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Abstract
Counterfeit detection traditionally relies on manual efforts, but manual detection efficiency is notably low. The accuracy
of deep learning methods is challenging because of the insufficient samples, so it is crucial to allow the model to learn
effective representation at a lower training cost. Given the above problems, we proposed a lightweight multi-task learning
method that employs an uncomplicated auxiliary task to enhance the main task’s attention and reduce the training sample
requirements. A key area guidance algorithm is designed to construct the auxiliary task, disturbing key image areas to generate
new samples and training the auxiliary task to recognize the disturbance. This guides the main task in discerning authenticity
from these key areas. Additionally, a tailored data preprocessing strategy was designed to improve the method’s performance
further. Achieving an impressive 98.8% accuracy in identifying various counterfeiting points, ourmethod outperforms existing
advancedmethods. Importantly, themethod significantly reduces training costs. Evenwith an 80% reduction in the sample size,
the method maintains a 92.1% accuracy, demonstrating minimal performance degradation compared to alternative methods.

Keywords Counterfeit detection · Multi-task learning · Key area guidance · Small sample size

1 Introduction

With the rapid development of online shopping, the problem
of counterfeit products has become increasingly severe and
a global problem. For example, the Chinese police cracked
a case of counterfeit products in 2021, more than 340,000
items, such as counterfeit clothing and luggage, evaluat-
ing more than 300 million RMB [1]. Obviously, counterfeit
goods harm the legitimate interests of consumers, and should
be able to detect in a simpleway. However, the detection task,
especially related to expensive goods, can be only conducted
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by experts even by far. Itmeans poor efficiencywhen encoun-
tering a tremendous number of goods.

There have been a few studies of automatic counterfeit
detection. Traditional machine learning methods manually
design features based on domain knowledge [2], which
requiresmore time andworkforce. The deep learningmethod
must require a large-scale dataset, and a small sample
size cannot guarantee its performance. However, counterfeit
detection differs from defect detection, fake face detection,
and other tasks. The difficulty of sample collection leads to
the inability to structure a large-scale dataset, and the variety
of sample series leads to the weakness of multi-series detec-
tion performance. Given the above problems, we propose a
counterfeit detection network based on key area guidance and
multi-task learning, and conduct experiments on counterfeit
luxury goods as an example. The authenticity of samples is
judged by the shape differences between the genuine and
counterfeit samples. The main contributions of this paper are
summarized as follows:

Firstly, the multi-task learning mechanism is introduced
in counterfeit detection for the first time. The single-task
method requires large amounts of data to find tiny differ-
ences between genuine and counterfeit samples. However, a
well-designed multi-tasking method can facilitate the learn-
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ing process. We design a simple auxiliary task that is easy to
learn from key areas, and helps the attention of the main task
quickly focus on key locations, and thus reduce the require-
ment for data volume.

Secondly, a lightweightmulti-task architecture is designed
for counterfeit detection. For the sake of a compact architec-
ture, the supporting relationship between tasks is leveraged
and so the feature extraction network is shared. The param-
eters are optimized to simultaneously minimizing a distur-
bance detection loss and authenticity identification loss. In
addition, a sample generation algorithm, called KAG, is
designed by a way of disturbing key areas. As a result, a
super-dataset is constructed for training both main and aux-
iliary tasks, free of collecting additional samples.

Finally, an image preprocessing strategy named FWD is
proposed to avoid deformation interference. Images are usu-
ally normalized into same size and heavy distortion will be
introduced if original oneswith diverse aspect ratio. This will
significantly affect performance as fine-grained differences
in key objects are also confused. With the FWD strategy, the
sample image is first filled into a shape of square, which is
proved to enhance the learning.

The rest of this paper is organized as follows: The sec-
ond section discusses the related work that can be used for
counterfeit detection. The proposedmethod and performance
analysis are detailed separately in the third and the fourth
section. In the fifth section, summation and future study are
presented.

2 Related work

Some related studies on counterfeit detection have been pub-
lished in recent years. The entropy teamwas the first to apply
deep learning to counterfeit detection [3]. The microscopic
features of genuine products have unique attributes that can
be used for identification. The application was constrained
due to the dependence of specialist equipment. Tang’s team
used object detection and text recognition to identify samples
[4] and developed the “Bao Xiaojian” counterfeit detection
system. Wang et al. designed a lightweight CNN authenti-
cation model to identify texture material and font print of
Gucci’s black labels [5]. Arguing that both global and local
information should be exploited for better performance, a
two-stage method [6] extract features both from a whole
word and its separate characters. All these works keep on
improving the ability to identify non-significant differences.
Actually, according to our research, a counterfeit detection
application should rather be recognized as a fine-grained
classification task due to two facts. Firstly, the discrimina-
tion between genuine and counterfeit gets weaker as upgrade
of counterfeit craftsmanship. Secondly, the style of genuine
goods varies among different series.

With aware of the similarity to the fine-grained clas-
sification task, techniques including attention mechanism,
fine-grained classification and large visual model, are ana-
lyzed too.Wang et al. proposedECANet [7], which enhances
the recognition ability of the model by introducing an atten-
tion module. Fine-grained classification networks [8–13]
designedvariousmechanisms to pushmodels to focus on crit-
ical visual areas thus addressing the issue of large intra-class
differences and tiny inter-class differences. Since the Vision
Transformer [14], many ViTs are put forward and achieved
impressive improvements. Especially, the SwinTransformer
[15], which introduces a shift windowmechanism to improve
performance while saving computational costs, is widely
chosen as a backbone network to promote visual presenta-
tion. Although these methods are useful in learning the tiny
differences between genuine and counterfeit goods, none of
them can tolerate a small dataset.

Seeking a promotion over fine-grained discrimination,
multi-task methods [16–28] are also taken account in. A
multi-task learning focuses its design on parameter-sharing
strategies for different tasks and for improving task correla-
tion. Demonstrated by studies [29–31], appropriate auxiliary
tasks can effectively promote the learning process of the
other tasks. Although the multi-task learning mechanism has
the potential to solve the problem of counterfeit detection
with insufficient samples, the current research is limited in
application of recommendation systems, and the research on
counterfeit detection is still blank.

Theproposedmethodaddresses the aforementioned issues.
It is composed of a targeted counterfeit detection network
based on task characteristics and is able to learn fine-grained
divergences on the challenging dataset with multiple cate-
gories and small samples in each class.

3 The proposed approach

Multi-series goods with similar but various visual character-
istics are usually encountered in counterfeit detection task.
What contradicts requirement of multi-classification is the
poor number of samples. It is almost impossible to train a
separate model for each series. Therefore, we decide to build
a multi-classification model and leverage an auxiliary task
assisting in promote fine-grained discrimination ability. The
auxiliary task should not only be easy to learn, but also should
be beneficial to attract the attention onto the critical visual
areas and should not increase samples requirement.

The overall architecture, shown in Fig. 1, composes five
stages: key area guidance, feature extraction, main task
branch, auxiliary task branch, and loss aggregation. The
label of the main task and the auxiliary task is denoted as
{(y1i , y2i )|yki ∈ {0, 1}, k ∈ {1, 2}}
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Fig. 1 The overall network
architecture of the proposed
method. The original images
and the disturbed version
generated by the KAG algorithm
are sampled randomly, each has
two attributes and then the
corresponding feature is
obtained by the feature
extraction network. the main
branch and the auxiliary branch
make judge in turn on whether it
is counterfeit and whether it is
disturbed. In particular, no
auxiliary branch is needed
during the test process, and the
model is lighter

Algorithm: KAG Algorithm

Input: Original image m, segment degree N ;
Output: Scrambled image a;

1: Divide m into N × N patches dynamically;
2: for r in N :
3: for c in N − 1:
5: patch(r ,c) ∈ {m(n,n) | 0 < n < N };
6: patch(r ,c+1) ∈ {m(n,n) | 0 < n < N };
7: p = Bernoulli(0.5);
8: if p = 1:
9: temp = patch(r ,c);
10: patch(r ,c) = patch(r ,c+1);
11: patch(r ,c+1) = temp;
12: Output the scrambled image as a.

3.1 Key area guidance

As aforementioned analysis, the auxiliary task need guide the
attention of the main task. Inspired by some image augmen-
tation techniques [32–34], we propose a simple but effective
algorithm named KAG to enhance the focus of the main task
by disturbing image patches.We also observed that DCL-Net
[35] used a similar technique to drive the model to focus on
detail differences, which confirms the validity of ourmethod.

The KAG algorithm takes unprocessed raw images as
input, the input image is first divided into several patches
of the same size by segment degree, the segment degree
N is used to control the granularity of image segmentation,
where the input image is adaptively segmented into N × N
patches. Then adjacent patches are randomly replaced, and
the replacement condition follows the Bernoulli distribution
with a probability of 0.5.

The effects of the KAG algorithm are mainly reflected
in two aspects: sample quantity and sample attributes. In

Fig. 2 The schematic diagram of KAG algorithm

terms of quantity, the algorithm alters the character morphol-
ogy of the generated new samples, increasing the available
samples and reducing the model’s reliance on sample quan-
tity. Regarding attributes, regardless of whether the original
sample is genuine or counterfeit, it will become counterfeit
after being perturbed by the algorithm. Importantly, the non-
core authentication attributes such as sample color, material
texture, and brightness remain largely unchanged before
and after KAG processing, while the character morphology
changes, prompting the network to focus on the core areas.

The principle of the algorithm is shown in Fig. 2. In
the KAG algorithm, adjacent patches of original samples
are shuffled to simulate various counterfeit samples. This
allows the network to recognize multiple patterns of coun-
terfeit samples instead of being limited to a single pattern,
so the problem of poor model performance caused by large
intra-class differences can be relieved. Simultaneously, it
indirectly increases the sample size.

The LV leather tag is taken as an example in Fig. 3, in
which (a) is the original image, and (b) is the scrambled
image generated by the KAG algorithm. It magnified the dif-
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Fig. 3 The sample produced by KAG

Fig. 4 The feature extractor

ferences of characters and simulated a rough counterfeiting
process, while ensuring that the character space position is
not excessively disturbed.

3.2 Feature extraction stage

In the application of counterfeit detection, fine-grained visual
divergences need to be learned, which means deep network
is required. Similar with many novel designs, ResNet50 [36]
is chosen for feature extraction as shown in Fig. 4. The resid-
ual structure of ResNet50 transmits the shallow features to
the deep layer by skip connection and combines the shal-
low texture and deep semantic of the input image, which
is pretty beneficial. However, it is not necessarily the case
that more complex networks yield better performance. Sub-
sequent experiments have shown that ResNet50 outperforms
other backbone networks.

Due to the high similarity between counterfeit products
and genuine ones, relying on residual networks is inade-
quate. Therefore, we have incorporated multi-scale features
by leveraging spatial pyramid pooling [37] to enhance the
model’s capability in capturing diverse scales of information.
Different pooling windows are designed to capture different
details of characters. In the specific implementation, three
scales of adaptive pooling are applied for each feature map.
The formula is as follows:

Fig. 5 The classifier

f t,l+1
i, j = average

(
f t,li, j [i ×

wl

wl+1 ; (i + 1) × wl

wl+1 ,

j × wl+1

hl+1 ; (j + 1) × wl+1

hl+1 ]
) (1)

F = concat
(
f 1,l+1
i, j , f 2,l+1

i, j , f 3,l+1
i, j

)
(2)

where f ∈ R
w×h represents the input feature map, t ∈

{1, 2, 4} represents three pooling levels, and i and j rep-
resent the element coordinates of the output feature map. wl

and hl represent the width and height of the current input
respectively. Finally, the three output feature maps are flat-
tened into 1D vectors and concatenated to obtain the output
feature vector.

3.3 Task branch

In the task branch, feature vectors are sent to the main and
auxiliary branch, respectively. The auxiliary task recognizes
the character disturbance generated by the KAG algorithm,
and themain task discriminates whether samples are genuine
or counterfeit ones. As the disturbance caused by the KAG
algorithm are much more significant than the divergences
between the genuine and counterfeit samples, so the auxiliary
task can be easily optimized, thus guiding the attention of the
main task.

It is found that in the proposed architecture, a simple
classifier is enough to work well. The two task branches
are implemented similarly by the classifier shown in Fig. 5,
mainly composed of two fully connected layers. ReLU is
applied in the middle, and the classification result is finally
mapped to a probability distribution with the sum of 1 by
softmax. The calculation method of softmax is as follows:

yi = epi∑n
i=1 e

pi
∈ (0, 1) (3)
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where n denotes the total number of categories, pi ∈ R
n is

the prediction probability of the i th category of the model
output, and yi represents the probability of the i th category
calculated by softmax,

∑n
i=1 yi = 1.

3.4 Loss aggregation

The auxiliary task seeks optimum parameter to minimize its
predication error of perturbation.According to that, the cross-
entropy defined as follows is chosen as the loss function to
evaluate a disturbance detection loss. For the main task, a
same type of loss function is selected to reflect authenticity
identification loss.

L(s, y) = −
c∑

i=1

si logyi (4)

where c denotes the total number of categories. In the main
task, it equals the number of categories for all genuine and
counterfeit samples and is two in the auxiliary task. si is
the label after one-hot coding, yi represents the prediction
normalized by softmax. The closer between prediction and
ground truth, the smaller the loss is.

As the two tasks hold different importance, the aggre-
gation needs to be carefully designed. Aiming to make the
model thoroughly learn from the main and auxiliary task, the
two losses are integrated by aweight coefficient α as follows:

L fusion = α · Lmain + (1 − α) · Laux (5)

where Lmain and Laux are separately denoted as the authen-
ticity identification and perturbation detection loss. The
optimization of the weight coefficient is discussed in the
fourth part.

3.5 Preprocessing strategy

Images are always resized into shapes of uniform square
before being fed to a DL network and therefore the caused
deformation of objects may eliminate the none-significant
visual differences between genuine and counterfeit samples.
To address the issue, a preprocessing strategy named FWD
is proposed for counterfeit detection. The FWD fills up an
image before zooming an image and thus maintain its aspect
ratio.

Figure8 shows the strategy with different colors. Illus-
trated sequentially from left to right, are the original images,
the directly resized ones, and those filled with black, gray,
white, random colors, and the adaptive average color adja-
cent to the edge, respectively. Obviously, directly resizing the
sample lengthened the letters and reduced the letter spacing.

Such deformations are usually enough to challenge a state-
of-the-art model of classification task. While with the FWD
strategy, the impact of deformation can be mitigated.

4 Result and analysis

To evaluate the proposed method, the comparison among
attention networks, fine-grained classification algorithm,ViT
models and our model is presented. Besides, impact and
selection of important designs are discussed too. In seek for
an insight interpretation over the presented mechanism, t-
SNE and GradCAM are applied.

4.1 Experimental setup

In our method, the network has been trained for 200 epochs,
and the batch size is set to 24. The SGD optimizer is used
in the training process, momentum is set to 0.9 and weight
decay is set to 0.001. The initial learning rate is 0.001, the
cosine annealing strategy is employed, the attenuation cycle
is ten epochs, and the minimum learning rate is 0.0005. α is
set to 0.5. In the KAG algorithm, the segment degree is 20
by default. The images are automatically resized to 448×448
before being fed into themodel. In the FWDstrategy, the gray
color is applied by default.

4.2 Dataset

Data need preprocessing before being further analyzed.
Firstly, techniques like Gamma correction and auto con-
trast enhancement are applied over data captured by various
devices to gain better visual quality. Secondly, an object loca-
tion network, such as YOLOv7 [38] in our case, is leveraged
to segment objects including leather tags, metal buckles, and
metal round labels. The objection location network was pre-
trained with handcraft cut samples. Through the above steps,
we extract sample images from the entire bag image for sub-
sequent experiments.

We conducted experiments on the leather tag, metal
buckle, and metal round label datasets, respectively. Each
dataset contains luxury images from different series of LV
brands in the real world. Each series includes two categories:
genuine and counterfeit. The number of each category is
diverse as a result of the tough collecting task. Consequently,
it challenges the abilities of the models under unbalanced
categories. The samples of these three datasets total in 3095,
1836, and 2300, respectively. The distribution over series in
each dataset is shown in Fig. 6, and some samples are illus-
trated in Fig. 7. Each dataset is disjointly segmented into three
subsets with a ratio of 8:1:1, namely the training set, the valid
set, and the test set.
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Fig. 6 The distribution of the three datasets

Fig. 7 Some samples in the three datasets

Fig. 8 The FWD strategy with various colors

4.3 Comparison and analysis

We carried out experiments on three datasets and evaluated
the performance from three metrics: precision, recall, and
f1-score. The results shown in Table 1 indicate the method
works well on almost all conditions. The f1-score shows it
recognizes the counterfeit metal buckles better than genuine
ones. Although the model performs variously in different
series but the metal round labels are still be well recognized.

The confusion matrixes on the test sets are illustrated
in Fig. 9. The results indicate the good performance of our
model in multi-series detection. It can accurately recognize
the authenticity of multi-series samples, only a few samples
are incorrectly identified as other categories.

Research on automated detection of luxury goods is
scarce, our study primarily revolves around the key technolo-
gies involved in luxury detection, selecting state-of-the-art
algorithms for comparison. Table 2 shows the average accu-
racy of each method on the three datasets. KAG-MTLN
outperforms other methods, with a highest accuracy of
98.8%. Furthermore, the FWD strategy was discussed on
various models. The strategy works well on the leather tag
dataset, but not on others where square-shaped samples are
predominant. Our experiments validate that the FWD strat-
egy is more suited for samples with a larger aspect ratio.

Different training costs were compared in these methods.
We extracted 100% (3095), 80% (2476), 60% (1857), 40%
(1238), and 20% (619) of the samples from the leather tag
dataset for experiments. In Fig. 10, the horizontal and verti-
cal coordinates represent the sample size and test accuracy,
respectively. At an 80% reduced sample size, all networks,
except KAG-MTLN, saw notable accuracy drops due to lim-
ited data. KAG-MTLN outperformed MMAL Net by 4.8%,
ECA Net by 46.1%, CBAM by 41.7%, API-Net by 9.6%,
MHEMby14.3%, andSwinTransformer by 31.8%.Our find-
ings highlight that our method can significantly reduce the
training cost with maintained performance.

4.4 Ablation experiment

We further discussed the effectiveness of our method by ade-
quate ablation experiments on the leather tag dataset.

4.4.1 Analysis over segment degree

To assess the effect of segment degree in the KAG algorithm,
we experimentedwith different values. Table 3 shows that the
optimum value is 20. In Fig. 11, we display samples with seg-
ment degrees of 20 and 50. A higher segment degree yields
smaller patch divisions, and too large values will excessively
destroy letter detail, leading to reduced performance.
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Table 1 Performance metrics on three datasets

Category Leather tag Metal buckle Metal round label
Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Vintage-fake 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.7 95.7

Vintage-real 100.0 100.0 100.0 100.0 90.0 94.7 95.8 100.0 97.9

Montaigne-fake 100.0 100.0 100.0 100.0 94.7 97.3 98.9 93.9 96.3

Montaigne-real 100.0 100.0 100.0 95.7 95.7 95.7 90.0 100.0 94.7

Neverfull-fake 100.0 100.0 100.0 96.8 100.0 98.4 92.0 95.8 93.9

Neverfull-real 100.0 100.0 100.0 96.0 100.0 98.0 96.2 96.2 96.2

Pochette-fake 100.0 95.7 97.8 100.0 97.0 98.5 – – –

Pochette-real 94.8 100.0 97.3 97.3 100.0 98.6 – – –

Fig. 9 The confusion matrix of three datasets

Table 2 The comparison of the
average accuracy between
KAGMTLN and other advanced
methods on three datasets where
“+FWD” means to use the FWD
strategy

Method Leather tag (%) Metal buckle (%) Metal round label (%)

ECA Net [7] 89.6 85.9 88.7

ECA Net (+FWD) 89.6 85.3 89.1

CBAM [39] 89.9 85.3 88.3

CBAM (+FWD) 90.5 86.4 90.0

SwinTransformer [15] 78.9 88.0 89.1

SwinTransformer (+FWD) 82.3 81.5 89.1

MMAL-Net [13] 97.5 97.3 97.4

MMAL-Net (+FWD) 97.8 92.9 96.1

API-Net [40] 98.4 96.2 98.3

API-Net (+FWD) 98.7 95.7 97.8

MHEM [41] 96.8 95.1 96.5

MHEM (+FWD) 98.4 96.2 96.5

KAG-MTLN 97.2 98.6 98.0

KAG-MTLN (+FWD) 98.8 97.8 95.9

The best result is highlighted in bold

4.4.2 Different colors in FWD

To examine the impact of different image padding colors, we
conducted experiments using black, white, gray, random, and
uniform colors. The results, summarized in Table 4, indicate
that gray and uniform colors yield the best performance.

4.4.3 Weight coefficient of loss function

To analyze the effect of weight coefficients in the loss func-
tion, we explored different values, as shown in Table 5.
Optimal performance is achieved with a main coefficient of
0.5, striking a balance between the main and auxiliary tasks.
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Fig. 12 The visualization of t-SNE under different training epochs

Fig. 10 The comparison of variousmodels under different sample sizes.
Each sample set contains multiple series

Table 3 performance of the KAG algorithm with different segment
degrees

Segment degree 10 20 30 40 50

Acc 97.9% 98.8% 98.2% 97.2% 96.0%

Fig. 11 The impact of different segment degrees, the three images are
the original image, the generated image with segment degrees of 20 and
50, respectively

Table 4 The performance comparison of different padding colors

Color None Black White Gray Random Uniform

Acc 97.2% 97.2% 98.5% 98.8% 98.2% 98.8%

Table 5 The performance under different main weight coefficients

α 0.9 0.8 0.7 0.6 0.5

Acc 97.6% 97.9% 97.9% 97.9% 98.8%

Table 6 Accuracy of different backbone models

Backbone Acc (%)

VGG19 95.7

ResNet50 98.8

ResNet101 97.8

EfficientNet-B2 97.5

When the main coefficient is set to 1, the model becomes a
single-task architecture.

4.4.4 Selection of backbone network

To investigate the impact of different backbone networks, we
utilized a range of networks for feature extraction, as detailed
in Table 6. These results confirm that our method’s perfor-
mance remains robust across diverse backbones, underscor-
ing its reliability.

4.4.5 Effectiveness analysis of feature

To validate feature distinguishability, we employed t-SNE
[42] to visualize the output of the final layer in the feature
extraction stage at different training epochs. In Fig. 12, each
colors signify a distinct category. Due to diverse processes
by different counterfeiters, goods within the same category
exhibit varied variations. Consider the purple dots, while dis-
tinct from other colors, they form multiple clusters. Overall,
KAG-MTLN’s extracted features are highly differentiated,
effectively mitigating interference from intra-class differ-
ences.
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Fig. 13 Partial heatmap of the model on the test set, with each column
sequentially from the original image, ECA Net, CBAM, MMAL Net,
SwinTransformer, KAG-MTLN

Table 7 The effectiveness of auxiliary branch. "-auxiliary" represents
the removal of the auxiliary branch

Method Acc (%)

KAG-MTLN 98.8

-auxiliary 96.7

4.4.6 Effectiveness analysis of key area

To assess the model’s attention on key areas, GradCAM [43]
was utilized to highlight focus regions. Figure13 compares
heatmaps fromdifferentmodels on the same sample.Authen-
ticity indicators, such as the circular R mark for leather tags,
end serif and inflection point for metal buckles, and circu-
lar font for metal round labels, are discerned. The heatmaps
demonstrate our method’s ability to discriminate based on
specific key areas.

4.4.7 Effectiveness analysis of multi-task

To validate the effect of the auxiliary task, we conducted
experiments by excluding the auxiliary branch. The results
in Table 7 demonstrate that the auxiliary branch signifi-
cantly improves the learning performance of themain branch,
resulting in a 2.1% higher accuracy in our multi-task archi-
tecture compared to the single-task counterpart.

Simultaneously, the visualization results are contrasted
before and after removing the auxiliary branch. In Fig. 14, the
features extracted by the multi-task method are more clus-
tered and differentiated and can focus on more details.

5 Conclusion

In conclusion, this paper proposes a counterfeit detection
network based on key area guidance and multi-task learning.
The experiments indicate that our method achieves superior
performancewith reduced training cost. Through visual anal-

Fig. 14 The two lines are the t-SNE graph and heatmap before and after
removing the auxiliary branch, respectively

ysis, the key areas of the sample can be highlighted by the
method effectively. Furthermore, our method is not confined
to the presented architecture, it can readily extend exist-
ing single-task methods to multi-task methods. Future work
will focus on refining fusion strategies between diverse tasks
and enhancing the key area guidance algorithm. Our method
provides an efficient deep learning solution for intelligent
counterfeit detection, contributing to fight against counterfeit
products and safeguarding the legitimate rights and interests
of consumers.
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