
SOCA (2010) 4:157–168
DOI 10.1007/s11761-010-0063-6

SPECIAL ISSUE PAPER

The design and implementation of service process reconfiguration
with end-to-end QoS constraints in SOA

Kwei-Jay Lin · Jing Zhang · Yanlong Zhai · Bin Xu

Received: 1 December 2009 / Revised: 19 May 2010 / Accepted: 31 May 2010 / Published online: 20 June 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Service processes in SOA are composed dynam-
ically by services from different service providers. At
run-time, some services may become faulty and cause a ser-
vice process to violate its end-to-end quality of service (QoS)
constraints. We propose an effective approach for replacing
only faulty services and some of their neighboring services to
maintain the original end-to-end QoS constraints. We use an
iterative algorithm to search for a reconfiguration region that
has replaceable services to meet the original QoS constraint
for the region. Services in reconfiguration regions may be
replaced using one-to-one, one-to-many, or many-to-one ser-
vice mappings. By replacing only services in reconfiguration
regions rather than the whole service process, reconfigura-
tion overheads are lowered and service disruptions may be
reduced. We have implemented the Adaptation Manager in
the Llama ESB middleware. Performance study shows that
our approach may efficiently repair service processes.

This research was supported in part by Tsinghua National Laboratory
for Information Science and Technology (TNList), and China
National High-Tech Project (863) under grant No. 2009AA01Z120
and 2007AA010306. Yanlong Zhai was supported by a visiting
fellowship from the China Scholarship Council.

K.-J. Lin (B) · J. Zhang
Department of Electrical Engineering and Computer Science,
University of California, Irvine, CA 92697-2625, USA
e-mail: klin@uci.edu

Y. Zhai
School of Computer Science and Technology, Beijing Institute
of Technology, Beijing, China

B. Xu
Department of Computer Science and Technology,
Tsinghua University, Beijing, China

Keywords Service process · SOA reconfiguration · Quality
of service · End-to-end constraint · Service accountability

1 Introduction

Service-oriented architecture (SOA) provides a flexible and
dynamic paradigm for integrating distributed services into
business processes [1,2]. SOA allows enterprises to, stati-
cally or dynamically, compose service processes by integrat-
ing services deployed by different service operators using
some process description language, such as WS-BPEL [3].
As SOA becomes more popular, there are now many Web
services with rich functionalities available. Services from dif-
ferent providers can be used to perform similar functional-
ities. One thus can compose a service process by selecting
services from competing service providers. Enterprises and
their clients are free to pick and choose services from service
providers that best suit their needs.

With SOA now adopted in real-time enterprises (such as
Fedex, UPS, and Twitter), it has become increasingly impor-
tant for enterprises to build service processes that not only
provide accurate results, but also deliver a desirable quality
of service (QoS), including but not limited to response time,
availability, and security. Customers at different application
domains may have different concerns. For example, some
may have very strict end-to-end response time requirements,
while others may be more concerned about the end-to-end
security. Some may have a tight budget constraint, while
others only care about the reliability of the service process.

In [4,5], we have studied the pre-run-time service process
composition problem with end-to-end QoS constraints. We
presented algorithms to select services and their service lev-
els for a business process according to a user’s functional and

123

158 SOCA (2010) 4:157–168

Fig. 1 System deployment
flow for accountable SOA

Diagnosis
Result

Agent Selection and
Deployment

Process + BPELQ

Evidence Channels
Configuration on ASB

Root cause
Diagnosis

Process
Reconfiguration

Reconfigured
Process

Bayesian Network
Configuration

Evidence Channels
Selection

Process Execution

Selected Evidence
Channels

Run-time Data
from

Evidence
Channels

QoS needs. Other projects for service selection in SOA have
also been reported in literature [6,7].

However, the QoS delivered by individual services at run-
time may not meet their pre-defined QoS levels. Many fac-
tors, such as host overload, network congestion, unexpectedly
large number of requests, can affect the QoS delivered by
services. When that happens, a service process must be
repaired immediately in order to continue serving the
business process functions effectively. Providing a QoS-
consistent SOA system is a big challenge. In [2], self-healing
has been identified as one of the leading edge challenges in
SOA.

In the event of QoS violation at run-time, it is not desirable
to always stop and recompose the entire process. Recompo-
sition is time-consuming since the optimal service selection
problem is NP-hard [5]. Moreover, most enterprises would
like to have a stable business environment and minimize the
number of system shutdown and reconfiguration, so that cus-
tomers may not experience unexpected service migration too
often.

We have recently proposed a solution [8] to reconfigure
a service process in order to handle multiple faulty services.
A reconfiguration region is constructed for every faulty ser-
vice. The algorithm tries to include a small number of ser-
vices in each region, as long as they have enough flexibility
and ability to deliver the original QoS in the region. This
method can help reduce the overhead of repairing a com-
plete faulty service process since fewer services are involved
in reconfiguration. In this paper, we extend the work in [8]
by considering more function replacement models, allowing
one-to-many and many-to-one service replacements, in addi-
tion to the original one-to-one replacement model. We have
also designed and implemented the Adaptation Manager in
the Llama middleware [9]. We also report the performance
study result in this paper.

The rest of this paper is organized as follows. Section 2
presents the background of this work. The service process
QoS model is defined in Sect. 3. Our region-based process
reconfiguration is presented in Sect. 4. Section 5 describes
the system architecture and the main components of the sys-
tem. Section 6 shows the performance study for region-based
reconfiguration with and without the new replacement mod-
els. Section 7 compares our work with related work. The
paper is concluded in Sect. 8.

2 Background on SOA management

SOA is designed to facilitate simple service integration and
dynamic service process composition using services from
various service providers. In our previous work [4,5], we
have built a QBroker that makes Web service selections
based on service client’s functional and QoS requirements.
We have also developed the SOA management framework
to check the accountability of individual services regarding
a process’s performance issues [10]. Accountability allows a
service computing environment to be traceable, measurable,
and more dependable. An SOA middleware, the inteLLigent
Accountability Middleware Architecture (Llama), has been
developed to support accountable SOA [9,11]. Among other
components, Llama includes an Accountability Authority
(AA) and many accountability Agents that collaborate with
one another to perform run-time process monitoring and fault
diagnosis. Llama enterprise service bus (ESB) has a built-in
support for dynamic service replacement by re-routing ser-
vice messages to new services.

Figure 1 shows the deployment flow of a service process
on Llama. Given a service process composed by QBroker,
which defines the QoS constraints for each individual ser-
vice in a business process QoS specification (called BPELQ),
AA will configure a Bayesian network model for the pro-
cess flow, by incorporating historical knowledge on service
performance and dependency. AA also uses the Evidence
Channel Selection algorithm to find the best locations for
collecting performance data about the process in order to con-
duct the Bayesian analysis. Accountability Agents for moni-
toring the service process are then selected and deployed by
AA. Evidence channels will collect performance data on ser-
vices during the executions of processes. If an Agent detects
any abnormal behavior from an evidence channel, it will
trigger AA fault diagnosis. AA uses its diagnosis engine to
identify a list of likely faulty services and ask Agents for
fault confirmation. Once confirmed, AA will initiate a pro-
cess reconfiguration to replace those faulty services.

The study reported in this paper is on the part of ser-
vice process reconfiguration (the leftmost step in Fig. 1) after
faulty services are identified. The problem was first studied
in [12], which presents two repair algorithms. The first algo-
rithm (CSPB) generates, for each service along a service
process path, a secondary path from its predecessor service

123

SOCA (2010) 4:157–168 159

F1

SC1

SC5

SC2

SC3 SC4

SC6

F2

F3 F4

F5
F6

SC2 SC3

s1

s2

s3

s4

s5

s6

s7

s11

s8

s9

SC1 SC4

s10
s12 SC6

SC5

START END

START START
END END

Fig. 2 Service composition model

to the end of the service process (without going through the
service). At run-time, a service process can automatically
switch to its secondary path whenever a service becomes
faulty. The second algorithm (CSPR) builds a replacement
path for each service, by finding a complete path from the
start of service process to an alternate service (which can
replace the faulty service), and then to the end of the service
process. Neither of the two proposed algorithms works when
there are multiple faulty services. To solve this problem, we
propose another reconfiguration solution in this paper that
can handle multiple faulty services in a service process.

3 Service process QoS model

3.1 Service process model

In our SOA model, every service is classified by their func-
tionalities into service classes. Every service in a service class
has the same functionality, input and output types, but may
deliver a different QoS.

The top of Fig. 2 shows a function graph. In the function
graph, every node represents a function that maps to a ser-
vice class SCi . Four possible flow paths, [F1, F2, F3, F4],
[F1, F2, F6], [F5, F2, F3, F4], [F5, F2, F6], can be used to
complete the process. Each service class si may have sev-
eral service candidates. For example, services s3, s4, s5 are
included in service class SC2. We may select one service
candidate for each service class in any of the flow paths to
compose a service process.

Functions may be replaced in a number of ways. Some
functions may simply be replaced by another function.
Other functions may be expanded into several functions.
For example, a travel planning function may be divided into
functions for flight booking, hotel reservation, and car rental.
Finally, several existing functions may be replaced by a new
individual function. For example, many trip components may

S1

S2

S3

1

1

p
1

p
2

S4

S 5

S 6

ENDSTART S7

k

ProcessB

ProcessC

ProcessA

Fig. 3 Service process example

be replaced by a packaged deal that is more convenient yet
less expensive. In summary, function replacements can be
done in one-to-one, one-to-many, and many-to-one models
(Fig. 3).

3.2 QoS model

Because of the dynamic and unpredictable nature of busi-
ness applications and distributed systems, delivering quality
services to meet user demands is a big challenge. Without
a careful management of service quality, critical business
applications may suffer detrimental performance degrada-
tion and result in functional errors and/or financial losses.

Service processes in SOA are composed from simple ser-
vices connected by different flow structures. End-to-end QoS
of a business process is dependent on the process structure.
Figure 4 shows a service process example with three subpro-
cesses (A, B, and C). s2 is followed by either s4 or s5 with a
probability of P1 and P2 respectively. s6 may be executed for
at most k times. Suppose ti is the response time of service si ,
the end-to-end response time T is defined as follows.

T = t1 + max(t2 + max(t4, t5), t3 + k ∗ t6) + t7

To derive the end-to-end constraint of response time, three
types of process structure are considered:

– Parallel: The response time of every path in a parallel
structure should be less than the constraint. For example,
in Fig. 4, suppose the response time constraint for process
A is TA, then t2 + tProcessB < TA and t3 + tProcessC < TA;

4

2 1
path1

path2

path3

RT=5s

RT=9s, cost=6

RT=11s RT=4s, cost=6

RT=3s

5 3

Fig. 4 Flow structure example

123

160 SOCA (2010) 4:157–168

– Conditional: The response time of every path in the con-
ditional structure needs to satisfy the constraint.
For example, suppose the response time constraint for
process B is TB, then t4 < TB and t5 < TB ;

– Loop: The number of loop k is added to the node as
a weight. For example, suppose the response time con-
straint for process C is TC, then k ∗ t6 < TC.

4 Partial process reconfiguration

Suppose s3 in Fig. 4 suffers from a QoS problem. We want
to find a replacement service for s3 and ensure that existing
users of the service process will receive the same, if not bet-
ter, QoS. If we cannot find a substitutive service that meets
the QoS criteria of s3, we will try to replace both s3 and s6 if
s6 has some candidates for replacement. Replacing both ser-
vices together gives us more flexibility as long as the replaced
services can meet the combined QoS constraints for both. In
this way, we can monotonically expand the reconfiguration
region to include more services until we find a large enough
region with an acceptable set of replaced services. But if we
include too many services for replacement, it may not make
sense to continue “repairing” the process. In that case, we
may as well recompose a complete process from scratch to
meet the end-to-end QoS constraints.

We now present a region-based service reconfiguration
approach.

4.1 Reconfiguration algorithm

Algorithm 1 shows the reconfiguration algorithm. Given p
faulty services and a reconfiguration threshold c (0 < c < 1)
on the maximum percentage of services to be repaired, the
algorithm first tries to find a replacement for every faulty
service that meets the original QoS (lines 4–7).

After that, the algorithm starts a loop (lines 9–19) to
repeatedly expand all not-yet-repaired regions. Inside the
loop, the algorithm tries to expand and to recompose the
regions in faulty region set R. It first calls the Expand-
Region algorithm (Algorithm 2 in Sec. 4.2) to include some
immediate neighbors into region ri (line 11). It then tries
to recompose each reconfiguration region ri after finding its
QoS constraints.

The recomposition steps (line 14) will be presented in
Sect. 4.3.

The algorithm continues until either all regions have a sat-
isfactory replacement or the total number of services in all
regions are too big (line 9). If all repair regions together con-
tain too many services (more than c ∗ s, s is the process size
and c is a threshold factor), the reconfiguration algorithm
will be stopped. Instead, the whole service process will be
recomposed (line 21).

Algorithm 1 Service Process Reconfiguration Algorithm
Input: faulty services S f = {s1, . . . , sp}, threshold c, process size s
Output: replaced subprocesses R f = {ri }
1: ∀i , set region ri = {si }; region set R = {r1, . . . , rp}, R f = ∅, d = 0
2: for all ri in R do
3: find the QoS constraints for ri
4: select another service r ′

i for ri that meets the QoS of ri
5: if success on service selection for r ′

i then
6: remove ri from R and add r ′

i to R f
7: end if
8: end for
9: while R �= ∅ and

∑
ri ∈R f

|ri | < c ∗ s do
10: d = d + 1
11: call ExpandRegion(R, d) (Algorithm 2)
12: for all ri in R do
13: find the original QoS constraints for ri
14: recompose ri to meet QoS (see Sect. 4.3)
15: if success on ri recomposition then
16: remove ri from R and add it to R f
17: end if
18: end for
19: end while
20: if R �= ∅ then
21: recompose the complete process and set it as R f
22: end if
23: return R f

Algorithm 2 ExpandRegion Algorithm
Input: Regions with failed services R = {ri }, distance d
Output: Expanded regions R = {ri }
Require: D[i][j]: distance matrix between any si and s j .
1: for all ri in R do
2: find Hi = {si |si /∈ ri , ∃ j, s j ∈ ri and D[i][j] = 1}
3: for all s j in Hi do
4: if s j is not an end node of a flow structure then
5: add s j into ri
6: else
7: let sx be the faulty service in ri
8: identify sk which is the other structural end node of s j
9: if sk ∈ Hi or sk ∈ ri or (D[j][x] ≤ d and D[k][x] ≤ d) then
10: add all nodes in the structure between (and including) s j

and sk into ri
11: end if
12: end if
13: end for
14: end for
15: for all ri in R do
16: merge two regions if they have one or more common services
17: end for
18: return R

4.2 Identifying reconfiguration regions

In this section, the region expansion algorithm is presented
to identify the sub-processes that should be reconfigured to
repair faulty services. We would like to identify a small recon-
figuration region to reduce the number of services that will
be replaced.

The region expansion algorithm is shown in Algorithm 2.
In the algorithm, the service process is represented by a

123

SOCA (2010) 4:157–168 161

Fig. 5 Reconfiguration region
example

d=1 d=2

d=3

(a)

d=1

d=2

(b)

d=1

d=4

d=3
d=3

(c)

directed acyclic graph (DAG). The DAG graph includes both
service nodes and control flow nodes, such as AND join and
split. A distance matrix is used to record the distance between
any two nodes in the DAG.

The input for the algorithm includes the distance bound
d and the set of unsatisfied reconfiguration regions that
include at least one faulty service. For a faulty service sx ,
the algorithm looks for an output region ri that extends from
sx to some nodes that are connected to sx with a distance
less than d. If a node is within the distance to sx but is an
end node of a structure that is not completely within dis-
tance d of the faulty node, it will not be included in the
region (line 9). On the other hand, when ri includes both end
nodes of a structure, all nodes in all paths of the structure are
automatically included in the region even if their distance
to sx is larger than d (line 10). Finally, if any two regions
have an overlap, the algorithm merges the two into one
(line 16).

In this structure-based region expansion algorithm, the
complete parallel and conditional structures must be consid-
ered, i.e. we will not add one end node of a structure into a
reconfiguration region with the other. If one of the branches
is included in the region, all the other branches in the struc-
ture should also be included in the region. For example, in
Fig. 5, if service 5 fails and only one path of the structure is
involved in the region, say service 3. A reconfiguration may
pick a new service 3 that takes 2 seconds and a new service
5 that takes 7 seconds. As a result, the response time for path
3 (service 4 and service 5) will be 18 seconds, causing a
response time violation.

On the other hand, if a faulty service is in a structure,
before including nodes outside of the structure, all nodes in
the structure need to be included in the region. For example,
in Fig. 5, if service 3 fails, service 5 should not be included
in the region, until all services 1, 2, 3, 4 are in it.

Figure 6 shows examples of producing the reconfigura-
tion regions for faulty services. In all figures, square nodes
denote faulty services. By increasing the value of the distance
bound, different sub-processes are included in the region.
In Fig. 6a, when the distance bound is two, the parallel
sub-process is not included in the region. This is because
the distance between the faulty service and the start node
of the parallel sub-process is larger than two. In order to keep
the completeness of a structure, none of the nodes in the
parallel structure will be included in the region. Figure 6b
shows that there is one failed service in a parallel structure.
When the distance is one, two services are included in the
region. When the distance bound is increased to two, the
whole parallel structure is included in the region. This is
because both end nodes of the parallel structure are included
in the region. As a result, all nodes of that structure will
be included. Figure 6c shows a service process that has two
faulty services. When the distance bound increases to four,
the two regions are merged into one.

4.3 Recomposition for sub-process

In the Llama architecture (to be discussed in Sect. 5), a
Service Repository is used to store all service candidates
for every function and all possible function replacement

123

162 SOCA (2010) 4:157–168

Fig. 6 Many-to-one mapping
search example

Root

Suffix Tree for
[f1,f2,f3,f2,f1]

f1 f3f2

f1f2 f2f1 f2f3 f3f2

f1f2f3

f1f2f3f2

f3f2f1f2f3f2

f2f3f2f1

f1f2f3f2f1

f2 f2

f3

f1

f2 f1

f2

f1

Root

Mto1 Mapping Trie:
[[f1,f4],X],

[[f1,f2,f3],Y],
[[f2,f3,f4],Y],

[[f2,f3],Z],
[[f3,f1],X]

f2

f3f2

f1 f3

f3 f4

f1

Y

f4

X

f1 f3
f2

f3f1

Suffix Tree Many-to-one Mapping Trie

0

4

3

1

2

Find mapping[[f1,f2,f3],Y]
Find mapping[[f2,f3],Z]

Y

Z X

mappings. A function can be replaced by another function
(one-to-one) or a sequence of several functions (one-
to-many). It is also possible to replace a sequence of functions
by one single function (many-to-one). We assume service
owners and domain experts have provided such a mapping
database in the Service Repository.

In our approach, region-based recomposition (line 14 of
Algorithm 1) is conducted in three steps:

1. Identify the function plan. By identifying the service
functions of the service nodes in a reconfiguration region,
the function plan for the region will be identified.

2. Expand the function plan to another with more paths. The
original function plan may be expanded to another by
adding all replacement functions, including one-to-one,
one-to-many, and many-to-one mappings. Searching for
one-to-one and one-to-many mappings in Service Repos-
itory is easy. But finding many-to-one mapping is more
complex. We present a solution in Algorithms 3 and 4.

3. Select services for the new function plan. An executable
process can be composed by selecting a service for every
function node in the expanded function plan.

Algorithm 3 shows how to identify many-to-one mappings
and add to the new function plan in the repair region. For
each many-to-one mapping M = (F, f ′), the function list
F = [f1, . . . fk] is a sequential flow of f1 to fk in the repair
region and can be mapped to a function f ′. (We discuss only
sequential flows in this paper. More general flow structures
to be matched using graph isomorphism algorithms will be

Algorithm 3 Many-to-one Graph Expansion Algorithm
Input: graph of the original functional plan P
Output: expanded functional graph Pnew

1: set Stack ST = ∅, FuncList L = emptylist , STreeSet Y = ∅,
Pnew = P

2: set ST = ST .push(P.start_node)
3: for all u ∈ P do
4: set u.notvisi ted = true
5: end for
6: while ST �= ∅ do
7: set u = ST .pop(), u.notvisi ted = f alse
8: if u is a structure node & L �= emptylist then
9: T = build_ST ree(L)

10: Y.add(T)

11: L = emptylist
12: else
13: L .append(u)

14: end if
15: for all v ∈ u.next do
16: if v.notvisi ted = true then
17: ST .push(v)

18: end if
19: end for
20: end while
21: R = Search_Mto1(Y) (see Algorithm 4)
22: for all mi = [F, f ′] ∈ R do
23: add a new path for f ′ in Pnew as a replacement path of F
24: end for
25: return Pnew

reported in the future.) All many-to-one mappings are stored
as a trie structure [13] in the Service Repository. The list of F
is record by the path of the trie, and the replacement function
f ′ is stored on the terminal node of the corresponding path
(Fig. 7).

123

SOCA (2010) 4:157–168 163

Algorithm 4 Many-to-one Mapping Algorithm: Search_
Mto1()

Input: suffix tree set Y = {T1, . . . , Tp}
Output: many_to_one mapping set R = {m1, . . . , mq }.
Require: MT : many_to_one mapping trie.
1: set R = ∅
2: for all Ti ∈ Y do
3: set r = Ti .root , r.tnode = MT .root
4: set Queue Q = ∅, Q.enqueue(r)

5: while Q �= ∅ do
6: set Snode = Q.dequeue(), T node = Snode.tnode
7: if T node is a terminal node then
8: R.add([Snode.path_list (), T node.mapping])
9: end if
10: for all s ∈ Snode.children do
11: if s.in_edge = t.value where t ∈ T node.children then
12: set s.tnode = t , Q.enqueue(s)
13: end if
14: end for
15: end while
16: end for
17: return R

In Algorithm 3, we first identify instances of sequen-
tial flows from the original functional plan by checking and
removing structure nodes (line 6-20). A suffix tree [14] is then
built for each sequential flow instance (line 9). Every path in
the suffix tree has a leaf node that records the position of
the first function node that is matched in the path. The suffix
trees are passed to Algorithm 4 to identify all many-to-one
mappings (line 21).

In Algorithm 4, each suffix tree is visited using breadth-
first search. It looks for a matching node in the trie for every
node in the suffix tree. If there is no node in the trie that can
match the current node in the suffix tree, it will stop visiting
the children of the current suffix tree node. If a terminal node
in the trie is visited, then a many-to-one mapping is found.
After all possible many-to-one mappings are identified, new

F1

F2,7

F3 F4

F6 F8

F1 F2
F3 F4

SC1

F1 F5

SC5

F6

SC6 SC2

F2

SC7

F7 F3

SC3

F4

SC4 SC8

F8

F5

Functional Plan

Function Mapping

Expanded Functional Plan

SC1 SC2 SC3 SC4
START END

SC1

SC5 SC6

SC2,7

SC3 SC4

SC8

START END

Fig. 7 Expanded functional plan

paths with the replacement functions will be inserted into the
repair region for possible replacement actions.

An example suffix tree and a trie are shown in Fig. 7.
The suffix tree is generated for the sequence of functions
[f1, f2, f3, f2, f1]. The trie is for five many-to-one map-
pings as shown. Using Algorithm 4, two matches will be
found, [[f1, f2, f3], Y] and [[f2, f3], Z].

Figure 3 shows an example of functional plan expansion.
The functional plan initially has only four nodes and one
path. After searching for related functions, we find that func-
tion F1 can be mapped to function list [F5, F6]; function F2

can be mapped to function F7 and function list [F3, F4] may
be mapped to F8. By adding the replacement functions, the
functional plan is expanded into a plan with eight nodes and
four possible paths. Expanding a functional plan increases
the likelihood to successfully recompose a process to meet
QoS constraints.

4.4 Algorithm complexity

Suppose there are n services and p of them are faulty in a
process. In Algorithm 1, the first loop will be run p times.
Inside the loop, a new service is to be selected according to
the QoS constraints, with a linear time complexity on the
number of service candidates m. Therefore, the first loop has
a complexity of O(pm). In the second loop, the range bound
d increases in every round. Suppose for round i , region size
is vi . As discussed in the next paragraph, the complexity of
line 11 (Algorithm 2) is O(pv2

i). On line 13, to calculate
the constraint of response time equals to finding the longest
path in a DAG, so the complexity is O(v2

i lg vi). Composi-
tion includes function mapping and service candidate selec-
tion. Integer programming used for candidate selection has a
high complexity that is an exponential function of the region
size; we denote the complexity as I P(x). On the other hand,
the worst case complexity of function mapping is polyno-
mial. So the complexity of line 14 is I P(vi), which is the
most critical step in Algorithm 1. The maximum size for
vi is cn and the number of regions with the size cn is no
greater than min(p, 1/c). So the complexity of Algorithm 1
is O(min(p, 1/c)I P(cn)). In comparison, the complexity
of recomposing the whole process is O(I P(n)). Therefore,
our region-based service reconfiguration approach is more
efficient than recomposing the whole process if there is a
small number of faulty services p and a small threshold c.

In Algorithm 2, the first loop (lines 1-14) goes through all
regions and can be run for at most p times. For each region,
nodes outside of the region will be checked (line 3), so the
inner loop may be run at most n times. The complexity of
calculating all regions is O(np) (lines 1–14). The complexity
of regions union (lines 15–17) can be done O(pn2) (or pos-
sibly O(pn lg n) if we use a good data structure). Therefore,
the complexity of Algorithm 2 is at most O(pn2).

123

164 SOCA (2010) 4:157–168

In Algorithm 3, suppose there are f nodes in the func-
tional plan. The complexity of initialization (lines 1–5) is
O(f). To search for sequential flows (lines 6–20), every node
in the functional plan is visited only once; so the complexity
of identifying sequential flows is O(f). The complexity of
building a suffix tree for a flow with k nodes is O(k2). The
sum of all flows’ node number is less then f , so the com-
plexity of building suffix trees (line 9) is O(f 2).

In Algorithm 4, suppose the number of nodes in tree ti
is ni . The complexity of Algorithm 4 is O(

∑
i ni). Since

the suffix tree size for a k-node-flow is O(k2), the complex-
ity of many-to-one mapping search (line 21 in Algorithm 3)
is O(f 2). Suppose x many-to-one mappings are found, the
complexity of adding new paths (lines 22–24) is O(x).
In summary, the worst case complexity of functional plan
expansion by many-to-one mapping (Algorithms 3 and 4) is
O(f 2 + x).

5 System support for reconfiguration

As introduced in Sect. 2, we have implemented the Llama
middleware to support accountable SOA. In this section, the
design of the Adaptation Manager in Llama is presented.

In our project, a service process is specified in a lan-
guage called BPELQ. BPELQ defines both the structural flow
and QoS information for the service process. In BPELQ, a
node can be a service node or a control flow node, such as
AND-joint or -split. For service nodes, their QoS attributes
and service classes are defined.

Figure 8 shows the interactions for service process recon-
figuration in the Llama system. Four main components are

involved in the reconfiguration: Accountability Authority
(AA), Adaptation Manager, QBroker and Llama ESB.

AA is responsible for identifying services that cause a per-
formance problem in a service process. Since only part of the
service process is monitored at run-time, AA performs cause
diagnosis using Bayesian network diagnosis [10] or Depen-
dency Matrix–based diagnosis [15]. The diagnosis results are
then sent to the Adaption Manager for process reconfigura-
tion.

Adaptation Manager is in charge of reconfiguration region
identification and reconfiguration execution decision. Adap-
tation Manager receives the reconfiguration request (with
BPELQ and faulty services) from AA and identifies recon-
figuration regions and calculates the QoS constraints for the
regions. The regions and their constraints are sent to QBroker
for selecting individual services for each function.

When Adaptation Manager receives the results from
QBroker, it will decide the reconfiguration strategy for the
whole process:

– If no multiple services are replaced by a single service,
the changes in the reconfiguration can be implemented
using the Routing Table on ESB.

– If multiple services are to be replaced by a single service,
the reconfiguration information will be used to generate
a new BPEL for the whole process and re-deploy it on
BPEL engine.

As discussed in Sect. 2, QBroker provides process plan-
ning, service selection as well as BPEL generation for a
service process. For reconfiguration, QBroker recomposes
sub-processes and generates new BPEL files.

Fig. 8 Reconfiguration in
Llama

LLAMA
ESBs

F
au

lt
T

ol
er

an
ce

/
O

th
er

S
er

vi
ce

s

F
au

lt
T

ol
er

an
ce

/
O

th
er

S
er

vi
ce

s

A
cc

ou
nt

ab
ili

ty
A

ge
nt

s

Accountability
Authority

User

EC States

Reconfiguration
Mapping List

<Service,BPELQ>

BPELQ,
Faulty services

Reconfig BPELQ and
Diagnosis

Settings(BN,DM,EC)Service
Routing

Bayesian Network
Diagnosis

Service Repo
Llama GUI

QBroker

QoS Based Service
Selection

Service Process
Planning

Function Plan

Reconfiguration
Mapping List

<BPELQ, BPELQ>

Service request

BPEL,BPELQ

Composition

Region Identifier
&

QoS computation

Reconfiguration
region,

QoS constraints

Adaptation
Manager

Routing
Table

Update Routings

BPELQ
& Changes

Service
performance

123

SOCA (2010) 4:157–168 165

Fig. 9 Workflow for
reconfiguration

QoS Based
Service Selection BPEL Generation

BPELQ
Agents

Deployment

BPEL,BPELQ

Evidence Channels
Selection

 Diagnosis

States of
Evidence
Channels

Process
Reconfiguration

Reconfiguration
Result

Service Process
Execution

Diagnosis Result

Reconfiguration
Result

Update routing, EC,
Diagnosis Setting

Service Network
Planning

For one-to-one and one-to-many mappings, the reconfig-
uration results are stored in the Routing Table on Llama ESB
(Fig. 8). Every element in Routing Table records the pro-
cess ID, service information (ID in process and URL) and
a replacement URL for the service. During a service invo-
cation on Llama, the communication interceptor is invoked
to check whether the service is in the Routing Table or not.
If the service is in the Routing Table, the replacement URL
will be invoked instead of the original service. In this way, the
process reconfiguration can be easily realized on the Llama
ESB.

The reconfiguration workflow is shown in Fig. 9. Recon-
figuration in Llama has two workflow loops, a big loop and
a small loop. The big loop includes five steps: diagnosis,
process reconfiguration, BPEL generation, agents deploy-
ment and evidence channel selection. The small loop includes
three steps: diagnosis, process reconfiguration and updating
routing table, evidence channel and diagnosis settings. If the
reconfiguration result includes mapping multiple services to
a single service, the big loop reconfiguration will be invoked;
otherwise, the small loop reconfiguration will be applied.

6 Performance study

To study the performance of our proposed reconfiguration
algorithms, we use a business process with 49 nodes and 8
parallel structures for simulation. Figure 10 shows the pro-
cess structure. A function repository with 120 functions was
also created. For every function in the repository, 1–3 input
and output data types and 1–10 service candidates with four
QoS values were randomly assigned. About 30% of the func-
tions in the repository can be substituted by other functions
or function sets. The simulation steps are as follows.

1. Compose an executable service process by selecting ser-
vices from the repository in order to meet the end-to-end
QoS constraints [4];

2. Randomly select 3 services in the process to be faulty
services;

3. Use our algorithms to reconfigure the process to meet the
QoS constraints.

Table 1 shows the comparison of reconfiguration perfor-
mance among region-based repair with function plan expan-
sion (noted with ‘Y’), without function plan expansion (noted
with ‘N’), and the total process recomposition time without
repair. Three sets of performance data are shown: the longest
distance in reconfiguration regions (showing the number of
rounds on region expansion), the total number of services in
reconfiguration regions, the response time (in ms) for recon-
figuration.

From Table 1, we can see that the response time for region-
based repairs are all much shorter than the recomposition
response time. As discussed in Sec. 4.4, the region-based
repair complexity is a function of the size of the largest
region. In our simulation, the region size (number of ser-
vices) is much less than half of the process size. Most of the
region sizes are less than 1/3 of the whole service process,
which makes the repair to be much faster than recomposing
the whole process.

Comparison between repairs with functional plan expan-
sion and without functional plan expansion shows that recon-
figurations with functional plan expansion involve a smaller
number of functions than without functional plan expansion.
Moreover, for some test cases, like test case 2, reconfigu-
ration with functional plan expansion can successfully find
a process within 166 ms by only changing 8 nodes, when
the other two strategies fail. This is because functional plan
expansion can bring more possible paths and more service

Fig. 10 The process flow for
experiments

123

166 SOCA (2010) 4:157–168

Table 1 Reconfiguration performance

Test case 1 2 3 4 5 6 7 8 9 10

Max region distance (Y) 4 3 8 Fail 1 3 4 3 3 5

Max region distance (N) 5 Fail 8 Fail 1 4 7 3 3 6

Services affected (Y) 11 8 11 Fail 6 13 19 11 14 10

Services affected (N) 24 Fail 19 Fail 6 16 28 11 14 18

Reconfiguration time (Y) 156 166 366 NA 51 141 169 73 83 206

Reconfiguration time (N) 147 NA 124 NA 51 95 188 68 81 124

Recomposition time 2,809 NA 3,617 NA 1,509 2,688 3,278 1,986 2,301 3,398

candidates to reconfiguration. For example, when a func-
tion with only one service candidate fails in the process
and no other service can replace this service, recomposition
without functional plan expansion will fail. But functional
plan expansion may find other functions that can substitute
this function and select proper service candidates for those
functions to compose a new executable process. However,
since the action of functional plan expansion needs time, in
some test cases ,the response time for the reconfiguration
with functional plan expansion is a little longer than that of
reconfiguration without functional plan expansion.

In summary, the response time for both repair strategies
(with or without functional plan expansion) is similar, but the
number of affected functions is significantly smaller when
using functional plan expansion. Also, in some test cases,
functional plan expansion can help find a solution when the
other repair strategies fail. Considering all above observa-
tions, the overall performance of region-based repair with
functional plan expansion is the most desirable reconfigura-
tion strategy.

7 Related work

SOA systems are often executed in dynamic environments.
Therefore, service process adaptation from faulty perfor-
mances is an important area of research. The issue of meeting
end-to-end QoS constraints on adaptive service processes has
been one of the most challenging.

Many projects have studied the adaptation in SOA but
without considering QoS. For example, Verma et al. [16]
introduce a suite of stochastic optimization–based methods,
including both centralized and decentralized methods for
adapting business process modeled as Markov decision pro-
cesses. Both exogenous events and inter-service constraints
have been taken into account when performing the adapta-
tion. In [17], alternate plans are pre-specified at the logical
level, the physical level, and the run-time level. Depend-
ing on the type of changes in the environment, alternative
plans from these three levels are selected. While capable
of adapting to different events, certain pre-specified plans

may not be feasible, making the approach inefficient. And
there is no guarantee on the optimality of resulting service
processes.

He et al. [18] present an approach to the adaptation of
Web service composition based on workflow patterns. This
approach measures the value of changed information (VOC),
and the cost that updated services may potentially introduce
in the business process. The adaptation will be performed
within a certain scope defined by workflow patterns when
it is expected to pay off. Again end-to-end QoS constraints
have not been considered. In [19], Mei et al. present a depend-
able architecture and reflective middleware, called PKUAS,
to support their dependable adaptation. Our Llama middle-
ware is also used to monitor run-time information, investi-
gate faults and route service after reconfiguration. Compared
to their research, we focus on multiple end-to-end QoS and
adopt integer programming for our reconfiguration, while
they did not address QoS.

Much research effort has been conducted on service pro-
cess composition under QoS constraints. In addition to our
work on service composition with end-to-end QoS con-
straints [4,5], Zeng et al. [6] use a quality-driven approach
to select component services for a composite service. They
consider multiple QoS attributes, take into account of global
constraints, and use the integer linear programming method
to solve the service selection problem. Li et al. [20] pro-
pose a correlation model–based approach for multi-QoS con-
strained Web Services selection. The correlation model is
established to reduce the search space. Based on the correla-
tion model, a heuristic algorithm is proposed to find a feasible
solution for multi-QoS constrained Web services selection.
In our work, these composition approaches can be utilized in
the sub-process composition part. But all these work have not
expanded functional plans by the relationships among func-
tions to introduce more feasible solutions, as we discussed
in this paper.

Zeng et al. [21] present another composition framework,
in which composition schema are generated incrementally by
a rule inference mechanism based on a set of domain-specific
business rules enriched with contextual information. A qual-
ity-driven composition schema selection strategy is proposed

123

SOCA (2010) 4:157–168 167

based on the execution quality and schema quality. Compared
to our work, their work focuses on composition schema evo-
lution and selection, whereas our work in this paper mainly
addresses service recovery and QoS-aware reconfiguration.

Recent work on SOA management has started to study
process adaptation with QoS constraints. The MAIS pro-
ject [7] has studied how to select an optimal executable busi-
ness process considering end-to-end QoS constraints. MAIS
performs adaptive composition by negotiating with service
providers when no feasible solution can be found and trig-
gering re-optimization when the execution plan is probably
suboptimal or experiences QoS violation at run-time. The
main difference between re-optimization in MAIS and our
work is that besides end-to-end QoS constraints, their work
focuses more on globally optimal exception plan, while we
emphasize more on the efficiency of reconfiguration.

Rouvoy et al. build a middleware, called MUSIC [22],
to support self-adaption in ubiquitous and service-oriented
environments. Similar to our project, planning-based model
is utilized for process reconfiguration in MUSIC. However,
MUSIC only considers weighted sum of multiple QoS but not
multiple end-to-end QoS constraints for process composition
and does not control reconfiguration size during adaptation.
For the above two reasons, our approach is more efficient and
practical than MUSIC for process reconfiguration in SOA.
On the other hand, MUCIS may trigger adaptation due to
context changes, which is one of our future research topics.

Vanhatalo et al. [23] introduce a Refined Process Struc-
ture Tree (RPST) to re-organize a Business Process Modeling
Notation (BPMN), for the purpose of translating BPMN to
BPEL. RPST can be also applied in other use cases, like
identifying sub-process. BPMN might be used in our region
extension part to achieve similar result with our Algorithm 2.
For example, the current sub-process’ parent in RPST can be
identified as the extension result for the current sub-process.
But in this way, the extension speed might be much quicker
than our current approach. The idea of RPST could be mod-
ified and utilized in our future work.

Finally, Athanasopoulos et al. [24,25] present a formal
framework to classify services into classes and substitute
services by others in the same class. The idea of substitut-
ing service in their research is focused on how to classify
services and fundamental object-oriented design of services.
Their concern is on the service level while our study is on
the process level. Their work of substitution classification
can be used as a component of our overall recomposition
framework.

8 Conclusion

SOA systems should recover from dynamic service faults as
soon and as efficiently as possible. It is undesirable to abort

and to recompose a large service process if there are only
a few services at fault. This paper presents an efficient ser-
vices reconfiguration solution for SOA with end-to-end QoS
constraints. Due to the high computational complexity of ser-
vices composition when there are a large number of services
in a process, a region-based reconfiguration algorithm can
be used to greatly reduce the recomposition complexity. Our
experimental study confirms that most of the recovery can be
successfully achieved by reconfiguring only a small number
of services in a service process. We believe this is a promising
approach to make SOA systems adaptive to QoS faults.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bichler M, Lin K (2006) Service-oriented computing. IEEE Com-
put 39(3):99–101

2. Papazoglou MP, Traverso P, Dustdar S, Leymann F (2007) Ser-
vice-oriented computing: state of the art and research challenges.
IEEE Comput 40:38–45

3. OASIS (2007) Web services business process execution language
version 2.0. OASIS Stand 11. http://docs.oasis-open.org/wsbpel/
2.0/wsbpel-v2.0.html

4. Yu T, Lin K (2005) Service selection algorithms for web ser-
vices with end-to-end QoS constraints. Inform Syst E-Bus Manage
3(2):103–126

5. Yu T, Zhang Y, Lin K (2007) Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Trans Web 6

6. Zeng L, Benatallah B, Ngu A, Dumas M, Kalagnanam J, Chang
H (2004) QoS-aware middleware for web services composition.
IEEE Trans Softw Eng 30(5):311–327

7. Ardagna D, Pernici B (2007) Adaptive service composition in flex-
ible processes. IEEE Trans Softw Eng 33(6):369–384

8. Lin K, Zhang J, Zhai Y (2009) An efficient approach for service
process reconfiguration in SOA with end-to-end QoS constraints.
In: Proceedings of IEEE international conference on e-commerce
technology(CEC)

9. Panahi M, Lin K, Zhang Y, Chang S, Zhang J, Varela L (2008)
The Llama middleware support for accountable service-oriented
architecture. In: Proceedings of 6th international conference ser-
vice-oriented computing (ICSOC’ 08), pp 180–194

10. Zhang Y, Lin K, Hsu J (2007) Accountability monitoring and rea-
soning in service-oriented architectures. J Serv Oriented Comput
Appl 1(1):35–50

11. Lin K, Panahi M, Zhang Y, Zhang J, Chang S (2009) Build-
ing accountability middleware to support dependable SOA. IEEE
Internet Comput 13:16–25

12. Yu T, Lin K (2005) Adaptive algorithms for finding replacement
services in autonomic distributed business processes. In: Proceed-
ings of the 7th international symposium on autonomous decentral-
ized systems (ISADS2005), pp 427–434

13. Knuth D (1997) In: The art of computer programming, 2nd edn,
vol 3: sorting and searching. Addison-Wesley, chap 6, sect 3, p 492

14. McCreight EM (1976) A space-economical suffix tree construc-
tion algorithm. J ACM (JACM) 23(2):262–272

15. Zhang J, Chang Y, Lin K (2009) A dependency matrix based for
framework for QoS diagnosis in SOA. In: Proceedings of IEEE

123

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

168 SOCA (2010) 4:157–168

international conference on service-oriented computing and appli-
cations(SOCA)

16. Verma K, Doshi P, Gomadam K, Miller J, Sheth A (2006) Opti-
mal adaptation in web processes with coordination constraints.
In: Proceedings of the IEEE international conference on web ser-
vices (ICWS06), pp 257–264

17. Chafle G, Dasgupta K, Kumar A, Mittal S, Srivastava B (2006)
Adaptation in web service composition and execution. In: Proceed-
ings of IEEE international conference on web services (ICWS)

18. He Q, Yan J, Jin H, Yang Y (2008) Adaptation of web service
composition based on workflow patterns. In: Proceedings of inter-
national conference on service-oriented computing (ICSOC)

19. Mei H, Huang G, Wei-Tek Tsai W (2005) Towards self-healing
systems via dependable architecture and reflective middleware.
In: IEEE international workshop on object-oriented real-time
dependable systems, pp 337–346

20. Li L, Wei J, Huang T (2007) High performance approach for multi-
QoS constrained web services selection. In: Proceedings of inter-
national conference on service-oriented computing (ICSOC)

21. Zeng L, Ngu A, Benatallah B, Podorozhny R, Lei H (2008)
Dynamic composition and optimization of web services. Distrib
Parallel Databases 24(1–3):45–72

22. Rouvoy R, Barone P, Ding Y, Eliassen F, Hallsteinsen S,
Lorenzo J, Mamelli A, Scholz U (2009) Music: middleware sup-
port for self-adaptation in ubiquitous and service-oriented environ-
ments. Softw Eng Self Adap Softw Syst LNCS 5525:164–182

23. Vanhatalo J, Völzer H, Koehler J (2009) The refined process struc-
ture tree. Data Knowl Eng 68(9):793–818

24. Athanasopoulos D, Zarras AV, Issarny V (2009) ForeverSOA:
Towards the maintenance of service oriented software. In: CSMR
workshop on software quality and maintenance (SQM’09)

25. Athanasopoulos D, Zarras AV, Issarny V (2009) Service substi-
tution revisited. In: 24th IEEE/ACM international conference on
automated software engineering (ASE’09)

123

	The design and implementation of service process reconfiguration with end-to-end QoS constraints in SOA
	Abstract
	1 Introduction
	2 Background on SOA management
	3 Service process QoS model
	3.1 Service process model
	3.2 QoS model

	4 Partial process reconfiguration
	4.1 Reconfiguration algorithm
	4.2 Identifying reconfiguration regions
	4.3 Recomposition for sub-process
	4.4 Algorithm complexity

	5 System support for reconfiguration
	6 Performance study
	7 Related work
	8 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

