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Abstract

In vivo confocal microscopy is a technique that allows to acquire images of the corneal layers in a rapid and noninvasive
way. Analysis of sub-basal nerve allows obtaining important clinical information regarding the eye and the human body’s
health. To obtain that information, it is necessary to correctly identify and trace the nerve fibers. Manual analysis is time-
consuming and subjective. Numerous automatic algorithms have been proposed to overcome these problems, but none have
been included in clinical practice yet. In this work, we take advantage of deep learning techniques. We present an analysis
of the performances obtained through UNet (baseline) to which various architectural solutions have been added to boost
performance. The variation of the tracing results is also analyzed according to the use of different loss functions, one of which
is introduced here: It considers a tolerance margin (Dice with tolerance). The investigated configurations have been shown
to be capable of improving the tracing of corneal nerve fibers. The model with attention modules and atrous-spatial pyramid
pooling modules showed the greatest improvement compared to the baseline, increasing in the evaluation score from 86.51

to 90.21%. Furthermore, the proposed loss function further increases the results (achieving 92.44%).
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1 Introduction

The introduction of in vivo confocal microscopy (IVCM), as
a technique for acquiring corneal images, has revolutionized
the study and analysis of the structures of this tissue [1, 2].
In particular, thanks to this tool, it is possible to quickly and
noninvasively acquire images of the sub-basal plexus (spe-
cific layer within the epithelium), allowing the visualization
of the corneal nerve fibers.

As the cornea is the most innervated tissue in the human
body [3], the analysis by confocal microscopy has made it
possible to greatly expand the knowledge related to corneal
structures and has allowed us to deepen the relationship
between the characteristics of the corneal nerves and some
pathologies, both ocular (dry eye, keratoconus, herpes ker-
atitis) and systemic (diabetes, etc.) [4-9].

Moreover, several investigators have examined these
structures and verified that they provide important clinical
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information related to age, prolonged use of contact lenses,
surgery (such as LASIK or PRK), and transplantation [9—12].

However, quantitative analysis of corneal nerve fibers
remains complex for daily clinical practice due to the
execution time required and the difficulty of manual or semi-
automatic analysis.

Additionally, manual analysis varies according to the clin-
ician who performs the analysis and according to his or her
experience. This subjectivity in manual analysis means that
the clinical parameters, derived from the tracing, are also
subjective and prone to errors. In the literature, some studies
have been presented for the automatic analysis of images of
the sub-basal plexus and, in particular, for the tracing of the
nerve fibers. To the best of our knowledge, none of them have
been included in the diagnostic process yet.

Scarpa et al. [13] proposed a method based on improv-
ing contrast through Gabor filters, followed by a threshold
and clustering according to the fuzzy c-means technique.
Subsequently, Dabbah et al. [14] presented an extension of
some previous enhancement techniques, promoting a multi-
scale approach, followed by an artificial neural network to
classify each pixel as a foreground or background. On the
basis of the last, Chen et al. [15] figured out the best con-
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figuration to obtain nerve segmentation. Poletti and Ruggeri
[16] proposed a new approach based on a sparse tracking
scheme. Annunziata et al. [17], presented a hybrid segmen-
tation method, which combines an appearance model, based
on a scale and curvature-invariant ridge detector (SCIRD),
with a context model, including multi-range learned context
filters. Al-Fahdawi et al. [18] proposed a three-step seg-
mentation model. These steps included anisotropic diffusion
filtering (to enhance nerves and remove noise), morphologi-
cal operations (to remove unwanted objects, such as epithelial
cells and small nerve segments), and edge detection (to detect
all nerves in the input image). Afterward, Guimaries et al.
[19] proposed another automatic method that processed the
images with a filter bank (which includes the log-Gabor fil-
ter). Hysteresis thresholding was used to isolate candidate
nerve pixels, and each pixel was then classified through a
support vector machine.

One of the major problems related to the methods pre-
sented is their execution time (up to hundreds of seconds
for a single image), followed by a not always excellent cor-
respondence with manual analysis. In Dehghani et al. [20],
the ability of automatic, semi-automatic, and manual meth-
ods was analyzed to detect the decrease in the length of the
corneal nerves in patients with diabetes. They demonstrated
that all three methods could distinguish healthy subjects from
diabetic ones, but the manual method was found to distin-
guish subjects better, especially in low-contrast images.

Thanks to the new deep learning techniques, it is possi-
ble to significantly reduce analysis times and improve the
correspondence with manual analysis, compared to previ-
ous algorithms. In our previous work [21], this technique
was used for the first time for the analysis of corneal nerves,
implementing a convolutional neural network (CNN), based
on a U-shaped architecture. Zhang et al. [22] also used a
UNet to segment nerve fibers, but they first implemented pre-
processing steps to obtain image normalization. Mehrgardt
et al. [23] presented a new multi-step approach, called UNet
segmented adjacent angle detection (USAAD), for nerve
fiber segmentation (also based on UNet) and automatic tor-
tuosity estimation.

In this work, we continued our previous investigation (pre-
sented at the MICCAI 2018 conference [21]) on the corneal
nerve fibers segmentation, based on a convolutional neu-
ral network. In the related article, as mentioned above, we
mainly focused on the classical UNet encoder-decoder archi-
tecture [24] and demonstrate the ability of that network to
individuate and trace the corneal nerves in [IVCM images.
In this work, we investigate whether some architectural con-
volutional neural network blocks added to the simple UNet
could improve the performance. Moreover, we investigate
how the use of different loss functions will influence the
results, and we introduce a new loss function, which aims to
consider a margin of tolerance in the tracing of nerve fibers.
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2 Materials and methods
2.1 Materials

In this investigation, we used the same dataset presented by
Colonna et al. [21] for training all networks. It consists of
8909 confocal images of the sub-basal nerve plexus from
healthy and pathological (with type 1 or 2 diabetes) subjects.
Each image covers a field of 400 x 400 um (384 x 384
pixels) and was acquired using the Heidelberg retina tomo-
graph (HRT-II) with the Rostock cornea module (Heidelberg
Engineering GmbH, Heidelberg, Germany). The acquisition
was carried out at different clinical centers, and all data have
been anonymized. Due to the difficulty and execution time
required for manual analysis of such a large dataset, we
decided to obtain the labeled images for the training by using
the algorithm proposed by Guimaraes et al. [25]

For the testing phase, we used a dataset composed of 90
images, acquired with the same tool, from healthy and patho-
logical subjects. Each image was manually analyzed using
the Neuron]J [26] tracing plug-in for ImageJ (the software
is available in the public domain at http://imagescience.org/
meijering/software/neuronj/).

2.2 Convolutional neural network modules

As a baseline for this work, we chose the UNet [24], which
has proven to be an optimal framework for semantic segmen-
tation of biomedical images in general and IVCM images in
particular. It is composed of the encoding and the correspond-
ing decoding units, with a four-layer depth. The architecture
has been designed in such a way as to have the input and
output size equal to the original image dimensions (384 x
384 pixels).

A brief description of the coding and decoding blocks
is now reported. The encoding path is made up of four-
layer depth, each, in turn, made up of 2 convolutional blocks
(consists of two convolutional layers to learn feature maps,
followed by batch normalization to increase the CNN stabil-
ity, and a ReLU as a non-linear activation function). Each
convolutional block is followed by a max-pooling operation,
obtained using a generic 2 x 2 window, allowing to down-
sample the feature maps by half of their original xy size.

After the encoding path, there is a block called the ‘bridge
block,” composed of two convolutional blocks and followed
by the start of the decoding part. The decoding path is made
up of four-layer groups. The transposed convolution allows
us to double the xy dimensions of the features maps received
in input (therefore, acts as the opposite operation of the max-
pooling in the encoding part); the output of the transposed
convolution is concatenated with the corresponding features
maps in the encoding path. The concatenated features are
subjected to two convolutional blocks (as the ones described
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Fig. 1 Residual Connection: On the left, graph of how the residual
connection is inserted with respect to the convolutional block, on the
right detailed implementation of the connection

above in the encoding part) and then again to a transposed
convolution. The structure is repeated in the same way until it
reaches xy dimensions equal to the input dimensions. Finally,
the output of the decoding path is subjected to a 1 x 1
convolution with sigmoid as activation function, obtaining
a probability of ‘how likely it is, for each pixel, to be part of
a nerve fiber.’

In addition to the architecture of the UNet described above,
we investigated the ability of some architectures, which use
the same UNet as a baseline, to increase performance. We
modify the UNet by adding residual connections, the atruos-
spatial pyramid pooling (ASPP) module, and the attention
modules.

2.2.1 Residual connections

Several studies have added residual connections to classic
CNN architectures [27-30]. This insertion has been shown
to fight the vanishing of the gradient and the degradation of
accuracy [27], also increasing the performance of the network
[28-30]. As shown in Fig. 1, the residual connection was
introduced between the input and the output of each convolu-
tional block (both in the encoding and decoding path). Since
in each convolutional block the number of features changes
(respectively, doubles in the encoding part and halves in the
decoding phase), in each residual connection a 1 x 1 convo-
lution has been added to adjust the number of features.

2.2.2 Atrous-spatial pyramid pooling module

The atrous-spatial pyramid pooling (ASPP) module is used
to obtain information on the multi-scale context, through the
use of parallel convolutions with different dilation rates. As
proposed by Chen et al [31], we decided to implement this
module as shown in Fig. 2. Four parallel branches are created:
in the first three branches, atrous convolutions are carried
out with a different dilation rate, while, in the last branch,
an image-level feature is extracted, through a global average
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Fig. 2 Atrous-Spatial Pyramid Pooling (ASPP) module: on the left,
graph of how it is inserted with respect to the bottom of the UNet, on
the right detailed implementation of the module
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Fig.3 Attention module (AM): on the left, graph of how it is inserted
with respect to the skipped connections of the UNet; on the right, a
detailed implementation of the module

pooling. After applying all the operations in parallel, the out-
puts are concatenated, and a 1 x 1 convolution is applied to
obtain the overall output of the module.

2.2.3 Attention module

The first time, the attention module was proposed for the
classification task [32]. In particular, the purpose was to
perform some operations that would allow analyzing with
greater attention those regions of the image that most affect
the prediction of the model.

Subsequently, this idea was adapted and generalized to
improve performance on the segmentation task [33, 34],
amplifying relevant spatial information and reducing the
weight of background features.

This module, schematized in Fig.3, was developed as
described by Schlemper et al [34]. The attention module is
inserted within each of the skipped connections deriving from
the encoding path. The module takes as input the skipped
connection and the output of the corresponding transposed
convolution of the decoding branch, while the output is con-
catenated with the up-sampled data.

2.3 Loss function

The learning process of a deep learning algorithm is strongly
reliant on the loss/objective function chosen during the
design of the architecture. For quick and accurately, the loss
function must be able to mathematically represent the target,
even in its borderline cases. In this work, we choose to com-
pare the performance of four widely used loss functions in
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semantic segmentation. We also proposed a new tolerance
Dice loss function and showcased its efficiency.

2.3.1 Balanced binary cross-entropy loss

Balanced binary cross-entropy is a variant of the well-known
cross-entropy, which is defined as the difference between two
probability distributions for a given random variable [35].
Cross-entropy is widely used in the field of classification
and semantic segmentation via deep learning, butits balanced
variant proves to be more effective when it comes to working
with unbalanced data (as in the case of corneal nerves where
pixels belonging to the structures are very lower than the
ones corresponding to the background). The balanced binary
cross-entropy allows giving weight to both positive (8) and
negative (1-8) examples, and is defined as follows:

Lpce = —Bylog(y) + (1 = B)(1 — y)log(1 —y) ey

where y represents the true value, and § the predicted value.
In this work, B is derived from the frequency of the True value
in the image. The limit of the cross-entropy (and therefore
also of its variants) is to calculate the loss as the average of
the loss per pixel, without considering the adjacent pixels and
therefore without considering the continuity of the object to
segment.

2.3.2 Dice loss

Dice loss is another widely used loss function in the semantic
segmentation task [36, 37]. It is based on the coefficient of
the same name [38], which calculates the similarity between
two images considering the overlap between the two samples.
The Dice coefficient is defined as

21Y N Y 2TP
o — _

= — = 2
NAEN 2TP+ FP+ FN 2

where ||V || (respectively, || Y ) represents the number of pix-
els of object (nerve fibers in our case) in the True set Y
(respectively, predicted set }A’), and ||Y N )A’|| represents the
common pixels between the two datasets. We also report
an equivalent definition of the coefficient: In this case, it is
highlighted how false positives (FP) and false negatives (FN)
are weighed equally, and consequently precision and recall
are also weighed in the same way. The Dice loss function is
derived from this coefficient and it is calculated as

Lpice =1 — Dice 3)
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2.3.3 Tversky loss

The Tversky loss function [39] is derived from the homony-
mous coefficient [40]. The Tversky coefficient is considered
as a generalization of the Dice coefficient descripted above,
and allows balancing FP and FN. The coefficient is defined
as follows:

TP
Tversky = )
TP+axFP+BxFN

The tuning of « and B can put more emphasis on FPs or
FNs, respectively (e.g., increasing the § value, increases the
emphasis associated with FNs and leads to trying to decrease
them during the training process, thus increasing recall). As
for the Dice loss, also in this casa the Tversky loss function
is derived from the coefficient as

LTversky =1- TU@VSky (®)

2.3.4 Focal Tversky loss

The focal Tversky Loss [41] is a variant of the Tversky
loss described above: in this case, a focal parameter y is
applied.This parameter attempts to learn hard examples (i.e.,
examples with small regions of interest). The focal Tversky
loss is defined as

Ly = — Tversky)% (6)

A value of y < 1 increases the focus on learning hard exam-
ples, while a value of y = 1 simplifies the loss function to
the Tversky Loss.

2.3.5 Dice with tolerance loss

In the semantic segmentation of corneal nerves, interest is
mainly related to the recognition of the central line that iden-
tifies the nerve fiber. In tracing this line, it is correct to set
a tolerance margin within which a nerve fiber can be recog-
nized (i.e., a pixel recognized to be a nerve will be accepted
as TP if it was within the margin of tolerance from the ref-
erence nerve). Since the purpose of the study of the corneal
nerves is to recognize and segment the nerve fibers present in
the images, trying to maximize both precision and sensitiv-
ity, we decided to adapt the Dice loss to our task: To obtain
the Dice with tolerance coefficient, we calculated TP, FP and
FN considering the tolerance margin. The loss is calculated
as follows:

2TP
2TP+FP+FN

(N

Lpp=1-
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where ff’, I?ﬁ, andﬁindicate the corresponding indices
calculated with tolerance.

3 Experiments

As mentioned in previous sections, we conducted experi-
ments on several models applying several loss functions. The
main aspect of our work was to investigate the performance
of each architecture and the loss function, in the tracing of
corneal nerve fibers. Starting from the modules described
above (in paragraph ‘Convolutional neural network mod-
ules’) and using UNet as the baseline for each architecture,
we decided to investigate the following convolutional neural
networks:

e Simple UNet (the one used as baseline).

e UNet with attention modules (AM-UNet).

e UNet with residual connections and attention modules
(AM-ResUnet).

e UNet with the ASPP module (ASPP-UNet).

e UNet with attention modules and the ASPP module (AM-
ASPP-UNet).

We trained each model for 60 epochs, considering each time
one of the 5 loss functions presented above.

4 Results

As at the beginning of the previous section, models were
trained on 8909 images, which were labeled using the algo-
rithm proposed by Guimardes et al. [25], and tested on 90
images analyzed manually.

For each model trained, we have analyzed the goodness
of its performance taking into account two indices:

e The true positive rate - TPR, (or recall) which corre-
sponds to the proportion of nerves correctly identified
by the proposed algorithm (the higher, the better) and
which is calculated as: TPR = —LL—

TP+FN
e The false discovery rate - FDR (or 1-precision) which cor-
responds to the proportion of nerves mistakenly identified

as such (the lower, the better), calculated as: FDR =
FP
TP+FP

Both indices were calculated considering a tolerance margin
of 3 pixels (i.e., a pixel classified by the algorithm as a nerve,
will be considered a TP if it is found within an area of 3
pixels thick with respect to the reference nerve). The obtained
values of TPR and FDR for each model and each loss function
tested are shown in Tables 1 and 2.

5 Discussion

Taking the Unet (trained with binary cross-entropy loss func-
tion) as a baseline for comparison, it can be seen how the
performances improve both by modifying the structure and
by using some different losses.

In particular, it should be noted that the introduction of a
module (or combinations of them) brings an improvement in
the evaluation indices. Only in one case (ASPP-UNet), the
TPR decreases, but it is important to observe the significant
decrease also in the FDR. Moreover, after training with cost
functions other than binary cross-entropy, we observe (espe-
cially for Dice, Tversky, and focal Tversky) a decrease in the
TPR values and, at the same time, a significant decrease in
the FDR index. In the case of the proposed loss function, the
TPR values obtained are very similar to the values obtained
with the binary cross-entropy, while the FDR values are con-
siderably reduced (up to 50% in the case of the UNet).

Since it is not easy to assess whether simultaneous varia-
tion in TPR and FDR leads to a better result, it was decided to
introduce an additional performance evaluation index. Start-
ing from the two indices, the value of the dice with tolerance
index is obtained as:

DICE=— 2P ___p TPR-(1=FDR) (®)
1 ST P+FP+FN  TPR+(I—FDR)

This index tends to 1 if TPRis 1 and FDR is zero (case
of perfect correspondence between manual and automatic
analysis); it gradually decreases with the decrease of T PR
and the increase of F' DR up to 0 (case in which manual and
automatic analysis are complementary).

The values of this index for each network tested are shown
in Table 3. It can be observed that the decrease in TPR men-
tioned previously is actually justified by an evident decrease
in the FDR values, as it leads to a higher DICE;,; value.
To further compare the results obtained, boxplots have been
created. From the latter, it is possible to observe the variabil-
ity of the indices between single images: These results are
shown in Figs.4 and 5. From the box plots representing the
TPR values, it can be observed that the loss function proposed
presents, for almost every model, a reduced variability com-
pared to the other losses tested. Furthermore, the TPR values
of single images never drop below 60%. Regarding the FDR
values, it is evident that in the case of training through Tver-
sky loss and focal Tversky loss, there is a decrease in both
the values and the variability with respect to the baseline, this
is linked to the choice of values of & 8 and y. By observing
the values relating to the loss proposed, it can be seen that
the inclusion of the ASPP module considerably reduces the
variability of the index.

The reduction of FDR is linked to the reduction of FP,
and this is evident in the more complex images where the
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Table 1 TPR score obtained
from the evaluation

Table2 FDR score obtained
from the evaluation

Table 3 Dice with tolerance

BBCE (%) DL (%) TL (%) FTL (%) Proposed (%)
UNet 85.61 81.89 74.22 76.11 85.62
AM-UNet 87.64 83.07 75.56 74.50 86.19
AM-ResUNet 88.33 78.79 76.03 82.07 88.65
ASPP-UNet 85.04 76.85 86.74 79.45 84.86
AM-ASPP-UNet 89.13 81.46 86.71 84.23 89.89

BBCE (%) DL (%) TL (%) FTL (%) Proposed (%)
UNet 12.57 8.32 0.94 1.39 6.27
AM-UNet 11.91 9.85 1.25 1.06 8.91
AM-ResUNet 8.33 2.10 2.38 3.19 7.98
ASPP-UNet 7.37 1.27 4.94 2.87 6.22
AM-ASPP-UNet 8.68 3.99 3.85 4.80 4.87

BBCE Balanced binary cross-entropy, DL Dice loss, TL Tversky loss, FT focal Tversky loss, Proposed
dice with tolerance loss. UNet baseline, AM-Unet UNet with attention modules, AM-ResUNet UNet with
attention modules and residual connections, ASPP-UNet UNet with atrous-spatial pyramid pooling module,
AM-ASPP-UNet UNet with attention modules and atrous-spatial pyramid pooling module

nepfiwmasioh BBCE (%) DL (%) TL (%) FTL (%) Proposed (%)
evaluation of the various models e 86.51 86.50 84.86 85.91 89.49
examined
AM-UNet 87.86 86.46 85.61 84.99 88.57
AM-ResUNet 89.97 87.31 85.49 88.83 90.30
ASPP-UNet 88.67 86.43 90.71 87.40 89.09
AM-ASPP-UNet 90.21 88.14 91.19 89.38 92.44
» UNet “ AM-UNet " AM-ResUNet , ASPP-UNet o AM-ASPP-UNet UNet AM-UNet AM-ResUNet ASPP-UNet . AM-ASPP-UNet
s o © : o 03 03
. o * + o . ; ; . ° ; L o
G y e &y & y N N °°_'_ié_i—\_“§ i@i\whé*\“' %;éw iéi?
é‘o‘gg@e é‘c'§~§e§- éqlfgsé »é“q&isgs& é’e@&g@s é'Q‘Awi&ﬁ@é éc’éga@: Qh‘ffbvf“ ées«g@g @os«s&@\a
N N < N N < N N N N

Fig.4 5 Boxplot comparison of models’ performance in terms of TPR.
Each box shows the score of different architectures, comparing the dif-
ferent loss functions under examination

nerve fibers are very thin, and with relatively low contrast,
the Unet, considered as a baseline, struggles to give continu-
ity in the segmentation. With the introduction of the ASPP
module, better results are obtained: the pixels classified as
FP are reduced. Figure 6 shows the result obtained through
2 analyzed models: the baseline and the one chosen as the
best model (higher Dice with tolerance score). The image
shows thin nerve fibers, poor contrast in some areas, and the
presence of dendritic cells. The baseline appears to mistake
dendritic cells for nerve fibers and, at the same time, makes it

@ Springer

Fig. 5 Boxplot comparison of models’ performance in terms of FDR.
Each box shows the score of different architectures, comparing the dif-
ferent loss functions under examination

difficult to trace nerve fibers that appear thinner and with low
contrast. On the other hand, the UNet with Attention modules
and Atrous-Spatial Pyramid Pooling module recognizes the
low-contrast fibers and discards the luminous patterns that
belong to the dendritic cells. Moreover, it seems to recog-
nize some fibers that have not been traced manually, such as
the one in the lower part of the image (traced in red since it
corresponds to an FP in the analysis).
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2

Fig. 6 From left to right: original corneal confocal images, man-
ual tracing, automatic tracing with baseline (Unet trained with binary
cross-entropy loss function) and automatic tracing with the best model
(AM-ASPP-UNet trained with Dice with tolerance loss proposed in
this work). The green color represents the true positive (TP), the blue
color represents false negative (FN), and the red color represents false
positive (FP)

6 Conclusion

In vivo confocal microscopy is a technique that allows the
acquisition of images of the corneal layers rapidly and nonin-
vasively. The acquisition of images of the corneal sub-basal
plexus allows the analysis of the nerve fibers present in it,
which are strictly correlated to the presence of ocular or
systemic diseases. It is important to note that all clinical
parameters (useful for the diagnostic process) depend on
identifying and tracing the nerve fibers.

The analysis of IVCM images in clinical practice is com-
plicated: The manual tracing phase is very time-consuming,
and, to the best of our knowledge, there is still no universally
accepted automatic technique for performing it.

In recent years, thanks to new deep learning techniques,
better results have been obtained in the field of tracing
structures present in images: With an adequate dataset and
appropriate training process, it is possible to obtain excel-
lent results. In this paper, we presented an extension and
improvement of our previous work on tracing the corneal
nerve fibers in IVCM images of the sub-basal plexus. We
investigated the ability to improve tracing through archi-
tectural improvements to the baseline model (UNet). We
improved the architecture by adding residual connections,
Atrous-Spatial Pyramid Pooling (ASPP) module, and atten-
tion modules (AM).

To boost the prediction performance, we also investi-
gated four different loss functions and proposed a new
tolerance Dice loss function. We trained all the architecture
(with all five loss functions) using the automatic nerve trac-
ings obtained by Guimaraes et al. [25], which may present
errors (missing or misclassifying nerves). To evaluate the
performance of all the models and loss functions under inves-
tigation, the true positive rate (TPR) and false discovery rate
(FDR) with a tolerance margin were calculated. Furthermore,
to better compare the performances, starting from these last
two indices, a third was obtained: the Dice with tolerance
index (DICE;,). In almost all loss functions cases, the
introduction of new structures had outperformed the UNet

(baseline architecture): This is clear looking at the DI C E;,;
index table.

Looking at the same architecture and examining the results
obtained using a different loss function during training, the
proposed loss function presents a higher Dice with tolerance
score in almost all cases. Even the TPR index is almost always
the best, while the FDR only improves with respect to the
binary cross-entropy case. Furthermore, the use of the pro-
posed loss function makes the continuity of the nerve fibers
even more evident, giving a better result.

For future work, it will be interesting to analyze the data
used during the training phase, keeping only those images
that present results that are acceptable from a clinical point
of view (reducing the error in the ground truth dataset, the
performance will improve). Selecting images already ana-
lyzed automatically or improving an automatic analysis is
less time-consuming than completely manual analysis.

Author Contributions AC designed and performed the study. FS super-
vised the work. AC wrote the main manuscript text and prepared all the
figures. All authors reviewed the manuscript.

Funding Open access funding provided by Universita degli Studi di
Padova. No funding was received for this work.

Data availability Data and code are not available.

Declarations

Conflict of interest There are not Conflict of interest/Conflict of interest
to disclose

Ethical approval As the acquisition of these images was approved by
the respective local ethical review committees, occurred with informed
consent, and followed the tenets of the Declaration of Helsinki, no spe-
cific further ethical approval was sought for the analysis of the resulting
compilation of images.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1076

Signal, Image and Video Processing (2024) 18:1069-1077

References

10.

11.

13.

14.

Villani, E., Baudouin, C., Efron, N., Hamrah, P., Kojima, T., Patel,
S.V., Pflugfelder, S.C., Zhivov, A., Dogru, M.: In vivo confocal
microscopy of the ocular surface: from bench to bedside. Curr.
Eye Res. 39, 213 (2014). https://doi.org/10.3109/02713683.2013.
842592

Patel, D.V., McGhee, C.N.: Quantitative analysis of in vivo confo-
cal microscopy images: a review. Surv. Ophthalmol. 58, 466-475
(2013). https://doi.org/10.1016/J.SURVOPHTHAL.2012.12.003
Marfurt, C.F.,, Cox, J., Deek, S., Dvorscak, L.: Anatomy of the
human corneal innervation. Exp. Eye Res. 90, 478-492 (2010).
https://doi.org/10.1016/J.EXER.2009.12.010

Flockerzi, E., Daas, L., Seitz, B.: Structural changes in the corneal
subbasal nerve plexus in keratoconus. Acta Ophthalmol. 98(8),
928-932 (2020). https://doi.org/10.1111/a0s.14432

Dedk, E.A., Szalai, E., T6th, N., Malik, R.A., Berta, A., Csutak, A.:
Longitudinal changes in corneal cell and nerve fiber morphology
in young patients with type 1 diabetes with and without diabetic
retinopathy: A 2-year follow-up study. Investig. Ophthalmol. Vis.
Sci. 60, 830-837 (2019). https://doi.org/10.1167/I0VS.18-24516
Cilla, S.D., Ranno, S., Carini, E., Fogagnolo, P., Ceresara, G., Orza-
lesi, N., Rossetti, L.M.: Corneal subbasal nerves changes in patients
with diabetic retinopathy: an in vivo confocal study. Investig. Oph-
thalmol. Vis. Sci. 50, 5155-5158 (2009)

Badian, R.A., Allgeier, S., Scarpa, F., Andréasson, M., Bartschat,
A., Mikut, R., Colonna, A., Bellisario, M., Utheim, T.P., Kohler,
B., Svenningsson, P., Lagali, N.: Wide-field mosaics of the corneal
subbasal nerve plexus in parkinson’s disease using in vivo confo-
cal microscopy. Sci. Data 8, 1-10 (2021). https://doi.org/10.1038/
s41597-021-01087-3

Andréasson, M., Lagali, N., Badian, R.A., Utheim, T.P., Scarpa,
F., Colonna, A., Allgeier, S., Bartschat, A., Kohler, B., Mikut,
R., Reichert, K.M., Solders, G., Samuelsson, K., Zetterberg, H.,
Blennow, K., Svenningsson, P.: Parkinson’s disease with restless
legs syndrome-an in vivo corneal confocal microscopy study. npj
Parkinson’s Dis. 7, 1-8 (2021). https://doi.org/10.1038/s41531-
020-00148-5

Cruzat, A., Qazi, Y., Hamrah, P.: In vivo confocal microscopy of
corneal nerves in health and disease hhs public access. Ocul. Surf.
15, 15-47 (2017). https://doi.org/10.1016/j.jt0s.2016.09.004
Giannaccare, G., Bernabei, F., Pellegrini, M., Guaraldi, F., Turchi,
F., Torrazza, C., Senni, C., Scotto, R., Sindaco, D., Cello, L.D.,
Versura, P., Scorcia, V., Traverso, C.E., Vagge, A.: Bilateral mor-
phometric analysis of corneal sub-basal nerve plexus in patients
undergoing unilateral cataract surgery: a preliminary in vivo con-
focal microscopy study. Brit. J. Ophthalmol. (2020). https://doi.
org/10.1136/bjophthalmol-2019-315449

Bitirgen, G., Ozkagnici, A., Malik, R.A., Oltulu, R.: Evaluation of
contact lens-induced changes in keratoconic corneas using in vivo
confocal microscopy. Investig. Ophthalmol. Vis. Sci. 54, 5385-
5391 (2013). https://doi.org/10.1167/I0VS.13-12437
Theophanous, C., Jacobs, D.S., Hamrah, P.: Corneal neuralgia after
lasik. Optom. Vis. Sci. 92, 233-240 (2015). https://doi.org/10.
1097/0PX.0000000000000652

Scarpa, F., Grisan, E., Ruggeri, A.: Automatic recognition of
corneal nerve structures in images from confocal microscopy.
Investig. Ophthalmol. Vis. Sci. 49, 4801-4807 (2008). https://doi.
org/10.1167/10VS.08-2061

Dabbah, M.A., Graham, J., Petropoulos, I.N., Tavakoli, M., Malik,
R.A.: Automatic analysis of diabetic peripheral neuropathy using
multi-scale quantitative morphology of nerve fibres in corneal con-
focal microscopy imaging. Med. Image Anal. 15, 738-747 (2011).
https://doi.org/10.1016/J.MEDIA.2011.05.016

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Chen, X., Graham, J., Dabbah, M.A., Petropoulos, I.N., Tavakoli,
M., Malik, R.A.: An automatic tool for quantification of nerve fibers
in corneal confocal microscopy images. IEEE Trans. Biomed.
Eng. 64, 786-794 (2017). https://doi.org/10.1109/TBME.2016.
2573642

Poletti, E., Ruggeri, A.: Automatic nerve tracking in confocal
images of corneal subbasal epithelium. In: Proceedings of CBMS
2013—26th IEEE International Symposium on Computer-Based
Medical Systems, pp. 119-124 (2013). https://doi.org/10.1109/
CBMS.2013.6627775

Annunziata, R., Kheirkhah, A., Aggarwal, S., Hamrah, P., Trucco,
E.: A fully automated tortuosity quantification system with appli-
cation to corneal nerve fibres in confocal microscopy images. Med.
Image Anal. 32, 216-232 (2016). https://doi.org/10.1016/j.media.
2016.04.006

Al-Fahdawi, S., Qahwaji, R., Al-Waisy, A.S., Ipson, S., Malik,
R.A., Brahma, A., Chen, X.: A fully automatic nerve segmentation
and morphometric parameter quantification system for early diag-
nosis of diabetic neuropathy in corneal images. Comput. Methods
Programs Biomed. 135, 151-166 (2016). https://doi.org/10.1016/
J.CMPB.2016.07.032

Guimaraes, P., Wigdahl, J., Ruggeri, A.: Automatic estimation of
corneal nerves focused tortuosities. In: Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society, EMBS 2016-October, pp. 1332-1335 (2016).
https://doi.org/10.1109/EMBC.2016.7590953

Dehghani, C., Pritchard, N., Edwards, K., Russell, A.W., Malik,
R.A., Efron, N.: Fully automated, semiautomated, and manual mor-
phometric analysis of corneal subbasal nerve plexus in individuals
with and without diabetes. Cornea 33, 696—702 (2014). https://doi.
org/10.1097/1C0O.0000000000000152

Colonna, A., Scarpa, F., Ruggeri, A.: Segmentation of corneal
nerves using a u-net-based convolutional neural network. Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 11039
LNCS, pp. 185-192 (2018). https://doi.org/10.1007/978-3-030-
00949-6_22

Zhang, S., Yan, H., Teng, J., Sheng, D.: A mathematical model of
tortuosity in soil considering particle arrangement. Vadose Zone J.
19, 20004 (2020). https://doi.org/10.1002/VZJ2.20004
Mehrgardt, P., Zandavi, S.M., Poon, S.K., Kim, J., Markoulli, M.,
Khushi, M.: U-net segmented adjacent angle detection (usaad) for
automatic analysis of corneal nerve structures. Data (2020). https:/
doi.org/10.3390/data5020037

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional net-
works for biomedical image segmentation. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp.
234-241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Guimaraes, P., Wigdahl, J., Ruggeri, A.: A fast and efficient tech-
nique for the automatic tracing of corneal nerves in confocal
microscopy. Transl. Vis. Sci. Technol. (2016). https://doi.org/10.
1167/tvst.5.5.7

Meijering, E., Jacob, M., Sarria, J.C.E,, Steiner, P., Hirling, H.,
Unser, M.: Design and validation of a tool for neurite tracing and
analysis in fluorescence microscopy images. Cytom. A 58, 167—
176 (2004). https://doi.org/10.1002/CYTO.A.20022

He, K., Zhang, X.,Ren, S., Sun, J.: Deep residual learning for image
recognition. In: IEEE Computer Vision and Pattern Recognition
(CVPR), pp. 770-778 (2016)

Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted res-unet for high-
quality retina vessel segmentation; weighted res-unet for high-
quality retina vessel segmentation. In: 2018 9th International
Conference on Information Technology in Medicine and Educa-
tion (ITME) (2018). https://doi.org/10.1109/ITME.2018.00080


https://doi.org/10.3109/02713683.2013.842592
https://doi.org/10.3109/02713683.2013.842592
https://doi.org/10.1016/J.SURVOPHTHAL.2012.12.003
https://doi.org/10.1016/J.EXER.2009.12.010
https://doi.org/10.1111/aos.14432
https://doi.org/10.1167/IOVS.18-24516
https://doi.org/10.1038/s41597-021-01087-3
https://doi.org/10.1038/s41597-021-01087-3
https://doi.org/10.1038/s41531-020-00148-5
https://doi.org/10.1038/s41531-020-00148-5
https://doi.org/10.1016/j.jtos.2016.09.004
https://doi.org/10.1136/bjophthalmol-2019-315449
https://doi.org/10.1136/bjophthalmol-2019-315449
https://doi.org/10.1167/IOVS.13-12437
https://doi.org/10.1097/OPX.0000000000000652
https://doi.org/10.1097/OPX.0000000000000652
https://doi.org/10.1167/IOVS.08-2061
https://doi.org/10.1167/IOVS.08-2061
https://doi.org/10.1016/J.MEDIA.2011.05.016
https://doi.org/10.1109/TBME.2016.2573642
https://doi.org/10.1109/TBME.2016.2573642
https://doi.org/10.1109/CBMS.2013.6627775
https://doi.org/10.1109/CBMS.2013.6627775
https://doi.org/10.1016/j.media.2016.04.006
https://doi.org/10.1016/j.media.2016.04.006
https://doi.org/10.1016/J.CMPB.2016.07.032
https://doi.org/10.1016/J.CMPB.2016.07.032
https://doi.org/10.1109/EMBC.2016.7590953
https://doi.org/10.1097/ICO.0000000000000152
https://doi.org/10.1097/ICO.0000000000000152
https://doi.org/10.1007/978-3-030-00949-6_22
https://doi.org/10.1007/978-3-030-00949-6_22
https://doi.org/10.1002/VZJ2.20004
https://doi.org/10.3390/data5020037
https://doi.org/10.3390/data5020037
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1167/tvst.5.5.7
https://doi.org/10.1167/tvst.5.5.7
https://doi.org/10.1002/CYTO.A.20022
https://doi.org/10.1109/ITME.2018.00080

Signal, Image and Video Processing (2024) 18:1069-1077

1077

29.

30.

31.

32.

33.

34.

35.

36.

Chu, Z., Tian, T., Feng, R., Wang, L.: Sea-land segmentation
with res-unet and fully connected crf; sea-land segmentation with
res-unet and fully connected crf. In: IGARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Symposium (2019)
Wei, S., Shi, F., Wang, Y., Chou, Y., Li, X.: A deep learning model
for automated sub-basal corneal nerve segmentation and evaluation
using in vivo confocal microscopy. Transl. Vis. Sci. Technol. 9, 32—
32 (2020). https://doi.org/10.1167/tvst.9.2.32

Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking
atrous convolution for semantic image segmentation. Computer
Vision and Pattern Recognition (2017)

Jetley, S., Lord, N.A., Lee, N., Torr, PH.S.: Learn to pay attention.
In: International Conference on Learning Representations (ICLR)
(2018)

Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M.,
Misawa, K., Mori, K., Mcdonagh, S., Hammerla, N.Y., Kainz, B.,
Glocker, B., Rueckert, D.: Attention u-net: learning where to look
for the pancreas. Medical Imaging with Deep Learning (2018)
Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B.,
Glocker, B., Rueckert, D.: Attention gated networks: learning to
leverage salient regions in medical images. Med. Image Anal. 53,
197-207 (2019). https://doi.org/10.1016/J.MEDIA.2019.01.012
Jadon, S.: A survey of loss functions for semantic segmentation. In:
2020 IEEE Conference on Computational Intelligence and Bioin-
formatics and Computational Biology (CIBCB), pp. 1-7 (2020).
https://doi.org/10.1109/CIBCB48159.2020.9277638

Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J.:
Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 10553 LNCS, pp. 240-248
(2017). https://doi.org/10.1007/978-3-319-67558-9_28

37.

38.

39.

40.

41.

Soomro, T.A., Afifi, A.J., Gao, J., Hellwich, O., Paul, M., Zheng, L.:
Strided u-net model: Retinal vessels segmentation using dice loss;
strided u-net model: Retinal vessels segmentation using dice loss.
In: 2018 Digital Image Computing: Techniques and Applications
(DICTA) (2018)

Dice, L.R.: Measures of the amount of ecologic association
between species. Ecology 26, 297-302 (1945). https://doi.org/10.
2307/1932409

Sadegh, S., Salehi, M., Erdogmus, D., Gholipour, A., Salehi,
S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for
image segmentation using 3d fully convolutional deep networks.
Machine Learning in Medical Imaging. MLMI2017. Lecture Notes
in Computer Science 10541 LNCS, pp. 379-387 (2017). https://
doi.org/10.1007/978-3-319-67389-9_44

Tversky, A.: Features of similarity. Psychol. Rev. 84, 327-352
(1977). https://doi.org/10.1037/0033-295X.84.4.327

Abraham, N., Khan, N.M.: A novel focal tversky loss function
with improved attention u-net for lesion segmentation. In: 2019
IEEE 16th International Symposium on Biomedical Imaging (ISBI
2019), pp. 683-687 (2019). https://doi.org/10.1109/ISBI1.2019.
8759329

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1167/tvst.9.2.32
https://doi.org/10.1016/J.MEDIA.2019.01.012
https://doi.org/10.1109/CIBCB48159.2020.9277638
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.1109/ISBI.2019.8759329
https://doi.org/10.1109/ISBI.2019.8759329

	Improving corneal nerve segmentation using tolerance Dice loss function
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Convolutional neural network modules
	2.2.1 Residual connections
	2.2.2 Atrous-spatial pyramid pooling module
	2.2.3 Attention module

	2.3 Loss function
	2.3.1 Balanced binary cross-entropy loss
	2.3.2 Dice loss
	2.3.3 Tversky loss
	2.3.4 Focal Tversky loss
	2.3.5 Dice with tolerance loss


	3 Experiments
	4 Results
	5 Discussion 
	6 Conclusion
	References




