
SOCA (2016) 10:253–271
DOI 10.1007/s11761-015-0185-y

ORIGINAL RESEARCH PAPER

Patterns and tools for business process monitoring customization

Marco Comuzzi1 · Samuil Angelov2

Received: 5 September 2014 / Revised: 6 October 2015 / Accepted: 14 October 2015 / Published online: 16 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In a cross-organizational service-based process
provisioning scenario, one provider is likely to execute a
given business process to serve several customers. Each cus-
tomer may hold different expectations about the way this
process can bemonitored.We present a solution allowing the
provider to support the requirements of different customers
on the monitoring of a given process, i.e., offering them the
opportunity to customize the way a process will be moni-
tored. We propose a multi-dimensional classification model
of patterns for process monitoring and rules to compose
the patterns to design customizedmonitoring infrastructures.
The fit for purpose of the patterns is evaluated empirically,
whereas the feasibility of our solution is demonstrated by a
tool supporting process monitoring customization adhering
to our pattern design and composition methodology.

Keywords Business process · Monitoring · Customization

1 Introduction

Only agile businesses, which can flexibly redesign or recon-
figure their operations and processes, can survive in the
currently rapidly evolving social and economic ecosystem.
Organizations often implement agility and flexibility through
simplification, focusing on their core business, and engag-

B Marco Comuzzi
marco.comuzzi.1@city.ac.uk

Samuil Angelov
s.angelov@fontys.nl

1 Centre on Adaptive Computing Systems, City University
London, London, UK

2 Software Engineering Team, Fontys Hogeschool ICT,
Eindhoven, The Netherlands

ing in collaborations with partners to maintain and possibly
improve the required level of quality and cost-effectiveness
in their business processes [35].

In such a scenario, customization plays an important
role. Individually tailored collaborations between providers
and clients strengthen business relationships, improving cus-
tomer satisfaction and productivity by limiting the amount of
adaptation required by the customer organization to engage
in the collaboration. Customization is also likely to increase
the degree of control perceived by customers over outsourced
processes, reducing their opaqueness [21].

Several aspects of business processes can be customized,
such as QoS, resource allocation, control flow, or monitor-
ing. Monitoring, in particular, can be leveraged to reduce
the perceived opaqueness of outsourcing relationships, since
it allows gathering information that could be used to exert
control over the monitored entity. As enabler of control
over externalized business processes, customers may require
monitoring for a variety of internal business concerns,
from assessing the satisfaction of established contracts and
SLAs [31], to synchronizing their own internal business
processes [36,40] or predicting the quality of the collabo-
ration with a given partner in the future [30].

As an example, we can consider a retail customer and a
trader outsourcing their electronic portfolio management to
a financial institution. Both customers are interested in the
same processes, e.g., buying/selling specific financial prod-
ucts on the stock exchange. Traders may have very strict
requirements on the performance (QoS) of the process, since
they have to trade large quantities in a short amount of time,
and may want to monitor closely the QoS of the process
over time. Retail customers, while not particularly interested
in the performance of the process, may be interested in the
level of security of the financial products, and may require

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-015-0185-y&domain=pdf


254 SOCA (2016) 10:253–271

the financial institution to add additional security controls to
satisfy this requirement.

According to the service-oriented computing paradigm,
collaborations are implemented in the form of business
process provisioning, whereby a provider organization exe-
cutes one or more (service-based) business processes for one
or more customer organizations [4,6,14]. Customization of
monitoring, in this context, requires focus on both control
flow aspects, specifying the way to capture monitoring infor-
mation and make it available, and resources, specifying what
has to be monitored and at which stage of the process.

Currently available Process-Aware Information Systems
(PAIS) offer limited capabilities for process monitoring
customization. PAIS may provide standard consoles or mon-
itoring APIs to access process information, which require
customers to develop their own specific monitoring applica-
tion logic [14,30,36]. This has several drawbacks for both the
provider and the customer. Besides the need to develop and
maintain monitoring applications, customers may also need
to change such implementations whenever the providers’
monitoring API changes, no longer complying with the
customers’ internal needs. Providers may be prevented to
smoothly run any change or upgrade of their own internal
process enactment technology, since this may lead to unsat-
isfied customers, no longer able to monitor the execution of
the service provider processes.

In this regard, we argue for the need of an analysis of
the business process monitoring concern that separates the
monitoring requirements of the customer organizations, i.e.,
what has to be monitored, from the way process providers
configure or extend their business process technology to
satisfy these requirements, i.e., how monitoring is imple-
mented. This enables the provisioning of process monitoring
as-a-Service, that is, customer organizations will access
the monitoring data that they need without having to deal
with predefined sets of API made available by the process
provider. While this may limit the control of monitoring
clients over the monitoring options made available by the
provider, clients massively gain in terms of cost reduction,
reduced time to get the monitoring infrastructure up and run-
ning, and always up to datemonitoring services, with internal
APIs and software upgrades run in the background by the
monitoring provider.

In this paper, we devise a coherent framework to support
business process providers in the provisioning of customized
business process monitoring infrastructures to their cus-
tomers. The contributions of this paper are:

– the definition of a set of patterns capturing the variability
of customer requirements about process monitoring;

– amethodology to compose patterns to design customized
monitoring infrastructures;

– a proof-of-concept implementation of our pattern design
and composition methodology.

The patterns support the provider in identifying the
solution space for process monitoring customization. They
are positioned in a multi-dimensional classification model,
constructed by reasoning on the literature about software
programs, Web service, and business process monitoring.
Patterns are specified using colored Petri net (CPN), and the
composition of patterns occurs through a set of formal rules,
exploiting the concepts of node fusion in Petri nets.

We assess the appropriateness, or fit for purpose, of the
patterns to capture process monitoring requirements using
an empirical study involving process designers, whereas we
devise a tool to demonstrate the feasibility of our solu-
tions. The tool, in particular, demonstrates the automated
generation of customized monitoring infrastructures starting
from customer requirements specified using our classifica-
tion model. The implementation exploits the principles of
customization in software product lines and, more specifi-
cally, Feature-Oriented Software Development (FOSD).

The paper is organized as follows. A model of the pos-
sible set of options for process monitoring customization is
presented in Sect. 2. Section 3 introduces a running example
taken from a real-world application scenario. Patterns for the
identified options are specified in Sect. 4. Section 5 presents
the composition rules to design monitoring infrastructures,
whereas Sect. 6 presents the empirical evaluation and the
implemented tool. Section 7 discusses the related work, and
eventually, we draw our conclusions and discuss future work
in Sect. 8.

2 A model of process monitoring customization

In this section, we first discuss a generic conceptual model of
the business process monitoring life cycle. Then, we propose
a multi-dimensional model of the possible options charac-
terizing process monitoring that can be offered by process
providers to customers.

By conceptually separating the monitoring options model
from the implementation patterns, we decouple the choices
available to the customer to customizemonitoring infrastruc-
tures from their implementation. In this way, as long as the
monitoring options model does not change, providers can
revise or upgrade the options implementation transparently
in respect of their customers and, in particular, the way they
use the provided monitoring information.

2.1 Business process monitoring life cycle

Figure 1 depicts the general outline of a monitoring architec-
ture. In the business process provider domain, a monitoring
infrastructure (also called sensor or observer [15,46]) cap-

123



SOCA (2016) 10:253–271 255

Monitoring
infrastructure (MI)

Monitoring Client
(MC)

Business Process
Engine (BPE)

Business Process
Provider Domain

Customer
Domain

Fig. 1 Business process management architecture

turing relevant information is built around a (service-based)
business process engine. A business process engine is meant
in a broad sense—it is a component producing process infor-
mation (activity or process states, data values, etc.). As we
will clarify later while presenting the tool implementation,
the restrictions imposed by our approach on the underly-
ing baseline process engine are satisfied by current business
process management technology.

Although the monitoring infrastructure can be built in (or
even be an integral part of) the business process engine [15],
conceptually, it is a separate entity [46]. Considering it
as a separate entity promotes separation of concerns with
respect to the underlying process engine, leading to a more
focused and context-independent analysis of the monitoring
infrastructure component and its possible customization. In
the customer (also called controller [46]) domain, a monitor-
ing client obtains the information captured by themonitoring
infrastructure. It processes the information obtained and if
desired exerts control over the business process engine.

In many scenarios, the monitoring client can be an inter-
mediary for the actual business entity that requires the
monitoring information. Monitoring may take place within
an organization (between independent business units) or in
cross-organizational settings. Furthermore, the client of the
monitoring infrastructure may be an autonomous application
or a human user. As these cases do not introduce any specifics
in our work, the remainder of the paper abstracts from them,
considering only the general scenario of Fig. 1.

2.2 Conceptual model of process monitoring options

The dimensions of our framework identify what parts of
the scenario in Fig. 1 can be customized by the monitor-
ing client, i.e., they define the monitoring solution space for
the customer of the business process. The first two dimen-
sions concern the context in which monitoring has to occur.
In particular, we consider the monitoring variable and the
anchoring points, defined as follows.

Monitoring variable (mv) The monitoring variable mv
specifies the object of monitoring, i.e., the process informa-

tion that the monitoring infrastructure (MI) obtains from the
business process engine (BPE) and makes available to the
Monitoring Client (MC). It has a domain, which specifies the
(range of) values that it can assume, and a unit of measure,
if needed. In the world of software programs monitoring, the
monitoring variable is the target, for instance, of a watch for
debugging. In business process monitoring, the monitoring
variable may range from infrastructure-level data, such as
timestamps of service calls [6], to application-level process
data, such as the status of an activity or domain-specific data
produced by an activity [42].

Note that in this paper we consider instance-level business
process monitoring. Given a process, monitoring is restricted
to variables related to a specific instance started by customers.
For example, the status of a particular activity (in a given
process instance) is a monitoring variable, which can assume
values such as waiting, executing, terminated, and faulted. A
value of the monitoring variable represents a single data ele-
ment captured by MI during the execution of one instance
of the business process, e.g., the timestamp of an order, the
warehouse level at a specific point in time,or the unique id
of a user executing a specific activity. Captured values can
be stored by MI during the execution of a business process
andmade available in batches toMC. Instance-levelmonitor-
ing is usually opposed to cross-instance monitoring, where
monitoring values are defined across a set of instances, e.g.,
the average execution time of an activity across all instances
started by the same customer [12].

Anchoring point (ap) The MI is enabled within a specific
scope of the process to be monitored. Anchoring points spec-
ify the scope of the process within which the MI is enabled.
The notion of anchoring point derives from the literature on
software programmonitoring, where running the monitoring
program in the samememory space of themonitored program
can be costly, and therefore, the monitoring program has to
be enabled only when strictly necessary [16]. In a business
setting, while in many cases it can be assumed that moni-
toring is permanently enabled, defining anchoring points is
helpful when capturing and making available the values of
the monitoring variable to the client is very costly. Intrusive
process monitoring [6] is an example of this scenario, since
the execution of intrusive monitoring statements blocks and,
therefore, delays, the execution of the process. In such a sce-
nario, the MC may want to enable monitoring only when
strictly necessary. In the remainder, we refer to apStart and
apEnd as the anchoring points enabling and disabling the
monitoring infrastructure (MI), respectively.

Figure 2 refines the conceptual outline of the monitoring
architecture by showing the life cycle of communications
among the different elements of the architecture. We use the
phases of this life cycle to derive the next three dimensions of
our framework. In particular, the first phase concerns com-
manding the acquisition ofmonitoring data. This can be done

123



256 SOCA (2016) 10:253–271

Monitoring
infrastructure (MI)

Monitoring Client 
(MC)

Business Process 
Engine (BPE)

1

3

4
Lifecycle Phase Customizable Monitoring Dimension
1. Monitoring Trigger. tri
2. Obtain data from BPE. (not customizable)
3. Manage data. man
4. Supply data to MC. sup
5. Exert control. (out of scope)2

5

Fig. 2 Business process management life cycle

either by MC or by MI (Phase 1). For instance, the client
may specify that the monitoring infrastructure must acquire
values of a specific monitoring variable periodically or may
want to be allowed to command this acquisition proactively.
The second phase concerns MI obtaining the required data
from BPE (Phase 2). Since this phase is internal to the busi-
ness process provider domain and cannot be customized, it
is not considered further in this paper. Then, the monitoring
infrastructure may have to manage, e.g., store in batches, the
monitoring data obtained by BPE (Phase 3) before supplying
them to the client (Phase 4). Eventually, the client processes
the monitoring data and may decide to exert control on the
monitored process executed by the business process engine
(Phase 5). This last phase is out of scope in this paper.

Phases 1, 3, and 4 of the life cycle in Fig. 2 are char-
acterized by one respective monitoring dimension in our
framework, since they involve aspects that are customizable
by the client. Each dimension has a set of options. Options
represent the solution space for the customization of process
monitoring, that is, a customized monitoring infrastructure
can be built once the customer has chosen one option for each
possible monitoring dimension.

In the remainder of this section, we present themonitoring
dimensions and their possible options.

Monitoring trigger The monitoring trigger phase is char-
acterized by one dimension identifying the entity command-
ing the acquisition of values of mv (tri). The acquisition of
a monitoring value can be triggered by MC or by MI. In the
former case (tri=mcTrg),MCmakes a request to the provider
for commanding the acquisition of the value of MV. In the
latter case (tri=miTrg), MI acquires values of MV proac-
tively. Note that in this case MC should be able to customize
the way in which MI acquires values, for instance periodi-
cally at a certain frequency or on change. The third option
(tri=mixTrg) fits cases in which acquisition is triggered by
MI, e.g., periodically, but also the client MC wants to be
allowed to request acquisition. Once acquisition is triggered,
MI will obtain monitoring data from BPE.

Manage data For this life cycle phase, we define one
monitoring dimension (man), which captures themonitoring
infrastructure’s logic in managing the values obtained from

the process engine before supplying them to the client. New
values obtained fromBPE can rewrite old values captured for
the samemv or the obtained values can be stored (persisted),
e.g., to produce historical series of values of mv. When sup-
plied to the client, values can be consumed, i.e., they will not
be available in the future to the client, or they can just be read,
remaining available also in the future. Thus, we identify four
options for man, i.e., (1) rewrite-consume (man=manRc),
(2) rewrite-read (manRr), (3) persist-consume (manPc),
and (iv) persist-read (manPr). Figure 3 exemplifies the
behavior resulting from the four options available for this
pattern in the case of a generic monitoring value with integer
values.

The monitoring infrastructure can also be instructed to
keep only those monitoring values satisfying a specific con-
straint, such as being above/below a given threshold, or being
included in a given set of specific values. The application of
these constraints is orthogonal to the man dimension and,
therefore, can be applied to any of the four options identified
above.

Supply data to MC This phase is characterized by the
dimension sup establishing the direction of the interaction
between the monitoring infrastructure and the client. For
sup, we define the options push, pull, and mix. The option
push models cases in which the monitoring infrastructure
pushes monitoring values to the client, whereas pull models
cases in which the monitoring infrastructure sends values of
mv only after having received a request from the client. Sim-
ilarly to the tri dimension, the option mix combines the push
and pull options: monitoring values are pushed to the client
according to a certain policy, but the client is still allowed to
pull monitoring values when needed.

Note that this dimension is conceptually clearly separated
from the monitoring trigger dimension discussed before. For
example, a client may require to specify explicitly when
the value of a monitoring variable must be collected by the
business process engine, i.e., tri=mcTrg, and may either be
notified of the batch of collected values at a specified fre-
quency from the process engine (sup=push) or on demand
(sup=pull).

123



SOCA (2016) 10:253–271 257

Monitoring values
captured by BP ENGINE

Monitoring values stored
by monitoring 

INFRASTRUCTURE
(PERSIST)

Monitoring values push or 
pulled by Mon CLIENT

(CONSUME)

32 27 33 18 45 34 19 …

32
32
27

32
27
33

18 18
45

18
45
34

32, 27, 33

19

18, 45, 34

PERSIST-CONSUME

time

Monitoring values
captured by BP ENGINE

Monitoring values stored
by monitoring 

INFRASTRUCTURE
(PERSIST)

Monitoring values pushed 
or pulled by Mon CLIENT

(READ)

32 27 33 18 45 34 19 …

32 32
27

32
27
33

32
27
33
18

32
27
33
18
45

32
27
33
18
45
34

32, 27, 33

32
27
33
18
45
34
19

32, 27, 33, 18 
45, 34

PERSIST-READ

Monitoring values
captured by BP ENGINE

Monitoring values stored
by monitoring 

INFRASTRUCTURE
(REWRITE)

Monitoring values push or 
pulled by Mon CLIENT

(READ)

32 27 33 18 45 19 …

32 27 33 33 18 45

33

19

45

REWRITE-READ

45

Monitoring values
captured by BP ENGINE

Monitoring values stored
by monitoring 

INFRASTRUCTURE
(REWRITE)

Monitoring values push or 
pulled by Mon CLIENT

()CONSUME)

32 27 33 18 45 19 …

32 27 33 - 18 45

33

19

45

REWRITE-CONSUME

time

-

time 

time 

Fig. 3 Options for the manage data dimension—example

Generally, communication between the monitoring
infrastructure and the client is a distributed systems com-
munication issue and its customization may require the
definition of additional dimensions, such as space and time
decoupling options [1,17]. However, since those aspects are
not monitoring specific, we do not further discuss them here.

3 Running example

In this section,wepresent an example of an online advertising
scenario, which is adapted from a real-world business case
described in greater detail in [2].

Figure 4 shows the excerpt of the process considered in
this paper. The advertising provider (a newspaper’sWeb site)
offers advertising space to companies (customers). The cus-
tomer sends the advertisement to the provider and when the

time agreed to start the campaign comes, the provider starts
the advertising campaign by publishing the ad in the news-
paper. When the budget of the customer is depleted and/or
the number of agreed appearances of the ad is reached, the
campaign ends. The customer may ask to change the cam-
paign if they observes that the ad is not reaching the target
audience, the campaign has little impact, etc.

In a traditional advertising setting, the provider offers
a fixed set of tools to all customers for monitoring their
campaigns. For example, the customers can monitor the IP
addresses of the readers seeing their ad, the number of shows
of their ad, number of clicks on their ad, the spots where
the ad has been published (banner, column, pop-up, in-text).
Typically, customers have to access their account on a man-
agement system made available by the provider to access
this information. The provider builds such system using a
standard monitoring console.

receiveAd startCampaign
()

publishAd

changeCampaign

endCampaign
UNIT UNIT UNIT UNIT UNIT

() () () () () () ()

()()

Fig. 4 Online advertising process

123



258 SOCA (2016) 10:253–271

This monitoring advertising scheme does not address the
individual preferences of the customers. Customers may be
interested in receiving the monitoring information directly
instead of having to query it from the provider; they may
be interested in obtaining the information in an aggregated
format at the end of the campaign or be constantly updated
to be able to adapt their campaign, or they may be interested,
motivated by a cheaper price, in obtaining only some of the
monitoring information instead of monitoring all possible
variables.

For brevity, we focus here on the construction of moni-
toring infrastructures for only one monitoring variable, i.e.,
the number of clicks on an ad, which is the most straight-
forward indicator of the ad success and profitability over
time. To apply the framework for the customization of amv,
the provider has to consider the possible options from the
monitoring dimensions presented inSect. 2 to offer to the cus-
tomers. Themv in this case is the current value of number of
clicks on the ad of the customer. We assume that the provider
(newspaper), through an advertising engine, keeps track con-
tinuously of this value. The customer wants to monitor mv
along the campaign. Therefore, the anchoring point enabling
and disablingmonitoring are the start and the end of the cam-
paign, respectively. Note that, in principle, each customer
may choose a different anchoring point, for instance enabling
monitoring only after the campaign has been changed a first
time.

Having the framework as a guiding tool in the set of pos-
sible monitoring options, the provider can define all possible
monitoring options for the number of clicksmv. A customer
may like to be pushed monitoring information or to pull it
(thus, sup=push or sup=pull). The customer may prefer to
monitor themv only at a specific point in time that cannot be
revealed (e.g., it is not known) to the provider (tri=mcTrg),
butmay also like to delegate the acquisition of themonitoring
values to the provider at a pre-agreed time, e.g., periodically
(tri=miTrg). Typically, customers would prefer to have all the
monitored values stored by the provider, so that these can be
queried any time later on and used to analyze the number of
clicks trend over time (man=manPr, persist-read). If stor-
age space is crucial for the provider, they may offer some
incentives (e.g., financial) to the customers to choose also
man=manPc (persist-consume).

Each customer interested inmonitoring information on the
cumulative number of clicks is presented with a set of pos-
sible options. Table 1 presents two possible sets of choices
for customers A and B. Customer A delegates the acquisi-
tion of monitoring values to the provider at the beginning of
the campaign, e.g., every 6h, wants to be able to pull mon-
itoring information when needed, and also requires that the
information is kept after it is read to be able, for instance, to
show the trend of this mv over time as soon as the informa-
tion is pulled from the monitoring infrastructure. Thus, each

Table 1 Monitoring options selected by customers A and B

Monitoring option Customer A Customer B

Monitoring variable No. of clicks on Ad banner

Anchoring points startCampaign, endCampaign

Monitoring trigger tri=miTrg tri=mcTrg

Manage data man=manPr man=manPc

Supply data sup=pull sup=push

time customer A pulls monitoring information, they will get
a list of sampled (one every 6h) values of the number of
clicks on their ad since the publication of the ad. Customer
B wants to be able to specify when the values of number of
clicks have to be acquired (tri=mcTrg) and to automatically
receive the monitoring information, for instance as soon as
this is acquired by the provider or at the end of each day
(sup=push, where the trigger for the push is the availability
of a new value for number of clicksmv or the end of the day).
Customer B also does not require the provider to locally store
the acquired values (man=pc). This is a reasonable assump-
tion, for instance, when data are directly pushed to the client
as soon as they are acquired by the provider.

Asdifferent customersmaychoosedifferent values in each
dimension (as demonstrated inTable 1), the provider has to be
prepared to support each possible combination. Having the
patterns for each monitoring dimension values predefined in
the framework, the provider can now directly apply them for
these specific mv and anchoring points.

4 Patterns for process monitoring options
implementation

In this section,we present the patterns for the implementation
of the options identified in Sect. 2. Note that patterns, simi-
larly to the more general case of workflow patterns [44], in
this contextmust be intended as an analysis of various options
that need to be supported by business process technology to
enable the customization of the monitoring dimension. This
is in contrast with the definition of traditional software design
patterns, which aim at providing a general reusable solution
to a commonly occurring problem in software design [19].

Our patterns capture the design of internal data and control
flows of the monitoring infrastructure (MI). This is required
by the provider to offer customizationmonitoring capabilities
to the customers. Following common principles in the design
of distributed systems [46], we first define the interfaces
between MI and MC, and MI and BPE, respectively, to sup-
port the monitoring dimensions. Then, we propose a pattern
for each option characterizing the monitoring dimensions.

123



SOCA (2016) 10:253–271 259

Patterns specify the data and control flow of MIs internal
implementation of the interfaces.

For business process modeling purposes, we use colored
Petri nets (CPNs) [1,26]. CPNs have been chosen because
they have a graphical representation, they have mature and
freely available tool support, e.g., CPN Tools, and they
have a precise semantic that can be translated to or directly
implemented in other languages, e.g., Event-driven Process
Chains [38] or YAWL [42], used by commercial and non-
commercial workflow engines.

We use two token colors in our patterns, i.e., UNIT and
MV. UNIT represents the default color of black tokens, and
it is used to model the control flow in our modeling patterns.
Tokens of colorMV represent a single value of themonitoring
variable MV. The precise definition of the color MV, e.g.,
possible values and unit of measure, is part of the definition
of the monitoring context, and we do not further discuss it in
this paper.

Figure 5 shows the interfaces between the elements of
the monitoring solution MI (monitoring infrastructure), MC
(monitoring client), andBPE (business process engine). Note
that, although aspects related to the interaction between MC
andBPE are internal to the provider domain and therefore not
subject to possible customization, considering the interfaces
between MI and BPE allows separation of concerns between
business process execution and monitoring and, therefore,
for more robust patterns.

MI requires one interface to supply data to MC (supply).
Optionally,MImay require also an interface to receive supply
requests from MC (supplyReq) and to receive acquisition
requests (acquireReq). This interface is necessary only
when MC decides to pull monitoring data from MI. The
interface between MI and BPE is constituted by a generic
interface for receiving monitoring values (obtain), by the
two anchoring points, and by the interface bpeAcquireReq,
allowing MI to command acquisition of values of MV by
BPE. The interfaces monStart and monEnd of BPE rep-
resent the activities in the process enabling and disabling
monitoring, respectively. Note that Fig. 5 does not show the
color of tokens in places connecting interfaces. As discussed

supplyReq

obtain

supplyacquireReq

bpeAcquireReq

pushValuereceiveReq

captureValue supplyValue receiveValue

monStart monEnd

apStart apEnd

MI

MC

BPE

Fig. 5 Interfaces for process monitoring

apStart

apEnd

<int>monStart

monEnd

MI

UNIT

UNIT

UNIT

() () () ()

()
() ()

Fig. 6 Pattern for anchoring points

later, the color of these places is determined by the model-
ing pattern realizing the MI’s internal implementation of the
corresponding interface(s).

Concerning the context, MI is required to expose inter-
faces to define the anchoring points of monitoring to the
business process executed by BPE. The tokens required to
fire the transitions apStart and apEnd are produced by BPE
when the process execution reaches the activities enabling
anddisabling themonitoring, respectively, labeledmonStart
and monEnd in Fig. 5.

Figure 6 shows the pattern for the implementation within
MI of the anchoring point business logic. Specifically, the
generic interface< int>, which can be any of the ones defined
in Fig. 5, becomes enabled after the apStart transition has
fired and is no longer enabled after the apEnd transition has
fired. The remainder of this section presents the monitor-
ing patterns for the remaining monitoring dimensions. Each
patternmodels one option of onemonitoring dimension iden-
tified in Sect. 2.

Monitoring trigger The patterns modeling the options of
dimension tri implement the acquireRec and bpeAcquir-
eReq interfaces of MI. The patterns corresponding to the
three valuesmiTrg,mcTrg, and mixTrg are shown in Fig. 7.
In Fig. 7a, the transition intTrigger captures MIs internal
business logic to trigger acquisition, e.g., periodically or on
change, which can be customized by MC. In Fig. 7b, the
acquisition is commanded by MC, by firing the transition
acquireReq, whereas Fig. 7c shows the mix case, i.e., MC
or MI can both trigger an acquisition request.

Supply data to MC The patterns for the push, pull, and
mix options of the dimension sup are shown in Fig. 8a,
b, and c, respectively. The push option requires MI to only
expose the supply interface. The transition supTrigger fires
accordingly to the logic chosen by the customer to receive
monitoring values. The customer, for instance, may require
monitoring values periodically. For the pull option, the sup-
ply interface can fire, i.e., supplying amonitoring value, only
after a request is received. Themix option combines the logic
of the other two options.

Manage data The patterns for theman dimension imple-
ment the connection between the interfaces supply and
obtain exposed by MI. Figure 9 shows the patterns for the
four options. Note that the place bpe stores values of MV
ready to be obtained by MI, whereas the placemc stores the

123



260 SOCA (2016) 10:253–271

intTrigger

bpeAcqReq

UNIT
()

()request

MI

(a)

acquireReq

bpeAcqReq

UNIT
()

()
request

MI

(b)

intTrigger

bpeAcqReq

UNIT ()

()
request

acquireReq

()

MI

(c)

Fig. 7 Patterns for tri options. a miTrg, bmcTrg, c mixTrg

supTrigger

supply

UNIT ()

()

MI

(a)

supplyReq supply

UNIT
()

()

MI

(b)

supplyReq supply

UNIT
()

()

supTrigger

()

MI

(c)

Fig. 8 Patterns for sup options. a push, b pull, and c mix

supply

obtain

MV

1`”d�” mi_db

v_old v_new

v_curr“d�”

[v_new > 5]

mc

MV

MV

bpev_new

v_curr

MI

(a)

supply

obtain

MV

1`”d�” mi_db

v_old v_new

v_currv_curr

mc

MV v_curr

MV

bpev_new

MI

(b)

supply

obtain

L_MV

1`[] mi_db

lv v_new::lv

lv[]

L_MV v_curr

MV

bpev_new

mc

MI

(c)

supply

obtain

L_MV

1`[] mi_db

lv v_new::lv

lvlv

L_MV v_curr

MV

bpev_new

mc

MI

(d)

Fig. 9 Patterns for man options. a Rewrite-consume (manRc), b rewrite-read (manRr), c persist-consume (manPc), d persist-read (manPr)

value or set of values supplied to the monitoring client MC.
Also, note that the color LMV represents a list of tokens of
color MV.

In the rewrite-options, the newvalueofMVv_new always
replaces the old value v_old. In the persist-options, the val-
ues of MV are stored by MI in a list lv (the list in this case
represents a generic data structure); a new monitoring value
v_new is simply inserted into lv. In the consume options, the

supply transition, when fired, replaces the current monitor-
ing value stored by MI with the default, whereas in the read
options the monitoring value is put back in the place mi_db
after being read and can be read again in the future by MC.
Note that the default monitoring value is the empty list [] for
the persist-options and the token with value dft of color MV
for the rewrite-options.

123



SOCA (2016) 10:253–271 261

Orthogonal constraints on the monitoring values obtained
by MI are modeled as guards on the transition obtain. Such
constraints are modeled as guards on the obtain transition.
Figure 9a, in particular, shows the case in which MI obtains
only the values of v_new greater than 5.

5 Composing patterns for monitoring
infrastructures design

The patterns described in the previous sections must be
properly composed by the provider to design a customized
monitoring infrastructure for a customer organization. Com-
position refers to both coupling patterns to the process to be
monitored and coupling patterns among each other to support
the customer monitoring requirements. The former refers to
filling in the parameterized transition <INT> of Fig. 5 to
enable and disable the monitoring infrastructure. The lat-
ter refers to appropriately merging transitions with the same
label in different patterns to obtain a coherent monitoring
infrastructure.

In this section, we describe the set of rules for combining
the patterns and how these are applied in our running example
(see Sect. 5.2).

5.1 Composition rules

Since we model the operational implementation of our pat-
terns using CPNs, we rely on the literature about Petri net
composition and structuring to derive our composition rules.
Composition and structuring in Petri nets are a prominent
research issue, mainly owing to the fact that Petri net models
tend to become very complex, in terms of number of elements
and their connections, even for simple modeling tasks [22].
There are twoapproaches toPetri net composition, i.e., fusion
and folding [7,22]. The former aims at simplifying models
by allowing the interconnection of several Petri nets, simi-
larly to the concepts ofmodule linking and class composition
in programming languages. The latter focuses on hierarchi-
cal decompositions of Petri nets, similarly to the concepts of
macros and procedures in programming languages. In this
paper, we propose rules following the fusion paradigm, as
our patterns do not embed hierarchical structure, but they
must rather be interconnected, or fused, to design a complete
customized monitoring infrastructure. Net composition can
occur through both transition and place fusion. For express-
ing rules, we use the following syntax, defined in [22]:

NewNet = (OperandNet1 ⊕ · · · ⊕ OperandNetP)

(node11/node12/ · · · /node1n �→ newNode1,

. . . ,nodep1/nodep2/ · · · /nodepm �→ newNodek).

where OperandNetp, with p = 1, . . . ,P are the nets to be
composed and node can be places or transitions.Wewill use

a dotted notation, e.g., node1p = = OperandNet1.node_
name, to avoid ambiguity on places and transition labeling
when required.

Pattern composition occurs in three steps, leading to three
different set of rules:

1. Anchor MI to the process to be monitored (which leads
to the subnet ProAp);

2. Compose the patterns for the dimensions tri, man, and
sup with the anchoring points pattern (subnets TriAp,
ManAp, SupAp, respectively);

3. Compose the subnets obtained at steps one and two into
a complete monitoring infrastructure properly anchored
to the process to be monitored (subnet MI).

Note that the above steps are not commutative, that is, the
composition process as specified above leads to the correct
design of customized monitoring infrastructures only when
the steps are applied in the specified order.

Step 1 concerns defining the rule to anchor the MI to the
process to be monitored. For defining this rule, the process
is abstracted to the transitionsmonStart and monEnd, that
is, the transitions starting and ending the monitoring activity,
respectively, as specified by the customer. The rule is reported
in Eq. 1, and the process and the anchoring point patterns are
fused using transition fusion. Note that the subnet obtained
through the application of the rule is labeled ProAp.

Figure 10 exemplifies the application of the rule in our
running example, where the user specified to start and ter-
minate the monitoring at the activities startCampaign and
endCampaign, respectively.

ProAp = (process ⊕ ap)

(process.start/ap.monStart �→ ProAp.apStart,

process.end/ap.monEnd �→ ProAp.apEnd). (1)

Step 2 requires a set of rules specifying the composition
of anchoring points with all possible patterns identified for
the dimensions tri,man, and sup.

Equation 2 shows the rule for composing the anchoring
point pattern and themcTrg option of the tri dimension. Note
that in our rules we label the subnet representing patterns
using the same names adopted in Sect. 4.

The application of the rule is exemplified by Fig. 11. Note
that one anchoring pattern ap[i] is required to be fused for

receiveAd startCampaign
()

publishAd

changeCampaign

endCampaign
UNIT UNIT UNIT UNIT UNIT

() () () () () () ()

()()

apStart apEnd

MI

()

() ()

()

UNIT UNIT

Process.startCampaign/ap.monStart
ProAp.startCampaign

Process.endCampaign/ap.monEnd
ProAp.endCampaign

Fig. 10 Fusion of process and anchoring points

123



262 SOCA (2016) 10:253–271

Fig. 11 Step-by-step execution of the anchoring of the tri=mcTrg pat-
tern to the monitored process

each of the transitions controlled by the anchoring point, i.e.,
acquireReq (i=1) and bpeAcquireReq (i=2) in this case.
As a result of the composition, a single anchoring point will
control the enabling and disabling of all relevant transitions.
The subnet obtained is labeled TriAp. The rule for themiTrg
option is shown in Eq. 3. Note that this rule is simpler as
only the interface bpeAcquireReq has to be enabled. The
rule for the pattern mixTrg is the same reported in Eq. 2, as
this pattern also involves the two interfaces acquireReq and
bpeAcquireReq.

TriAp = (ap[1] ⊕ ap[2] ⊕ mcTrg)

(ap[1]. < int >/mcTrg.acquireReq �→ TriAp.acquireReq,

ap[2]. < int >/mcTrg.bpeAcquireReq

�→ TriAp.bpeAcquireReq,

ap[1].apStart/ap[2].apStart �→ TriAp.apStart,

ap[1].apEnd/ap[2].apEnd �→ TriAp.apEnd,

ap[1].monStart/ap[2].monStart �→ TriAp.monStart,

ap[1].monEnd/ap[2].monEnd �→ TriAp.monEnd,

ap[1].start/ap[2].start �→ TriAp.start,

ap[1].end/ap[2].end �→ TriAp.end,

ap[1].enable/ap[2].enable �→ TriAp.enable.) (2)
TriAp = (ap ⊕ miTrg)

(ap. < int >/mcTrg.bpeAcquireReq

�→ TriAp.bpeAcquireReq.) (3)

Equation 4 shows the rule for composing the anchoring
point pattern and the sup=push pattern. This rule composes
the anchoring point the supply pattern by fusing the transi-
tions supply and supTrigger. The rule for the pattern mix
is shown in Eq. 5. This has the same structure as the one in

Eq. 4, using the transition supReq instead of supply. Even-
tually, Eq. 6 shows the rule to compose the anchoring point
and the pull pattern, in which only the transition used by the
customer to pull monitoring results has to be fused with the
anchoring point.

SupAp = (ap[1] ⊕ ap[2] ⊕ supPush)

(ap[1]. < int >/supPush.supply �→ SupAp.supply,

ap[2]. < int >/supPush.supTrigger �→ SupAp.supTrigger,

ap[1].apStart/ap[2].apStart �→ SupAp.apStart,

ap[1].apEnd/ap[2].apEnd �→ SupAp.end,

ap[1].monStart/ap[2].monStart �→ SupAp.monStart,

ap[1].monEnd/ap[2].monEnd �→ SupAp.end,

ap[1].start/ap[2].start �→ SupAp.start,

ap[1].end/ap[2].End �→ SupAp.end,

ap[1].enable/ap[2].enable �→ SupAp.enable.) (4)
SupAp = (ap[1] ⊕ ap[2] ⊕ supMix)

(ap[1]. < int >/supMix.supplyReq �→ SupAp.supplyReq,

ap[2]. < int >/supMix.supTrigger �→ SupAp.supTrigger,

ap[1].apStart/ap[2].apStart �→ SupAp.apStart,

ap[1].apEnd/ap[2].apEnd �→ SupAp.end,

ap[1].monStart/ap[2].monStart �→ SupAp.monStart,

ap[1].monEnd/ap[2].monEnd �→ SupAp.end,

ap[1].start/ap[2].start �→ SupAp.start,

ap[1].end/ap[2].End �→ SupAp.end,

ap[1].enable/ap[2].enable �→ SupAp.enable.) (5)
SupAp = (ap ⊕ supPull)

(ap. < INT >/supPull.supplyReq �→ SupAp.supplyReq.)
(6)

Equation 7 shows the rules for composing the anchoring
point pattern and theman patterns. Note that, since the sup-
ply interface is already composed with the anchoring points
through rules for the sup dimension, this rule involves only
theobtain interface ofMI and it is the same for all the patterns
(for the sake of illustration, Eq. 7 considers the rewrite-read
rr pattern). The new obtained net is labeled ManAp.

ManAp = (ap ⊕ manRr)

(ap. < int >/manRr.obtain �→ ManAp.obtain.) (7)

Eventually, in Step 3 we specify a rule for the composition
of the subnets ProAp, TriAp,ManAp, and SupAp obtained
in Steps 1 and 2 in a complete monitoring infrastructure.
Equation 8 shows the composition rule, which relies on the
fusion of the transitions and places of anchoring points and on
the fusion, as previously anticipated, of the supply transition
of patterns monitoring data supply and management (man
and sup, respectively).

123



SOCA (2016) 10:253–271 263

Table 2 Average user correct
choices in the experiment

Anchoring Trigger Management Supply

Simple scenario—correct choices (%) 70.7 43.2 78.4 85.2

Complex scenario—correct choices (%) 79.6 56.2 53.7 79.0

MI = (ProAp ⊕ TriAp ⊕ ManAp ⊕ SupAp)

ProAp.start/TriAp.monStart/ManAp.monStart/

SupAp.monStart �→ MI.start),

ProAp.end/TriAp.monEnd/ManAp.monEnd/

SupAp.monEnd �→ MI.end,

ProAp.apStart/TriAp.apStart/ManAp.apStart/

SupAp.apStart �→ MI.apStart,

ProAp.apEnd/TriAp.apEnd/ManAp.apEnd/

SupAp.apEnd �→ MI.apEnd,

ProAp.enable/TriAp.enable/ManAp.enable/

SupAp.enable �→ MI.enable,

ManAp.supply/SupAp.supply �→ MI.supply.) (8)

5.2 Monitoring infrastructure design in running
example

In this section, we demonstrate the application of patterns
and composition rules to the design of a complete customized
process monitoring infrastructure.

The customized monitoring infrastructures for customers
A and B (see Table 1 for the options chosen) are shown in
Fig. 17a, b in the “Appendix”, respectively. Both MIs have
beendesignedby applying sequentially the composition rules
for the chosen patterns defined previously.

The complete list of compositions rules applied for design-
ing the monitoring infrastructures of Fig. 17 is also reported
in the “Appendix”. In particular, the activities start and end
of rule in Eq. 1 are instantiated into the activitiesStart Cam-
paign and End Campaign of the advertising process of
Fig. 4, respectively.

6 Evaluation and tool implementation

In this section, we evaluate our framework for process mon-
itoring customization. In particular, we first evaluate the
appropriateness (or fit for purpose) of our framework in cap-
turing the monitoring requirements of a given process using
an empirical study. Then, we show the feasibility of our
framework by discussing the proof-of- concept implemen-
tation of a tool supporting the synthesis of customized mon-
itoring infrastructures starting from requirements expressed
using our process monitoring patterns.

6.1 Evaluation of monitoring patterns

We designed an empirical study to assess whether experts
in process modeling were able to use our patterns to capture

monitoring requirements ongivenbusiness process specifica-
tions. The study involved graduate and postgraduate students
in business computing subjects in the Netherlands and UK
enrolled in modules on business process management cov-
ering business process modeling with Petri nets and BPMN.
A total of 30 students participated to the experiment.

After a 15-min training session in which the monitoring
patterns were explained using the same examples used in
this paper, users were given two scenarios. Each scenario
included (1) the description of a process, (2) a Petri net and
BPMN process model representing the process, and (3) a set
of three monitoring requirements of the process considered
by the scenario. The simple scenario involved a process with
six sequential tasks, whereas the process in the complex sce-
nario involved 12 tasks, conditional and parallel execution,
and one loop. Users were asked to capture the monitor-
ing requirements in each scenario by applying the patterns
defined in Sect. 2 in a 35-min session. To avoid cognitive bias
of the authors, process descriptionswere selected from the set
of process modeling exercises developed by the BPMNAca-
demic Initiative (bpmnai.org) and monitoring requirements
were specified by staff members other then the authors. Cor-
rect solutions to the scenarios were developed by the authors
before running the experiment.

We collected two types of evidence:

– the number of time patterns was applied correctly to cap-
ture monitoring requirements;

– a subjective assessment of the mental and time-related
workload of the exercise, using the standard NASA Task
Load Index (TLX) survey.1

A pilot study involving two doctoral students as users was
conducted to ensure the effectiveness of the training session
and the understandability of the task specification.

Table 2 shows the correct number of answers provided
by users when applying the patterns, and Table 3 shows the
descriptive statistics of the subjective workload assessment
survey.

Overall, the concept and options available for anchoring
and the data supply dimensions are well understood by users
and applied correctly on more than 70% of the cases. The
data management dimension is relatively poorly understood
in the complex scenario, which can be due to the complexity
of the scenario and its monitoring requirements. The mon-

1 http://humansystems.arc.nasa.gov/groups/tlx/.

123

http://bpmnai.org
http://humansystems.arc.nasa.gov/groups/tlx/


264 SOCA (2016) 10:253–271

Table 3 Descriptive statistics of TLX survey

TLX survey items Avg StDev

How mentally demanding was the
task?

13.7 4.7

How hurried or rushed was the
pace of the task?

10.3 4.7

How successful were you in
accomplishing what you were
asked to do?

10.6 3.8

How hard did you have to work to
accomplish your level of
performance?

12.6 9.1

How insecure, irritated,
discouraged, stressed, and
annoyed were you?

9.5 5.6

All items evaluated on a scale from 0 to 21

itoring trigger is relatively poorly understood and applied
correctly in no more than 56% of the cases. This may be due
to the fact that common workflow technology implements
only one of the available monitoring options, that is, moni-
toring triggered by the monitoring infrastructure. Workflow
technology has often to be extended ad hoc to enable mon-
itoring clients to trigger the acquisition of monitoring data
directly. This may have represented a bias for student users
with limited classroom experience on real-world workflow
systems.

Regarding the workload subjective assessment (see
Table 3), the task did not appear to be particularly frustrat-
ing and users found enough time to complete it. The mental
effort required by the task is relatively high. This is consistent
with the fact that we involved students in our experiment. We
argue that the subjective mental effort will be lower for more
experienced professional process designers.

6.2 A tool for process monitoring mass customization

In this section, we describe the implementation of a proof-
of-concept tool to support customization of monitoring
infrastructures.Weconsider the case ofmonitoring infrastruc-
tures executing on top of a generic service-oriented process
engine. Our objective is to show the feasibility of the
approach discussed thus far in the paper and to set a foun-
dation for its future test implementation in real business
settings.

Generally, software customization is the focus of soft-
ware product lines [11,29], in which a software product is
decomposed into a set of variant artifacts. Users (customers)
choose the set of artifacts satisfying their requirements and
the software vendor will instantiate, possibly automatically,
the software program from the artifacts and deliver it to the
customer. Among the techniques to implement and man-

Monitoring Op�ons 
Maintenance 

(MOM)

Monitoring 
Customiza�on 
Interface (MCI)

Monitoring 
Infrastructure

Monitoring 
Console

Customized Monitoring 
Facility (CMF)

Business Process 
Engine (BPE)

BPE manager

External component

Feature-Oriented 
Instan�a�on

Features 
(Pa�ern implementa�ons)

Fig. 12 Architecture of the tool for process monitoring customization

age software product lines, our tool exploits specifically
Feature-Oriented Software Development (FOSD) [3]. FOSD
comprises a set of techniques and specifications to support the
automated generation of customized software programs. It
predicates to decompose software programs into features and
to provide configuration options for users/designers. Cus-
tomized software programs are then generated based on a
selection of features, i.e., the variant artifacts, exploiting one
or more generative programming techniques [9]. Genera-
tive programming (GP) techniques automate the synthesis
of software programs from their building blocks, i.e., the
features. By limiting the variability of software programs,
GP techniques increase programmer’ productivity and, gen-
erally, the maintainability of software artifacts [8,9]. FOSD
is supported by FeatureIDE, a freely available Eclipse plugin
supporting feature modeling, code artifacts implementation,
and related code generation [43].

In our context, we need a tool allowing the composition
of predefined monitoring patterns on top of the core moni-
toring capability, i.e., the monitoring API, provided by the
underlying process engine. The monitoring options identi-
fied in Sect. 2, therefore, are implemented as features of
a core process monitoring capability exploiting the native
monitoring API of the process engine. In particular, we
experimented with the OpenESB BPEL and YAWL process
engines. Customized monitoring infrastructures are gener-
ated automatically based on the monitoring options selected
by the customers of a process using a FOSD approach.

The conceptual architecture of the tool is shown in Fig. 12.
It combines design-time and run-time components.

At design time, the provider maintains the models of
monitoring options for its processes through the monitor-
ing optionmaintenance (MOM) component. Customers have
access to the monitoring customization interface (MCI), i.e.,
a Web interface, where they can customize the monitoring
of the process instances they have started in the BPE. The
MOM component is represented by the FeatureIDE model

123



SOCA (2016) 10:253–271 265

Process

Monitoring 
Variables

Monitoring 
Dimensions

Monitoring 
Op�ons

Fig. 13 Monitoring features in our running example

editor, through which process designers create and maintain
a set of monitoring option models for the processes offered
to customers. Figure 13 shows a snapshot of the feature
model corresponding to the monitoring options offered by
the provider in our online advertising scenario. Note that the
feature model in Fig. 13 only includes options for the tri and
sup dimensions. In particular, the root level represents the
process that can be monitored, while the second level of the
featuremodel captures the possiblemonitoring variables. For
each monitoring variable, the third level of the feature model
captures the monitoring dimensions, as defined in Sect. 2,
while the leaves of the feature model represent the monitor-
ing options available to customers. Note that customers may
choose not tomonitor some variables, i.e., variables monitor-
ing is optional, as represented by the white dot, while once
a variable has been chosen, customers have to specify one
option for each possible monitoring dimension, i.e., moni-
toring dimensions are mandatory (black dot in the feature
model) and options for a monitoring dimension are alterna-
tive. Also, note that only monitoring options are concrete,
since they have an implementation (based on the patterns
defined in Sect. 4).

The MCI shows to a logged in customer the options
available for monitoring for only the instances that the cus-
tomer has started. TheMCI, therefore, combines information
obtained from the BPE, i.e., a list of running instances, with
information from the MOM, i.e., the monitoring options
available for active processes, as stored in the configura-
tion file generated by MOM. The MCI allows only feasible
combinations of monitoring options, since this information
is embedded in the monitoring option model and, therefore,
in the configuration files. Figure 14 shows examples of a
monitoring options model in the MOM, and snapshots of the
related configuration XML file generated by FeatureIDE and
the correspondent MCI.

At run time, for each process started by customers, a cus-
tomized monitoring facility (CMF) is instantiated. A CMF
comprises a customized monitoring console (MC) and a
monitoring infrastructure (MI). TheMC displays monitoring
information and allows customer interaction about moni-
toring, e.g., pulling monitoring values, as specified by the
options chosen by the customers at design time. The MI

implements the logic to obtain, store, and made available
monitoring information as specified by the patterns discussed
in Sect. 4.

The generation of CMF exploits the principle of Feature-
Oriented Software Development. In particular, for eachmon-
itoring option, the process monitoring designer must provide
a feature implementation file, specifying the implementation
of the related Monitoring Infrastructure and console. Fea-
ture implementations are then combined to create a complete
CMF in response to a customer request. Such a combination
exploits the theory of feature-oriented software program-
ming AHEAD [8]. FeatureIDE provides tool support for
AHEAD-based composition of features specified in Java.
Figure 15 shows an example of a feature configuration file
in FeatureIDE and the correspondent customized monitoring
console, in which only two of the possible monitoring vari-
ables are selected for monitoring with specific monitoring
options.

Each monitoring option feature extends a base feature
constituted by an empty monitoring GUI and an empty data
structure to collect monitoring values. A monitoring option
feature extends the base feature, providing a specification for
the GUI and for the application logic required by the moni-
toring infrastructure.

6.2.1 Required capabilities of business process

In service-oriented business process monitoring, at the con-
ceptual level customization is built on top of a baseline
constituted by a set of standard monitoring capabilities of the
BPE. In otherwords, in our approach theBPEneeds to imple-
ment a standard monitoring interface that the BPE manager
component will use (see Fig. 16). Based on the architecture
of our tool and the patterns of Sect. 4, at design time (DT)
the standard interface should allow:

DT1. retrieving the instances started by a given customer
(see method getInstanceList() in Fig. 16);

DT2. retrieving the list of variables defined for a process
(getVarList()).

DT capabilities are required by the MCI to show the list
of instances available to the user.

At run time (RT), the BPE manager should allow the
CMFs:

RT1. retrieving values of monitoring variables
(getMonValue());

RT2. commanding the acquisition of monitoring values
(acquireMonValue());

RT3. retrieving the status of activities in a given process
instance (getActivityStatus()).

123



266 SOCA (2016) 10:253–271

Fig. 14 From feature modeling to monitoring customization interface

Fig. 15 From feature
configuration to customized
monitoring console

Fig. 16 The BPE interface

+getInstanceList()
+getVarList()
+getMonValue()
+acquireMonValue()
+getActivityStatus()

BPE Interface
Process Engine

pushMonValue()

BPE manager-callback-use

RT capabilities RT1 and RT2 are required for obtaining
monitoring variables values, whereas RT3 is required for the
implementation of anchoring points. Specifically, anchoring
points can be implemented within the CMF by polling the
status of themonStart andmonEnd activities of the process
and enabling or disabling monitoring consequently.

Although a thorough review of business process manage-
ment technology is out of scope in this paper, we argue that
the functionality of the BPE manager can be implemented
on top of currently available process management technol-
ogy. As a partial demonstration of this statement, we have
successfully integrated our tool with the OpenESB BPEL
engine and the YAWL workflow engine as BPEs.

Both engines provide a basic API to retrieve the list of
running instances (or cases, in YAWL) and related variables.
This satisfies the needs of the BPE manager at design time.
Also, the same API provides methods to retrieve the status of

activities of processes and running instances. These are used
for the implementation of anchoring points (see capability
RT3 defined before).

About run time, the OpenESB engine stores monitoring
information, e.g., variable and activity status values, in a data-
base and provides a basic API to retrieve values from such a
database [34]. This API is used to implement the capability
RT1 discussed before in pull mode. For allowing the engine
to pushmonitoring values to the BPEmanager, the BPEman-
ager exposes a callback interface, which is called by a custom
trigger implemented in the BPE native monitoring compo-
nent database, e.g., when a value of monitored value changes
or exceeds a given threshold (see pushMonValue() in
Fig. 16). Note that a similar mechanism can be implemented
using the sensors of the Oracle BPEL ProcessManager. Sen-
sors are used to declare interest in particular events of interest
within process execution, e.g., values of process variables.

123



SOCA (2016) 10:253–271 267

Sensors can be extended by defining a custom action, e.g., to
send the values of monitoring variables to the BPE manager
callback interface.

The YAWL engine implements a more advanced native
monitoring component by providing a native observer inter-
face that external applications can implement to be pushed or
to pull monitoring values as required [14,42]. Custom devel-
oped observers are used for the implementation of the BPE
run-time capabilities discussed above.

Both process engines log regularly the values of process
variables and status activities. Hence, the run-time capabil-
ity RT2 does not need to be explicitly implemented, since
updated monitoring values are always available in the mon-
itoring component database.

7 Related work

Customization is a paramount activity in the implementation
of complex enterprise systems, such as ERP [25]. Traditional
customization in enterprise systems is a design-time con-
cern, which aims at designing standard processes across the
implementing organization.While standardization across the
enterprise promotes uniformity and interoperability [25], it
is also seen as a constricting institutional factor for large
companies with diverse business units limiting the flexibility
of the company [20]. In this paper, we take a much more
dynamic perspective on customization, allowing individual
customers to specify their own monitoring requirements and
supporting the derivation of a monitoring infrastructure to
satisfy those.

The approach presented in [23] aims at proposing a moni-
toring solution which, as our work, decouples the monitoring
specification from the details of the underlying workflow
system, through the definition of monitoring aspects. This
approach, however, does not consider explicitly customiza-
tion and, consequently, fails to identify a solution space for
monitoring to allow customers to define their specific moni-
toring requirements.

The paper in [10] stresses that, while clearly reducing
implementation efforts, information systems configuration
is not likely to anticipate and capture the requirements of all
possible users. Therefore, information systems require a cer-
tain degree of adaptation to fully capture user requirements.
To support adaptation, the authors propose a conceptual
model that, as we do in this paper, clearly separates the mod-
eling of possible adaptation aspects from the implementation
of related adaptation mechanisms.

In the SOA literature, service adaptation can be applied to
align service specifications in service compositions [28], in
reaction to detected SLA violations [30], or to restore QoS
guarantees [33]. In all these cases, however, adaptation is
not customer specific, since the changes entailed by adap-

tation mechanism are reflected on all the customers using
the service. Examples of customer-specific service adapta-
tion can be found in the mobile services literature, where the
service presentation layer and, to a lesser extent, the service
functionality can be adapted on the basis of the user access
conditions [47,48], e.g., type of device, screen resolution,
quality of Internet connection.

The literature on monitoring of service-based business
processes has focused extensively on languages and tools
to capture monitoring requirements of interested stakehold-
ers, e.g., [5,41]. In this case, however, the objective is to
give the user a means to control the instrumentation of the
process engine to capture the appropriate monitoring vari-
ables. While these approaches can enrich the specification of
the monitoring variable mv, they do not consider the design
of the monitoring infrastructure to store and communicate
monitoring data.

Customization of service-based systems monitoring
infrastructure is also considered in [13,18], where differ-
ent components can be optimally selected to monitor the
terms of SLAs, or in [24], where monitoring components
at different architectural levels can be combined to provide
an integrated monitoring facility to external client. In these
works, customization is not considered at the fine-grained
level considered in this paper. Monitoring components are,
in fact, monolithic services that cannot be modified to better
adhere to the monitoring stakeholders’ requirements.

Customization of workflow monitoring can be also
achieved through the use of agent-based frameworks [27,39,
45]. In [45], in particular, the authors propose a framework to
extend the traditional workflow reference architecture with
agents for monitoring. The language discussed to specify
the monitoring plan shares some commonalities with our
monitoring dimensions, such as the monitoring scope that
defines when monitoring agents are activated to capture
monitoring data. Agents to support semantic alignment of
monitoring information are considered by [27]. Semantic
alignment could be applied in our case to align the defini-
tion of monitoring data between the business process engine
and different monitoring clients.

Regarding the possible behaviors of the monitoring
infrastructure and its communication with the business
process and the client application, we analyzed the literature
on traditional software program monitoring, Web service-
based monitoring, and business process monitoring.

A survey on software programs and software requirements
monitoring can be found in [16]. From this survey, we take
the notion of monitoring points. Monitoring points define
the anchors of the monitoring program to the monitored
program. Similarly, in our model we define anchor points
for monitoring options to the monitored process. The sur-
vey in [16] is used by [6] to classify approaches to Web
service-based process monitoring. In particular, [49] consid-

123



268 SOCA (2016) 10:253–271

ers the modality of notification of monitoring information
as a classification criterion. Monitoring information, usually
captured by an instrumentation of theWeb service container,
can be either pushed to the monitor or pulled by it. Web
service monitoring usually takes an event source-listener
approach [17],where the instrumentedWeb service container
is the source that pushesmonitoring-related event to themon-
itor (listener) [32]. When monitoring information is pushed,
the work in [6] also considers the multiplicity and frequency
with which monitoring information is made available to the
monitor. Still in the context of Web service monitoring, the
model in [37] considers the concept of monitoring socket,
i.e., a generic component which is responsible for the gen-
eration of monitoring data, which can then be pushed to or
pulled by the monitor.

8 Conclusions and outlook

This paper presents a solution for the design and implemen-
tation of customized monitoring infrastructures of service-
based business processes. We first tackled the problem at a
conceptual level, by proposing a multi-dimensional model of
possiblemonitoring options and a set of conceptually defined
patterns for their implementation. By separating themonitor-
ing optionmodels from the definition of patterns, we concep-
tually separated the offer that the provider can make to the
customers from the actual implementation of such an offer.

Then, we provided a set of rules to compose the patterns
into the design of a complete monitoring infrastructure. We
then presented a proof-of-concept implementation exploiting
the principles of Feature-Based Software development. Our
tool allows designing and maintaining monitoring options
model at design time and the generation of customizedmoni-
toring infrastructures at run time.Monitoring infrastructures,
in particular, are generated by the combination of soft-
ware features implementing the business logic of monitoring
options as specified by the patterns and the composition
rules.

The work presented here can be extended along several
lines. As far as the monitoring options model is concerned,
we are planning to extend our work with cross-instance
monitoring options. Cross-instance monitoring should allow
customers to monitor variables defined across the set of
process instances that they have started. These can be defined
for all instances of a givenprocesses, e.g., the averagevalue of
a given process variable, or across instances belonging to dif-
ferent processes, i.e., the average response time of a service
used within different processes. In the longer term, our work
on customization can be extended also to other process man-
agement aspects, such as QoS or resource allocation. Further
extensions of our monitoring patterns may concern the visu-

alization of monitoring data and higher-level concerns such
as compliance to given regulatory requirements.

As far as the implementation is concerned, we are plan-
ning to evaluate our proof-of-concept tool in a real-world
process monitoring customization scenario. The objective in
this case would be to show the scalability of the tool with the
numbers of users and the number of monitoring requests. We
argue that the cloud computing paradigm has the potential to
support our approach on a large scale. Through our mon-
itoring customization framework, the service provider can
identify the monitoring options requested by a high number
of customers and the ones involved only in specific customer
requests. The former can be served by a common dynamic
(multi-tenant) computing infrastructure, whereas comput-
ing resources to provision the latter can be allocated on
demand.

A further challenge will be to address the relationship
between our patterns and big data. When the amount of
data generated by the monitoring infrastructure becomes
extremely large, wemay need to define new patterns, particu-
larly regarding data management, to capture for instance that
only a limited amount of data can be stored at any given time
or that data must be processed on line, perhaps in memory, as
soon as they are generated. We argue that such issues do not
concern traditional workflows involving human actors, but
may become relevant in the context of the Internet of Things,
where processes involve sensors capturing and processing
large amount of data.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: List of composition rules applied to
design the MI for Customer A

Step 1
Anchoring MI to process:

ProAp = (process ⊕ ap)

(process.startCampaign/ap.monStart

�→ ProAp.StartCampaign,

process.endCampaign/ap.monEnd

�→ ProAp.endCampaign).

Step 2
Anchoring pattern tri=miTrg:

TriAp = (ap ⊕ miTrg)

(ap. < int >/mcTrg.bpeAcquireReq

�→ TriAp.bpeAcquireReq.)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


SOCA (2016) 10:253–271 269

Anchoring pattern sup=pull:

SupAp = (ap ⊕ supPull)

(ap. < int >/supPull.supplyReq �→ SupAp.supplyReq.)

Anchoring pattern man=pr:

ManAp = (ap ⊕ manPr)

(ap. < int >/manPr.obtain �→ ManAp.obtain.)

Step 3
Composing MI:

MI = (ProAp ⊕ TriAp ⊕ ManAp ⊕ SupAp)

ProAp.startCampaign/TriAp.monStart/ManAp.monStart/

SupAp.monStart �→ MI.startCampaign),

ProAp.endCampaign/TriAp.monEnd/ManAp.monEnd/

SupAp.monEnd �→ MI.endCampaign,

ProAp.apStart/TriAp.start/ManAp.start/

SupAp.start �→ MI.apStart,

ProAp.apEnd/TriAp.end/ManAp.end/

SupAp.end �→ MI.apEnd,

ProAp.enable/TriAp.enable/ManAp.enable/

SupAp.enable �→ MI.enable,

ManAp.supply/SupAp.supply �→ MI.supply.)

Appendix 2: List of composition rules applied to
design the MI for Customer B

Step 1
Anchoring MI to process:

ProAp = (process ⊕ ap)

(process.startCampaign/ap.monStart

�→ ProAp.StartCampaign,

process.endCampaign/ap.monEnd

�→ ProAp.endCampaign).

Step 2
Anchoring pattern tri=mcTrg:

TriAp = (ap[1] ⊕ ap[2] ⊕ mcTrg)

(ap[1]. < int >/mcTrg.acquire �→ TriAp.acquireReq,

ap[2]. < int >/mcTrg.bpeAcquireReq

�→ TriAp.bpeAcquireReq,

ap[1].apStart/ap[2].apStart �→ TriAp.apStart,

ap[1].apEnd/ap[2].apEnd �→ TriAp.end,

ap[1].monStart/ap[2].monStart �→ TriAp.monStart,

ap[1].monEnd/ap[2].monEnd �→ TriAp.end,

ap[1].start/ap[2].start �→ TriAp.start,

ap[1].end/ap[2].End �→ TriAp.end,

ap[1].enable/ap[2].enable �→ TriAp.enable.)

Anchoring pattern sup=push:

SupAp = (ap[1] ⊕ ap[2] ⊕ supPush)

(ap[1]. < int >/supPush.supply �→ SupAp.supply,

ap[2]. < int >/supPush.supTrigger �→ SupAp.supTrigger,

ap[1].apStart/ap[2].apStart �→ SupAp.apStart,

ap[1].apEnd/ap[2].apEnd �→ SupAp.end,

ap[1].monStart/ap[2].monStart �→ SupAp.monStart,

ap[1].monEnd/ap[2].monEnd �→ SupAp.end,

ap[1].start/ap[2].start �→ SupAp.start,

ap[1].end/ap[2].End �→ SupAp.end,

ap[1].enable/ap[2].enable �→ SupAp.enable.)

Anchoring pattern man=pc:

ManAp = (ap ⊕ manPc)

(ap. < INT >/manPc.obtain �→ ManAp.obtain.)

Step 3
Composing MI:

MI = (ProAp ⊕ TriAp ⊕ ManAp ⊕ SupAp)

ProAp.startCampaign/TriAp.monStart/ManAp.monStart/

SupAp.monStart �→ MI.startCampaign),

ProAp.endCampaign/TriAp.monEnd/ManAp.monEnd/

SupAp.monEnd �→ MI.endCampaign,

ProAp.apStart/TriAp.start/ManAp.start/

SupAp.start �→ MI.apStart,

ProAp.apEnd/TriAp.end/ManAp.end/

SupAp.end �→ MI.apEnd,

ProAp.enable/TriAp.enable/ManAp.enable/

SupAp.enable �→ MI.enable,

ManAp.supply/SupAp.supply �→ MI.supply.)

See Fig. 17.

123



270 SOCA (2016) 10:253–271

startCampaign publishAd

changeCampaign

endCampaign
UNIT UNIT UNIT

() () () () ()

()()

apEnd

apStart

UNIT

UNIT

()

()

supply

obtain

L_MV

1`[] mi_db

lv v_new::lv

lvlv

L_MV v_curr

MV

bpev_new

mc

intTrigger

bpeAcqReq

UNIT
()

()
request

supplyReq

UNIT

()
()

enable

start

end

UNIT

UNIT

getValue
UNIT

“current no. 
of clicks”

()
()

()

()

()

()
()

()

()
()

UNIT

()

MI

(a)

startCampaign publishAd

changeCampaign

endCampaign
UNIT UNIT UNIT

() () () () ()

()()

apEnd

apStart

UNIT

UNIT

()

()

supply

obtain

L_MV

1`[] mi_db

lv v_new::lv

lv[]

L_MV v_curr

MV

bpev_new

mc

supTrigger

bpeAcqReq

UNIT
()

()
request

acquireReq

UNIT

()

enable

start

end

UNIT

UNIT

getValue
UNIT

“current no. 
of clicks”

()
()

()

()

()

()
()

()

()
()

UNIT

()

()

()

UNIT

MI

(b)

Fig. 17 Combining patterns for example customer A (a) and customer B (b)

References

1. Aldred L, van der Aalst W, Dumas M, ter Hofstede A (2009)
Dimensions of coupling in middleware. Concur Comput Pract Exp
21:2233–2269

2. Angelov S, Grefen P (2008) Supporting the diversity of B2B-E-
contracting processes. Int J Electron Commer 12(4):39–70

3. Apel S, Kästner C (2009) An overview of feature-oriented software
development. J Object Technol 8:49–84

4. Ardagna D, Pernici B (2007) Adaptive service composition in flex-
ible processes. IEEE Trans Softw Eng 33:369–384

5. Baresi L, Guinea S (2011) Self-supervising BPEL processes. IEEE
Trans Softw Eng 37(2):247–262

6. Baresi L,GuineaS,NanoO,SpanoudakisG (2010)Comprehensive
monitoring of BPEL processes. IEEE Internet Comput 14(3):50–
57

7. Barros J, Gomes L (2003) Modifying petri net models by means
of crosscutting operations. In: Proceedings of 3rd international
conference on application of concurrency to system design, pp
177–186

123



SOCA (2016) 10:253–271 271

8. Batory D (2006) Tutorial on Feature Oriented programming and
the AHEAD tools suite. In: Proc. Generative and Transformational
Techniques in Software-Engineering. pp 3–35

9. Batory D, O’Malley S (1992) The design and implementation of
hierarchical software systems with reusable components. ACM
Trans Softw Eng Methodol 1:355–398

10. Becker J, Delfmann P, Knackstedt R (2007) adaptive reference
modeling: integrating configurative and generic adaptation tech-
niques for information models. In: Becker J, Delfmann P (eds)
Reference modeling: efficient information systems design thorugh
reuse of information models. Physica-Verlag, Heidelberg

11. Clements P, Northrop L (2002) Software product lines. Addison-
Wesley, Boston

12. ComuzziM,RafaelMartinezRI (2014)Customized infrastructures
for monitoring business processes. In: Proceedings of 8th IEEE
symposium on service-oriented system engineering

13. Comuzzi M, Spanoudakis G (2010) Dynamic set-up of monitoring
infrastructures for service based systems. In: ACM SAC, pp 2414–
2421

14. Comuzzi M, Vonk J, Grefen P (2012) Measures and mechanisms
for process monitoring in evolving business networks. Data Knowl
Eng 71:1–28

15. Curtis G, Cobham D (2008) Business information systems: analy-
sis, design and practice, 6th edn. Financial Times/Prentice Hall,
London

16. Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog
of runtime software-fault monitoring tools. IEEE Trans Softw Eng
30(12):859–872

17. Eugster PT, Felber PA, Guerraoui R, Kermarrec A-M (2003) The
many faces of publish/subscribe. ACM Comput Surv 35:114–131

18. FosterH, SpanoudakisG (2011)Advanced servicemonitoring con-
figurations with SLA decomposition and selection. In: Proceedings
of ACM symposium on applied computing, pp 1582–1589

19. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
Reading

20. Gattiker T, Goodhue D (2005)What happens after ERP implemen-
tation: understanding the impact of interdependence and differen-
tiation on plant-level outcomes. MIS Q 29:559–585

21. Gewald H, Dibbern J (2009) Risks and benefits of business process
outsourcing: a study of transaction services in the german banking
industry. Inf Manag 46:249–257

22. Gomes L, Barros J (2005) Structuring and composability issues in
petri nets modeling. IEEE Trans Indus Inf 1:112–123

23. Gonzalez O, Casallas R, Deridder D (2011) Monitoring and
analysis concerns in workflow applications: from conceptual spec-
ifications to concrete implementations. Int J Cooper Inf Syst
20(4):371–404

24. Guinea S, Kecskemeti G, Marconi A, Wetzstein B (2011) Multi-
layeredmonitoring and adaptation. In: Proceedings of international
conference on service-oriented computing, pp 359–373

25. Jacobs F,Whybark C (2000)Why ERP?. Irwin/McGrawHill, New
York

26. Jensen K, Kristensen LM (eds) (2009) Coloured petri nets.
Springer, Berlin

27. Kang D, Lee S, Kim K, Lee JY (2009) An OWL-based seman-
tic business process monitoring framework. Expert Syst Appl
36(4):7576–7580

28. Kongdenfha W, Saint-Paul R, Benatallah B, Casati F (2006) An
aspct-oriented framework for service adaptation. In: Proceedings
of ICSOC 2006, pp 15–26

29. KruegerCW(2002)Variationmanagement for software production
lines. In: Software product lines 2002, pp 37–48

30. Leitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Moni-
toring, prediction and prevention of SLA violations in composite
services. In: Proceedings of 2010 IEEE international conference
on web services, pp 369–376

31. Ludwig H, Dan A, Kearney R (2004) Cremona: an architecture
and library for creation and monitoring of WS-Agreements. In:
Proceedings of 2nd international conference on service oriented
computing, pp 65–74

32. MahbubK, SpanoudakisG (2005)Run-timemonitoring of require-
ments for systems composed of web-services: Initial implemen-
tation and evaluation experience. In: ICWS 2005 Proceedings of
IEEE Computer Society, pp 257–265

33. Moser O, Rosenberg F, Dustdar S (2008) Non-intrusive monitoring
and service adaptation for WS-BPEL. In: Proceedings of World
Wide Web conference

34. Oracle Inc. (2011) OpenESB: The open enterprise service bus
35. Robinson W (2006) A requirements monitoring framework for

enterprise systems. Requir Eng 11:17–41
36. Robinson W, Purao S (2011) Monitoring service systems from a

language-action perspective. IEEE Trans Serv Comput 4:17–30
37. Sadiq S, Governatori G, Namiri K (2007) Modeling control objec-

tives for business process compliance. In: Proceedings of 5th
business process management conference, pp 149–164

38. Scheer A (2000) ARIS business processmodeling. Springer, Berlin
39. Shu J, Barton R (2012)Managing supply chain execution:monitor-

ing timeliness and correctness via individualized trace data. Prod
Oper Manag 21(4):715–729

40. Simmonds J, Gan Y, Chechik M, Nejati S, O’Farrell B, Litani E,
Waterhouse J (2009) Runtime monitoring of Web service conver-
sations. IEEE Trans Serv Comput 2:223–244

41. Srdic G, Juric M (2013) Model for integrated monitoring of BPEL
processes. Int J Cooper Inf Syst 22(2):1–29

42. ter Hofstede AM, van der Aalst WMP, AdamsM, Russell N (2010)
Modern business process automation: YAWL and its support envi-
ronment. Springer, Berlin

43. Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T
(2013) FeatureIDE: an extensible framework for feature-oriented
software development. Sci Comput Program 79:70–85

44. van der Aalst W, ter Hofstede A, Kiepuszewski B, Barros A (2003)
Workflow patterns. Distrib Parallel Databases 14(3):5–51

45. WangM,Wang H, Xu D (2005) The design of intelligent workflow
monitoring with agent technology. Knowl Based Syst 18:257–266

46. Wieringa R (2003) Design methods for reactive systems: yourdon,
statemate, and the UML. Morgan Kaufmann, Los Altos

47. Wu S-Y, Chang C-S, Ho S-H, Chao H (2008) Rule-based intelli-
gent adaptation in mobile information systems. Expert Syst Appl
34:1078–1092

48. Zhang D (2007) Web content adaptation for mobile handheld
devices. Commun ACM 50:70–79

49. zur Muehlen M (2005) Workflow-based process controlling.
Springer, Berlin

123


	Patterns and tools for business process monitoring customization
	Abstract
	1 Introduction
	2 A model of process monitoring customization
	2.1 Business process monitoring life cycle
	2.2 Conceptual model of process monitoring options

	3 Running example
	4 Patterns for process monitoring options implementation
	5 Composing patterns for monitoring infrastructures design
	5.1 Composition rules
	5.2 Monitoring infrastructure design in running example

	6 Evaluation and tool implementation
	6.1 Evaluation of monitoring patterns
	6.2 A tool for process monitoring mass customization
	6.2.1 Required capabilities of business process


	7 Related work
	8 Conclusions and outlook
	Appendix 1: List of composition rules applied to design the MI for Customer A
	Appendix 2: List of composition rules applied to design the MI for Customer B
	References




