the matchmaker).

Once the sets mentioned above are established, two pop-
ular performance measurements, in the semantic web and
machine learning communities, are calculated, namely recall
and precision. These performance measurements implement
completeness and efficiency metrics and are defined, respec-
tively, as follows:

e Recall is the quantity’s measure in the response (how
close was the result to the actual response). It refers to
the ratio between the number of true-positive EdgeOnto
concepts and the number of relevant EdgeOnto concepts,
including true-positive EdgeOnto concepts and false-
negative EdgeOnto concepts (Eq. 7).

TP
Recall = —— @)
TP + FN

e Precision is the quality’s measure of the response (how
much the response is correct). It refers to the ratio
between the number of true-positive EdgeOnto concepts
and the total number of retrieved EdgeOnto concepts,
including true-positive and false-positive EdgeOnto con-
cepts (Eq. 8).

o P
Precision = —— (8)
TP + FP

6.3 Robustness evaluation

This section discusses the performed experiments to evaluate
and validate our findings. It presents the analyzed obtained
measurements in terms of performance and robustness by
applying Egs. 8 and 7:

Precision = 0.875 and Recall = 0.954

These measurements depict that EdgeOnto reach good accu-
racy for requests’ response (75%) Compared with other IoT
ontologies, none of the user requests mentioned in Table 4
can give relevant responses and satisfy user requests. This is
justified by many reasons:

e Lack of concepts in relation with mobility

e Lack of concepts in relation with context, location and
time awareness

e Lack of concepts related to edge, cloud, and device types.

@ Springer

e Lack of concepts describing quality of service .

In fact, the proposed ontology EdgeOnto clearly outperforms
the other IoT ontologies and can provide much better accu-
racy.

7 Conclusion and future work

IoT domain relies, nowadays on hybrid cloud/edge environ-
ment for faster communication, lower bandwidth and better
local treatment.

Compared with existing works, most of them don’t sat-
isfy the requirements already defined about time, location,
mobility, and quality of service.

In this paper, we propose a semantic model (EdgeOnto)
which highlights all concepts related to IoT applied in the
context of edge computing. Its main goal is to support the
automation of the QoS management procedures in hybrid
cloud/edge environment and the discovery of the relevant
edge nodes that are suitable to host and execute IoT services
considering their requirements.

The illustrative use case is smart strawberry farming [12],
and the proposed edge platform aims to be an all-in-one
IoT platform to enable the intelligent farm on strawberries
cultivation with wireless sensor network (WSN), computer
vision (CV), machine learning (ML), and long-range (LoRa)
communication capabilities. The platform makes available
to the user all the captured metrics for manual analysis and
data-driven decisions. This platform studies only the com-
munication between devices and edges where devices and
edges are static and have the same location during the straw-
berry farming scenario. In addition to these limitations, the
current edge framework lacks of automation when imple-
menting steps that make up the IoT services life cycle in
hybrid cloud/edge environment. Edge nodes are often manu-
ally selected during deployment time and most of the regular
QoS management procedures remain difficult to implement.

In future works, we study deeply the problem of optimal
placement where edge and device are simultaneously mobile.
In fact, when device node is mobile, we should find the opti-
mal edge node the nearest to this device node ensuring a
sufficient and acceptable quality of service.

Declarations

Conflict of interest No conflicts of interest relevant to content presented
in this article are associated. The authors have no relevant financial or
non-financial interests to disclose, nor competing interests to declare
that are relevant to the content of this article or could have influenced
its outcome.

Service Oriented Computing and Applications (2023) 17:25-37

37

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ankolekar A, Burstein M, Hobbs J, Lassila O, Martin D, Mcder-
mott D, Mcilraith S, Narayanan S, Paolucci M, Payne T, Sycara K
(2002) 06. Daml-s: Web service description for the semantic web.
Science 6:97

2. Aquin M (2012) Modularizing ontologies. In: Suarez-Figueroa
MC, Gémez-Pérez A, Motta E, Gangemi A (eds) Ontology engi-
neering in a networked world. Springer, Berlin, pp 213-233

3. Bae IH (2014) 04. An ontology-based approach to adl recognition
in smart homes. Futur Gener Comput Syst 33:32—41

4. Bajaj G, Agarwal R, Singh P, Georgantas N, Issarny V (2017) 07. A
study of existing ontologies in the iot-domain. arXiv:1707.00112

5. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-
aware systems. Inf Syst 2(4):263-277

6. Bellur U, Vadodaria H, Gupta A (2008) 11. Semantic matchmaking
algorithms. INTECH Open Access Publisher, London, pp 481-502

7. Bermudez-Edo M, Elsaleh T, Barnaghi P, Taylor K (2015) 11. Iot-
lite ontology. W3C Memb Submiss 5:26

8. Bibani O, Yangui S, Glitho RH, Gaaloul W, Hadj-Alouane NB,
Morrow MJ, Polakos PA (2016) A demo of a paas for iot appli-
cations provisioning in hybrid cloud/fog environment. In: IEEE
international symposium on local and metropolitan area networks,
LANMAN 2016, Rome, Italy, June 13-15, 2016, pp 1-2. IEEE

9. Bontas EP, Mochdél M, Tolksdorf R (2005) Case studies on ontol-
ogy reuse. In: IKNOWOS international conference on knowledge
management, vol 74, pp 345

10. Canete A, Amor M, Fuentes L (2022) Supporting IoT applications
deployment on edge-based infrastructures using multi-layer feature
models. J Syst Softw 183:111086

11. Compton M, Barnaghi P, Bermudez L, Garcia-Castro R, Corcho
0, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A, Huang
V, Janowicz K, Kelsey WD, Le Phuoc D, Lefort L, Leggieri M,
Neuhaus H, Nikolov A, Page K, Passant A, Sheth A, Taylor K
(2012) The SSN ontology of the W3C semantic sensor network
incubator group. J Web Seman 17:25-32

12. CruzM, Mafra S, Teixeira E, Figueiredo F (2022) Smart strawberry
farming using edge computing and IoT. Sensors 22(15):740

13. Daniele L, Solanki M, den Hartog F, Roes J (2016) 10. Interoper-
ability for smart appliances in the iot world, pp 21-29

14. Del Carmen Sudrez de Figueroa Baonza, M (2010) NeOn method-
ology for building ontology networks: specification, scheduling
and reuse. Ph.D. thesis, Universidad Politécnica de Madrid,
Madrid, Spain

15. Flury T, Privat G, Ramparany F (2004) Owl-based location ontol-
ogy for context-aware services. Proc Artif Intell Mob Syst 7:52-57

16. Gyrard A, Bonnet C, Boudaoud K (2013) 05. The stac (security
toolbox: attacks and countermeasures). Ontology 5:165-166

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.
217.

28.

29.

30.

31

32.

33.

34.

Hobbs J, Pan F (2004) 03. An ontology of time for the semantic
web. ACM Trans Asian Lang Inf Process 3:66-85

Hobbs JR (2002) A daml ontology of time

Janowicz K, Haller A, Cox S, Phuoc D, Lefrancois M (2018) 07.
Sosa: a lightweight ontology for sensors, observations, samples,
and actuators. J] Web Seman 56:1-10. https://doi.org/10.1016/j.
websem.2018.06.003

Jerry R, Hobbs FP (2006) Time ontology in owl

Jiang S, Aagesen F (2006) 01. An approach to integrated semantic
service discovery, vol 4195, pp 159-171

Li X, Zhou Z, Zhao Z, Yangui S, Zhang W (2021) Data &
computation-intensive service re-scheduling in edge networks. In:
Chang CK, Daminai E, Fan J, Ghodous P, Maximilien M, Wang Z,
Ward R, Zhang J (eds) 2021 IEEE international conference on web
services, ICWS 2021, Chicago, IL, USA, September 5-10, 2021.
IEEE, pp 389-396

Martinez-Villase nor L, Gonzalez-Mendoza M (2014) 11. Sharing
and reusing context information in ubiquitous computing environ-
ments. pp 227-230

Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ,
Polakos PA (2018) A comprehensive survey on fog computing:
state-of-the-art and research challenges. IEEE Commun Surv Tutor
20(1):416-464

Nachabe L, Girod-Genet M, ElHassan B (2015) 01. Unified data
model for wireless sensor network myontosens ontology. IEEE
Sens J 7:3657-3667

Nicolas S, Mahdi BA, KDNHTM (2015) San

Ntalasha D, Renfa L, Wang Y (2016) 02. Internet of thing context
awareness model. EAI Endors Trans Context Aware Syst Appl
3(7):151084

Russomanno D, Kothari C, Thomas O (2005) 04. Sensor ontolo-
gies, from shallow to deep models, pp 107-112

Seydoux N, Drira K, Hernandez N, Monteil T (2016) 11. Iot-o,
a core-domain IoT ontology to represent connected devices net-
works, pp 561-576

Varghese B, Wang N, Barbhuiya S, Kilpatrick P, Nikolopoulos DS
(2016) Challenges and opportunities in edge computing. In: 2016
IEEE international conference on smart cloud (SmartCloud), pp
20-26

Wang W, De S, Toenjes R, Reetz E, Moessner K (2012) A compre-
hensive ontology for knowledge representation in the internet of
things. In: 2012 IEEE 11th international conference on trust, secu-
rity and privacy in computing and communications, pp 1793-1798
Wang X, Zhang D, Gu T, Pung H (2004) 01. Ontology based context
modeling and reasoning using owl, pp 18-22

Xue L, Liu Y, Zeng P, Yu H, Shi Z (2015) 08. An ontology based
scheme for sensor description in context awareness system. In:
2015 IEEE international conference on information and automa-
tion, pp 817-820

Yangui S (2020) A panorama of cloud platforms for IoT applica-
tions across industries. Sensors 20(9):2701

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1707.00112
https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/10.1016/j.websem.2018.06.003

	A core IoT ontology for automation support in edge computing
	Abstract
	1 Introduction
	1.1 Motivating use case
	1.2 Contributions and obtained results

	2 The state of the art
	2.1 Ontologies for sensors
	2.2 Context-aware ontologies
	2.3 Location-aware ontologies
	2.4 Time-based ontologies
	2.5 Security and QoS ontologies
	2.6 Ontologies for IoT applications

	3 Requirements and related work review
	4 EdgeOnto principles and design model
	4.1 Functional requirements
	4.2 Reused ontologies for EdgeOnto
	4.2.1 DUL ontology
	4.2.2 IoT-O ontology
	4.2.3 Knowledge representation ontology

	5 EdgeOnto architecture and specifications
	5.1 EdgeOnto core-domain
	5.1.1 IoT module
	5.1.2 Location and time-awareness module
	5.1.3 QOS management module

	5.2 User request building
	5.3 Semantic matching

	6 Use case implementation and experimentation
	6.1 Test collection
	6.2 Performance analysis
	6.3 Robustness evaluation

	7 Conclusion and future work
	References

