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Abstract
Gastrointestinal tract disorders, including colorectal cancer (CRC), impose a significant health burden in Europe, with rising
incidence rates among both young and elderly populations. Timely detection and removal of polyps, the precursors to CRC,
are vital for prevention. Conventional colonoscopy, though effective, is prone to human errors. To address this, we propose
an artificial intelligence-based polyp detection system using the YOLO-V8 network. We constructed a diverse dataset from
multiple publicly available sources and conducted extensive evaluations. YOLO-V8m demonstrated impressive performance,
achieving 95.6% precision, 91.7% recall, and 92.4% F1-score. It outperformed other state-of-the-art models in terms of mean
average precision. YOLO-V8 s offered a balance between accuracy and computational efficiency. Our research provides
valuable insights into enhancing polyp detection and contributes to the advancement of computer-aided diagnosis for colorectal
cancer.

Keywords Polyp detection · YOLO-V8 · Colonoscopy images · Gastrointestinal disorders · Colorectal cancer · Artificial
intelligence

1 Introduction

Gastrointestinal (GI) tract disorders pose a significant pub-
lic health concern in Europe, leading to approximately 1
million deaths annually. These disorders not only result in
substantial mortality, but also impose a considerable burden
of illness and healthcare expenses. It is noteworthy that the
incidence and prevalence of manyGI tract disorders are most
prevalent among both the young and, particularly, the elderly
population. Given the global aging trend, the burden of these
diseases is expected to rise steadily in the future [1].

Colorectal cancer (CRC) is a type of cancer affecting the
large intestine and is among the most serious and prevalent
forms of cancer. The 5-year survival rates are influenced by
various factors and can vary significantly depending on the
cancer stage and its location in either the colon or rectum.
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On average, 5-year survival rates for CRC are estimated
to range from 48.6 to 59.4%.[2] Statistics project that by
the year 2020, nearly 150,000 individuals will have been
diagnosed with CRC, and more than 50,000 will succumb
to the disease [3]. Notably, colorectal cancer has experi-
enced the swiftest rise in incidence rates in recent times,
with the number of new cases and deaths doubling over the
past decade and continuing to increase at an average annual
rate of 4–5%. Epidemiological studies reveal a concerning
trend of CRC incidence among adults under the age of 50,
with the numbers already significantly high and continuing
to rise [4]. Research has shown that most CRC cases evolve
gradually from colorectal polyps, particularly adenomatous
polyps. Timely removal of these polyps through resection
can effectively prevent the occurrence of CRC and reduce
CRC-related mortality by up to 70% [5]. Addressing this
preventive approach is crucial in combatting the increasing
prevalence of colorectal cancer.

Cancers usually originate as small, non-cancerous growths
called polyps, which can eventually develop into cancer
(Fig. 1). The adenoma detection rate (ADR) is a key factor in
preventing colorectal cancers. When adenomas are detected
in time, it can prevent the development of intermediate-stage
cancers. Early identification and removal of these growths,
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Fig. 1 Benign to malignant progression of colorectal polyps [6]

commonly known as adenomas, are crucial for effectiveman-
agement. However, there is a wide range in the adenoma
detection rate (7–53%) due to individual differences in endo-
scopists’ technical proficiency.

Polyps are visualized using an invasive technique called
colonoscopy, where a camera is inserted into the diges-
tive tract to capture images and identify potential polyps.
Colonoscopy has been established as the gold standard for
reducing the incidence and mortality of colorectal cancers,
as demonstrated in several studies [7, 8]. This imaging pro-
cedure has been widely acknowledged as a pivotal method in
lowering the incidence of CRC.A study byA.G. Zauber et al.
[9] has demonstrated that this imaging approach can lead to
a remarkable 53% reduction in mortality by detecting polyps
early. Despite the promising results in polyp detection, the
procedure itself is susceptible to human errors. The rate of
missed polyps during back-to-back colonoscopies can range
from approximately 15–30%, depending on the size of the
polyp [10].

Studies have identified a significant correlation between
the polyp detection rate (PDR) and the ADR, making the
PDR a viable alternative index for assessing colonoscopy
quality in patients with gastrointestinal diseases [11]. Con-
sequently, it is crucial to address the issue of reducingmissed
adenomas/polyps through effective means to standardize the
quality of colonoscopy, making it a pressing concern in CRC
prevention efforts.

In July2021, ProfessorBernal fromBarcelonaAutonomous
University in Spain, a pioneer in the field of computer-
aided detection and diagnosis of colorectal polyps, authored
the book titled “Computer-Aided Analysis of Gastrointesti-
nal Videos.” This groundbreaking book is the world’s first
comprehensivework that compares and analyzes various gas-
trointestinal image analysis systems. Its primary objective is
to support clinicians in completing essential tasks, such as
lesion detection in colonoscopy images [12]. Barua et al.
conducted a systematic search for the application of artifi-
cial intelligence in polyp detection during colonoscopy, using
databases likeMEDLINE, EMBASE, and Cochrane Central.
They compared, summarized, and analyzed the differences
between colonoscopywith andwithout AI by calculating rel-

ative risk, absolute risk, and average difference for polyps,
adenomas, and colorectal cancer. Their findings revealed
that an AI-based polyp detection system can significantly
improve the detection rate of non-advanced adenomas and
smaller polyps during colonoscopy [13].

1.1 Main contributions

This paper makes a substantial contribution to the field
of polyp detection through the innovative application of
artificial intelligence, specifically employing the YOLO-V8
methodology. By addressing the critical need for enhanced
recognition accuracy and efficiency in polyp detection, this
research presents a valuable tool for clinicians to minimize
missed diagnoses, facilitate early detection, and contribute
to the prevention of colorectal cancers. The introduction of
the YOLO-V8 method, with its various iterations (YOLO-
V8 n, s, m, l, and x), has been rigorously evaluated across
five distinct datasets: Kvasir-SEG [14], CVC-ClinicDB [15],
CVC-ColonDB [16], ETIS [17], and EndoScene [18]. Our
results, boasting impressive precision, recall, and F1-scores,
underscore the efficacy of the approach when compared
to other state-of-the-art deep learning-based object detector
models.

Beyond its immediate impact, this research also lays a
foundational groundwork for future investigations into polyp
detection and classification. In a rapidly evolving computer
vision landscape, the establishment of a benchmark dataset
is of paramount importance. With the aspiration that our
dataset will serve as a cornerstone, we anticipate that this
work will significantly expedite the progress of computer-
aided diagnosis for colorectal cancer. As we delve deeper
into the intricate realm of medical image analysis, this paper
stands as a pivotal reference point, providing insights and
methodologies that can shape and propel future studies in
the pursuit of more effective and efficient polyp detection
systems.

1.2 Work outline

The organization of the rest of this paper is as follows. In
Sect. 2, the related works is explained. Material and applied
method are given in Sect. 3. Section4 explains the experi-
mental results, and Sect. 5 concludes the paper.

2 Related works

2.1 Polyp detection algorithm based on deep
learningmethods

Various studies have focused on enhancing the detection
of polyps during colonoscopy using convolutional neural
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networks (CNNs). For instance, in [19], a segmentation
model based on a three-dimensional, fully convolutional
(3D-FCN) network is introduced, achieving state-of-the-art
(SOTA) performance in terms of F1-Score and F2-Score.
In [20], an FCN network was developed with a unique
structure, making initial predictions using binary classifi-
cation and then processing them through a CNN similar
to the U-Net architecture designed in [21]. This network
achieved SOTA performance in terms of sensitivity and
specificity metrics for the Kvasir-SEG and CVC-ClinicDB
datasets. Beyond the challenge of capturing global depen-
dencies, convolutional neural networks (CNNs) face other
issues such as overfitting and accurately capturing bound-
ary pixel information. In recent times, efforts have been
made to explicitly address these problems, as seen in the
development of PraNet [22]. PraNet offers real-time segmen-
tation capabilities through the utilization of deep supervision
mechanisms and a reverse attention module for boundary
detection. Additionally, the model incorporates a parallel-
partial decoder to enhance its performance. These modules
have also been implemented in different innovative archi-
tectures like AMNet [23]. AMNet further enhances edge-
detection capabilities originally employed in PraNet. Recent
advancements in polyp segmentation include FANet [24],
which presents innovative approaches to attention and refin-
ing predictions based on coarser representations. The authors
introduced a unique form of attention by leveraging infor-
mation across training epochs to improve predictions across
learnable parameters in subsequent epochs. This attention
mechanism proved effective, leading to excellent results
when evaluated on the CVC-ClinicDB dataset. However, it
did not achieve state-of-the-art performance on the Kvasir-
SEG datasets.

Over the past few years, ensemble methods have gained
popularity for polyp segmentation, and dual-encoder and/or
dual-decoder architectures have emerged [25, 26]. In [25],
the dual-encoder–decoder approach demonstrated favorable
results in polyp segmentation. However, it applied the dual-
model structure sequentially rather than synchronously, with
the output of one encoder–decoder serving as input for the
following one.Moreover, the network did not introducemany
novel components, relying on existing pretrained architec-
tures for its implementation. In [26], a dual-decoder network
called DDANet was proposed. It utilized a single ResNet-
style encoder with a dual-decoder architecture, generating
both a grayscale image and a segmentation mask with each
decoder. While this approach showcased creativity, subse-
quent works have produced significant improvements in
the metrics generated by the network. Indeed, in pursuit
of improving the accuracy of output segmentation maps
for polyp detection, various ensemble methods, particularly
dual-model approaches, have been explored. Examples of
such approaches include the dual mask R-CNN model [27]

and the combination of dual DeiT transformer and ResNet
CNN structure proposed in [28].

To enhance the efficiency of polyp detection, several target
detection algorithms based on the YOLO series have been
developed. Guo et al. presented an automatic polyp detec-
tion algorithm utilizing the YOLO-V3 structure combined
with active learning. This approach effectively reduces the
false positive rate in polyp detection [29]. Cao et al. intro-
duced a feature extraction and fusion module, integrating it
with the YOLO-V3 network. By incorporating both high-
level and low-level feature maps, this method can capture
semantic information and outperforms other techniques in
detecting small polyps [30]. Pacal et al. proposed a real-
time automatic polyp detection method based on YOLO-V4.
They integrated the cspnet network into the architecture and
incorporated themish activation function,Diou loss function,
and transformer block. This approach demonstrates higher
accuracy and superior performance compared to previous
methods [31]. These advancements in target detection algo-
rithms based on the YOLO series hold promise for more
efficient and accurate polyp detection during colonoscopy.
Lee and colleagues [32] introduced a real-time system for
polyp detection utilizing YOLO-V4. The system employed
a multiscale mesh for the identification of small polyps.
Performance enhancementswere achieved through the incor-
poration of advanced data augmentation techniques and
the utilization of different activation functions. Wan and
colleagues [12] proposed a model based on YOLO-V5
for real-time polyp detection, incorporating a self-attention
mechanism.With this approach, themethod strengthens ben-
eficial features, weakens less relevant ones, resulting in an
enhanced performance of polyp detection. In a comprehen-
sive experimental study, Pacal et al. [33] assessed novel
datasets, SUN and PICCOLO, using the Scaled YOLO-V4
algorithm. The results of the experimental studies indicate
that the SUN and PICCOLO datasets demonstrate excep-
tional success in polyp detection, with the Scaled YOLO-V4
algorithm standing out as one of the most suitable object
detection algorithms for large-scale datasets. Durak and col-
leagues [34] conducted training on state-of-the-art object
detection algorithms, including YOLO-V4 [35], CenterNet,
EfficientDet [36], and YOLO-V3 [37], for automatic gastric
polyp detection. In the experimental results, the YOLO-V4
algorithm demonstrated the highest performance compared
to other methods, showcasing its effectiveness for deploy-
ment in CAD systems for automatic polyp detection. Qian et
al. [38] proposed a method that combines GAN architectures
with the YOLO-V4 object detection algorithm for robust
polyp detection. Experimental evaluations were carried out
on three publicly available datasets. The results indicated
that the proposed method outperforms U-Net, synthesizes
more realistic polyp images and significantly improves polyp
detection performance. Gabriel provides a comprehensive
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implementation of YOLO-V4 at various precision levels
(FP32, FP16, and INT8) for polyp detection. Notably, the
study explores the previously untested INT8 quantization
level. The research employs Darknet for YOLO-V4 train-
ing, integrates TensorRT for quantization and optimization
(FP16 and INT8), and evaluates different data augmenta-
tion and regularization techniques on benchmark datasets
of Etis-Larib and CVC-ClinicDB. The study achieves com-
mendable performance metrics, including a median average
precision (mAP) of 82.93% for Etis-Larib and 90.96% for
CVC-ClinicDB. The analysis encompasses GPU specifi-
cations, inference speeds, and accuracy metrics for each
precision level, revealing potential regularization effectswith
quantization. The findings contribute valuable insights to the
application of quantization, particularly in the context of
larger andmore complexmodels like YOLO-V4, strengthen-
ing the argument for its role in network regularization [39].
In [40] by Ahmet Karaman and Ishak Pacal, the study intro-
duces a groundbreaking integration of the ABC algorithm
with YOLO-based object detection algorithms, focusing on
optimizing activation functions and hyperparameters—an
unprecedented exploration in the literature. This integration
achieves more efficient optimization in a single operation,
saving time and hardware costs. Key contributions include a
3% improvement in real-time polyp detection performance
with the YOLO-V5 algorithm, marking the first demonstra-
tion of real-time capabilities onSUNandPICCOLOdatasets.
The study thoroughly examines the influence of activation
functions and hyperparameters on real-time polyp detection
accuracy. The proposedmethod is versatile, easily applicable
to any dataset and YOLO-based algorithm, tailoring param-
eters to optimize performance [41].

As the resolutionof polyp images in colonoscopy increases,
the feature representation of these images becomes more
complex, comprising a large number of pixels. Traditional
polyp detection methods often fail to effectively preprocess
these intricate features from the original images. During
the polyp detection process, various challenges arise due
to inherent characteristics of colorectal images, such as low
brightness, presence of noise, reduced contrast, and tech-
nical limitations of imaging equipment. These factors can
result in blurred edges between adjacent tissues, leading
to difficulties in extracting optimal features for subsequent
analysis. Moreover, the demand for real-time polyp detec-
tion has grown significantly. Despite comprehensive research
conducted on automatic polyp detection systems over the
past decade, there remains a lack of evidence regarding the
system’s ability to accurately locate and track polyps dur-
ing real-time colonoscopy in clinical practice. Additionally,
researchers must continue to explore and develop real-time
polyp detection systems to ensure their practical viability and
efficacy in clinical settings.

3 Materials andmethods

3.1 Datasets

The model’s training and evaluation process involved the
use of a total of five publicly available datasets. Specifi-
cally, the datasets used for evaluation were Kvasir-SEG [14],
CVC-ClinicDB [15], CVC-ColonDB [16], ETIS [17], and
EndoScene [18].

To validate the performance of the applied method, the
model underwent training and testing procedures. The train-
ing dataset was a combination of all five datasets, totaling
1890 images. The model’s performance was then tested on
the remaining 10% of unused data from the Kvasir-SEG and
CVC-ClinicDB datasets, as well as the benchmark polyp
datasets: ETIS, CVC-ColonDB, and EndoScene. A valida-
tion set was created using a 10% subsample of the training
data. The allocation of images from the Kvasir-SEG, CVC-
ClinicDB, CVC-ColonDB, ETIS, and EndoScene datasets
into training, testing, and validation sets followed a ran-
dom selection process based on the proportions mentioned
above. More details regarding these divisions can be found
in Table 1, and some samples of our datasets are presented
in Fig. 2.

In this study, we adopted an approach to augment our
dataset, customizing the augmentation method to suit the
sensitive nature of medical images. The augmentation pro-
cess involved various operations, including normalization,
brightness adjustment, and hue augmentation. To maintain
the integrity of the medical data, we applied conservative
alterations to the images, ensuring that only minor changes
were introduced.

3.2 Overall architecture of themethod

Our primary objective in the detection strategy centers on
enhancing the detection capabilities,with a particular empha-
sis on polyp in colonoscopy images. To achieve this, we
utilize YOLO-V8 [42], an improved iteration of the original
YOLO [43]. YOLO-V8 has attained state-of-the-art perfor-
mance through optimizations in model structure, anchor box
or anchor-free schemes, and the implementation of diverse
data augmentation techniques. Our deep learning architec-
ture is based on the five different sized versions ofYOLO-V8.
The YOLO-V8 framework offers five distinct models N, S,
M, L, X, each characterized by varying channel depth and fil-
ter numbers. For the backbone architecture, we opted to use
all five models due to its balanced combination of detection
accuracy and processing speed.

One of the primary advantages of incorporating YOLO-
V8 into the computer vision project is its enhanced accuracy
compared to previous YOLO models. YOLO-V8 offers sup-
port for multiple tasks, such as object detection, instance
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Table 1 Original datasets
summary

Dataset Size Total Training Validation Test

Kvasir-SEG [14] 487 × 332 to 1920 × 1072 10,000 900 90 100

CVC-ClinicDB [15] 384 × 288 612 550 55 62

CVC-ColonDB [16] 574 × 500 380 300 30 50

ETIS [17] 1225 × 966 196 100 10 86

EndoScene [18] 574 × 500 60 40 4 16

Original Image Ground Truth Bounding Box

Fig. 2 Samples of original colonoscopy imageswith binarymask anno-
tations and bounding box labeling from our five datasets: aKvasir-SEG
b CVC-ClinicDB c CVC-ColonDB d ETIS e EndoScene. The yellow
squares in the figure are the bounding boxes (color figure online)

segmentation, and image classification, enhancing its ver-
satility for various applications. YOLO-V8 represents the
most recent advancement in the YOLO object detection
model, with a primary focus on enhancing both accuracy
and efficiency compared to its predecessors. Key updates in
this iteration comprise an optimized network architecture, a
redesigned anchor box implementation, and a modified loss
function, all contributing to a notable boost in overall detec-
tion precision. YOLO-V8 has showcased enhanced accuracy
when compared to its earlier iterations, positioning it as a
strong competitor alongside state-of-the-art object detection
models. Designedwith efficiency inmind, YOLO-V8 is opti-

mized to run smoothly on standard hardware, making it a
practical and viable choice for real-time object detection
tasks, including edge computing scenarios. Anchor boxes
are used in YOLO-V8 to match predicted bounding boxes to
ground truth bounding boxes, improving the overall accuracy
of the object detection process.

3.2.1 Backbone

YOLO-V8 ’s training process is expected to be notably faster
in comparison with two-stage object detection models, mak-
ing it an efficient choice for projects requiring rapid training
times. In comparison with ultralytics/YOLO-V5 [44], the
backbone of the system experienced modifications with the
replacement of C3 by C2f and integrating the ELAN concept
from YOLO-V7 [45]. Specifically, the first 6x6 convolu-
tion in the stem was replaced with a 3x3 convolution. This
integration enhances the model’s capacity to acquire more
comprehensive gradient flow information. The C3 module is
composed of three ConvModules and nDarknetBottleNecks,
while the C2f module incorporates two ConvModules and
n DarknetBottleNecks connected through Split and Concat.
The ConvModule is structured with Conv-BN-SiLU, and ’n’
denotes the quantity of bottlenecks. Additionally, in C2f, the
outputs from the Bottleneck, which comprises two 3x3 con-
volutions with residual connections, are combined, while in
C3, only the output from the last Bottleneck was used. Two
convolutions (#10 and #14 in the YOLO-V5 config) were
removed from the YOLO-V8 configuration. The bottleneck
in YOLO-V8 remains the same as in YOLO-V5, except for
the change in the first convolution’s kernel size from 1x1 to
3x3. This modification indicates a shift toward the ResNet
block as defined in 2015.

3.2.2 Head

In contrast to theYOLO-V5model, which employs a coupled
head, the approach incorporates a decoupled head, separating
the classification and detection heads. The model eliminates
the objectness branch, retaining only the classification and
regression branches. Anchor-Base utilizes numerous anchors
in the image to ascertain the four offsets of the regression
object from the anchors, refining the object’s precise loca-
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Fig. 3 YOLO-V8: model
architecture including backbone
and head [42]

tion with the aid of corresponding anchors and offsets. The
architecture of the model is shown in Fig. 3.

3.2.3 Loss

In the model training, we employ the Task Aligned Assigner
from Task-aligned One-stage Object Detection (TOOD) [46]
for the assignment of positive and negative samples. This
assigner selects positive samples by considering theweighted
scores of classification and regression, as represented in
Eq.1.

t = sα · uβ (1)

Here, s represents the predicted score associated with the
labeled class, and u denotes the Intersection over Union
(IoU) between the prediction and the ground truth bound-
ing box. Moreover, the model incorporates classification and
regression branches. The classification branch utilizes binary
cross-entropy (BCE) loss, as depicted by the following equa-
tion:

Lossn = −w
[
yn log(xn) + (1 − yn) log(1 − xn)

]
(2)

In this context, w represents the weight, yn is the labeled
value, and xn is the predicted value generated by the model.

For the regression branch, we employ distribute focal
loss (DFL) [47] and complete IoU (CIoU) loss [48]. DFL
is applied to broaden the probability distribution around the
object y, and its equation is expressed as follows:

DFL(Sn, Sn+1) = − ((yn+1 − y) log(Sn)

+(y − yn) log(Sn+1)) (3)

Here, the equations for Sn and Sn+1 are presented below:

Sn = yn+1 − y, Sn = y − yn
yn+1 − yn

) (4)

CIoULoss incorporates an influential factor into distance
IoU (DIoU) loss [49], taking into account the aspect ratio of
both the prediction and the ground truth bounding box. The
equation is as follows:

C IoULoss = 1 − I oU + Distance22
Distance2C

+ v2

(1 − I oU + v)

(5)
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Table 2 Performance and results for training the five versions of YOLO-V8

YOLO Type Precision Recall F1-score mAP50 mAP50-95 Time (ms) Parameters (M) Iteration/s

YOLO-V8 n 95.2 90.3 91.2 86.3 59.1 2.3 3 1.37

YOLO-V8 s 95.2 90.5 91.7 88.7 61.7 4.7 11 1.08

YOLO-V8 m 95.6 91.7 92.4 85.4 62 10.6 25 1.26

YOLO-V8 l 94.3 91.1 91.4 86.1 62.7 16.5 43 1.04

YOLO-V8 x 94.9 91.6 91.5 85.5 61.4 27 68 1.13

Here, n represents the parameter quantifying the aspect
ratio’s consistency, and its definition is provided as follows:

n = 4

π2

(
arctan

(
wgt

hgt

)
− arctan

(
wp

hp

))2

(6)

4 Results and discussion

4.1 Evaluationmetrics

This paper assesses the algorithm’s performance for polyp
detection using four indicators: precision, recall, and F1-
score. The formulas for these indicators are as follows:

Precision = TP/ (TP + FP) (7)

Recall = TP/ (TP + FN) (8)

F1 − Score = 2 ∗ (precision ∗ recall) /

(preciosion + recall) (9)

Among these indicators, TP represents the count of true
positives, indicating the number of correctly detected and
labeled polyp instances. FN represents the count of false
negatives, referring to the number of polyps that were not
correctly detected. FP stands for the count of false positives,
representing the number of non-polyp regions misclassified
as polyps.

Precision assesses the ratio of correctly labeled polyps
among all predicted polyp instances and serves as a metric
that measures the percentage of correct predictions. In the
context of polyp detection, it indicates the confidence level
when a positive detection is made. A higher precision value
helps in reducing the occurrence of false alarms, which can
alleviate financial and mental stress for clients. Recall, on
the other hand, represents the fraction of detected objects.
In polyp detection, this metric holds significant importance
since a higher recall ensures that more patients receive timely
further checks and appropriate treatment. Consequently, it
can lead to reduced mortality and prevent excessive costs
for patients. It measures the proportion of polyps detected
among all polyp images. The F1-score is a combined metric
that takes both precision and recall into account. By consid-

ering both false positives and false negatives, it provides a
balanced assessment of a model’s performance. It serves as
the harmonic mean of precision and recall, offering a com-
prehensive evaluation of the algorithm’s performance.

4.2 Performance of the appliedmethod

The hyperparameter configurations are detailed in Table 2.
The evaluation of each model’s performance relied on three
metrics: precision, recall, and F1-score. All the results shown
in Table 2 highlight the impressive performance of the
YOLO-V8 variations in polyp detection tasks in our test
dataset.

As a concluding step, we evaluated the effectiveness of
our applied method on the datasets used in this project. We
compared the results obtained using our applied method with
those from other existing methods with the same datasets.
The comparative outcomes are presented in Table 3. This
table showcases the performance of our applied method in
relation to the alternative approaches, providing valuable
insights into its effectiveness and potential advantages.

Visual results of the applied method, along with the avail-
able detected polyp with bounding boxes, are presented in
Fig. 4.

In the realm of colorectal polyp detection, the YOLO-V8
m model stands out as a formidable contender, surpassing
various state-of-the-art models in terms of recall, preci-
sion, and F1-score, as delineated in Table 3. Noteworthy
achievements include outperforming custom architectures
like Tajbakhsh et al.’s (2015b) by a significant margin,
showcasing a 91.2% recall, 95.1% precision, and a 91.4%
F1-score. In comparison with YOLO-V1 (Zheng et al.,
2018), YOLO-V8 m consistently demonstrates superior
results, notably achieving 91.2% recall, 95.1% precision,
and a 91.4% F1-score on CVC-ClinicDB, 90.7% recall,
94.6% precision, and a 94.4% F1-score on ETIS, and 91.4%
recall, 94.4% precision, and a 92.1% F1-score on CVC-
ColonDB. Even against hybrid architectures like Urban et
al.’s (2018) ResNet-50, VGG16, and VGG19, our model
maintains competitive performance across diverse datasets.
Moreover, when compared to innovative designs such as
Zhang et al.’s [53] single-shot multibox detector and other
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Detected Polyp

(a)

(b)

(c)

(d)

(e)

Fig. 4 Subset of the detection results of single polyp in test images in
our five datasets: a Kvasir-SEG b CVC-ClinicDB c CVC-ColonDB d
ETIS e EndoScene. The yellow squares in the figure are the bounding
boxes of the detected polyps (color figure online)

YOLO versions, YOLO-V8 m consistently demonstrates a
robust balance between accuracy and computational effi-
ciency. This comprehensive evaluation positions YOLO-V8
m as an advanced and reliable solution for real-time colorec-
tal polyp detection, contributing substantial insights to the
ongoing evolution of artificial intelligence in medical imag-
ing applications.

YOLO-V8 incorporates an efficient backbone architec-
ture that enables streamlined information flow. The model’s

design optimally captures intricate features relevant to polyp
detection while minimizing unnecessary computational bur-
den. This efficiency ensures real-time processing without
compromising accuracy. YOLO-V8 emphasizes attention to
various scales and resolutions within the input image. The
model effectively addresses the multiscale nature of polyps,
allowing it to discern details at different levels. This adapt-
ability contributes significantly to achievinghigher precision,
recall, and F1-scores in comparison with larger, less flexible
models. YOLO-V8 leverages advanced training strategies
and data augmentation techniques. The model is adept at
learning from diverse datasets, which is particularly crucial
in polypdetectionwhere variations in size, shape, and appear-
ance are common. This adaptability enhances generalization
and robustness, resulting in improved performance on unseen
data. YOLO-V8 benefits from the evolutionary improve-
ments introduced in YOLO-V5 and builds upon them.
The modifications and changes implemented in YOLO-V5
to achieve YOLO-V8 play a pivotal role in refining the
model’s accuracy.By acknowledging and incorporating these
advancements, YOLO-V8 surpasses the limitations of ear-
lier versions and outperforms larger, more resource-intensive
models.

4.3 Limitations and future directions

The presented methodology signifies a significant stride
beyond previous iterations of YOLO algorithms, show-
casing improved efficacy in optimizing hyperparameters
with considerations for both time and cost. However, the
study’s broader implications were hindered by the limited
availability of an extensive public polyp dataset. Despite
achieving favorable results, certain datasets from the lit-
erature were excluded due to their scant polyp images
and a restricted number of patients. This underscores the
inherent data dependency of deep learning algorithms,
highlighting the critical need for robust datasets to show-
case optimal performance. Noteworthy advancements are
observed in real-time speed and detection efficiency, sur-
passing existing methodologies and prior YOLO versions.
Current endeavors aim to extend these methods to clinical
applications by amalgamating existing datasets. Neverthe-
less, the recognition of the necessity for datasets featuring
a more diverse array of polyp images, representing various
patients and geographic locations, is acknowledged. Con-
templation of additional studies and forthcoming research
endeavors is underway, foreseeing the development of
more effective models for clinical applications through
the utilization of larger and more diverse datasets in the
future.
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5 Conclusion

Currently, artificial intelligence polyp detection technol-
ogy is in its early stages of development. When compared
to traditional statistics or expert systems, deep learning
methods typically exhibit notable enhancements in per-
formance and detection accuracy for most image target
detection tasks. In response to this problem, the focus of
this article revolves around polyp target detection, specifi-
cally employing YOLO-V8 as the chosen method. In this
article, we have successfully created a relatively extensive
endoscopic dataset specifically designed for detecting polyps
in colonoscopy images. In our comprehensive exploration of
artificial intelligence polyp detection technology, the utiliza-
tion of YOLO-V8, particularly the YOLO-V8 m variant, has
emerged as a standout performer. The success of YOLO-
V8 m, with a precision of 95.6%, recall of 91.7%, and an
F1-score of 92.4%, can be attributed to a judicious balance
between its range of parameters and the characteristics of our
extensive endoscopic dataset tailored for polyp detection in
colonoscopy images. The meticulous design of our dataset,
emphasizing images with low contrasts, enabled YOLO-V8
m to significantly enhance detection accuracy, particularly
in challenging scenarios. The model’s proficiency is fur-
ther underscored by its notable mean average precision at
50% overlap (mAP50) of 85.4% and mAP50-95 of 62%.
Moreover, the inference time of 10.6 milliseconds and 25
million parameters demonstrate a commendable equilibrium
between accuracy and computational efficiency, rendering
YOLO-V8 m a compelling choice for real-time applications.
While YOLO-V8 m stands out as a prime choice, YOLO-V8
s, with a precision of 95.2%, recall of 90.5%, and F1-score
of 91.7%, also showcases commendable performance. The
nuanced trade-off between accuracy and computational effi-
ciency is evident in its slightly longer inference time of 4.7
milliseconds and 11 million parameters. This research can
establish a fundamental reference point for future studies
concerning polyp detection and classification. Considering
the rapid progress in the computer visiondomain over the past
years, the presence of a benchmark dataset holds paramount
importance. It is our aspiration that our dataset will substan-
tially expedite the computer-aided diagnosis of colorectal
cancer.
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