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Abstract
Anomaly detection algorithms typically utilize generative models to reconstruct anomaly regions. Post-processing is used
to pinpoint the anomalies. However, the paucity of real-world anomaly samples and the complex image backgrounds pose
significant challenges for anomaly detection. The work innovatively proposed a self-supervised anomaly detection method.
An efficient channel attention mechanism in the autoencoder was introduced to improve the reconstruction performance.
Besides, a foreground enhancement strategy was designed to distinguish the foreground from the background by maximizing
the inter-class variance. The strategy reduced the effect of background noises and simulated various anomalies that were
rare in real samples. The MVTecAD and BTAD datasets were used to experiment with anomaly detection and location.
Experimental results demonstrated that our method achieved higher AUC and AP scores at both the image level and pixel
level compared to other advanced methods. In particular, the average AP score increased by 12.5% at the pixel level.

Keywords Anomaly detection · Self-supervised method · Efficient channel attention · Foreground enhancement

1 Introduction

Anomaly detection algorithms are widely used thanks to
their stable performance and high detection efficiency. One
of the classical approaches focuses on reconstruction. This
approach utilizes a neural network to encode and decode
the input normal samples, with the reconstruction input as
the training target. The distribution pattern of the normal
samples can be learned, and anomalies are identified by ana-
lyzing the differences between the original and reconstructed
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images. Commonly used reconstruction-based methods are
categorized into autoencoders (AE) [1–4] and generative
adversarial networks (GAN) [5–7] according to the differ-
ent training modes employed. Even frameworks [8, 9] that
combine AE andGAN can achieve impressive results. More-
over, embedding-based methods [10, 11] have shown good
performance in anomaly detection tasks. The basic principle
is to match the features of test samples with normal sam-
ples. The inference step of such models involves a complex
feature-matching process,which increases the computational
cost of the model even if its training phase takes little time.

In practical applications, the scarcity and variety of real-
world anomaly samples pose significant challenges to super-
vised learning. A self-supervised surface anomaly detection
method is proposed to address the issue in the work. The
main contributions are as follows.

• Our method based on autoencoder reconstruction intro-
duced a novel combination of foreground enhancement
strategy and efficient channel attention mechanism,
which considerably improved anomaly detection perfor-
mance.

• An anomaly generationmodule was designed to generate
anomaly samples using a foreground enhancement strat-
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egy, whichmitigated the impact of irrelevant background
information on model learning.

• Anefficient channel attentionmechanismwas introduced
in the autoencoder. It captured cross-channel interaction
information and enhanced the network’s ability to extract
channel features for better reconfiguration.

• Experimental validation on the MVTecAD [12] and
BTAD [13] datasets demonstrated that our method out-
performed other advanced approaches in multiple met-
rics. It achieved the highest improvement of up to 12.5%,
especially in pixel-level average AP score.

2 Related work

Most surface anomaly detection models [7, 14, 15] aim to
explore the broad patterns of normal samples. Only normal
samples are used for reconstruction to train the model. MS-
FCAE [16] is designed with multi-scale feature information
based on AE, which provides different levels of contextual
information for image reconstruction. Therefore, the recon-
structed image is more accurate and clearer. AnoGAN [17]
first introduces GAN into anomaly detection. However, it
requires several iterations of optimization in the inference
stage to generate a suitable normal image as a reference.
The algorithm lacks the necessary computational efficiency
to be deployed in real-time detection tasks. F-AnoGAN [18]
introduces an additional encoder to extract image features
based on GAN, which guides the generator to create the
most matching images. In this regard, our work introduced
an efficient channel attention mechanism [19] during the
reconstruction of anomalous regions. This mechanism effec-
tively captured inter-channel interactions and enhanced the
capacity of the network to extract features, resulting in better
reconstruction quality.

Some studies [20–22] seek to produce artificially simu-
lated anomalous samples during the training phase to reveal
the hidden differences between normal and anomalous sam-
ples. Specifically, CutPaste [20] utilizes augmentation tech-
niques such as copy and paste to simulate anomalous samples
by randomly copying a tiny rectangular region from the
input image and pasting it onto the resulting image. DRAEM
[21] creates anomalous areas by superimposing extra texture
images as noise over normal images. Haselmann [22] adds
rectangular masks at random to normal samples to simulate
true anomalies. Considering the impact of background inter-
ference, we designed an effective foreground enhancement
strategy. The strategy involved foreground extraction on the
images and introduced noises to simulate anomaly genera-
tion, which resulted in more realistic anomaly samples for
training.

Fig. 1 The anomaly detection process of our method

3 Anomaly detectionmethod

Ourmethod consists of a foreground-enhanced anomaly gen-
eration module, an autoencoder reconstruction module and
a segmentation module. The foreground-enhanced anomaly
generation module is utilized to generate simulated anomaly
samples by combining normal images with anomaly texture
source images. The anomaly generation strategy can pro-
vide an arbitrary number of anomaly samples and accurate
pixel-level segmentation ground truth maps, enabling our
method to be trained without using real anomaly samples.
The autoencoder with an efficient attention mechanism is
trained using the L rec to repair the anomalous regions. The
input and output of autoencoder are concatenated and fed
into the segmentation network, which is trained to local-
ize anomalous regions using the Lseg (Fig. 1). A mean filter
convolution layer is utilized to smooth the segmentationmod-
ule’s output. The anomaly score is calculated by selecting the
maximum value from the smoothed anomaly score map.

3.1 Foreground enhancement

Anomalies appear in diverse manifestations within real-
world scenarios, which poses challenges in comprehensive
anomalies data collection. Consequently, the construction of
ideal large-scale anomaly datasets for training supervised
detection models becomes arduous. Therefore, an effective
strategy is designed to simulate anomaly generation for self-
supervised learning. Figure2 depicts the anomaly generation
strategy with foreground enhancement.

The noise image P is obtained by using a Perlin noise
generator [23] to capture various anomalous shapes. It is
binarized using a randomly uniformly sampled threshold
T (T = 0.5) to form the anomaly mask image Pm . Besides,
considering that in some actual collected image datasets,
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Fig. 2 Simulation anomaly generation strategy

certain industrial components do not occupy a high enough
proportion in the image, directly adding the anomaly mask
could easily generate noise in the background. This increased
disparity between the data distribution of real anomaly
samples and simulated anomaly samples poses a greater
challenge for the model to extract meaningful information.
Therefore, a foreground enhancement strategy is applied
to this kind of images. The Otsu method [24] is used to
differentiate the foreground and background based on the
maximization of inter-class variance. Original image I is
then binarized to generate mask Im . Element-wise multipli-
cation is performedbymultiplyingmasks Pm and Im to obtain
mask image M .

M = Pm � Im (1)

where � denotes the element-wise multiplication operation.
Anomaly texture source image D is drawn from a col-

lection of anomalies that is not related to the distribution
of the original image I . Anomaly image D is randomly
enhanced with three methods chosen by the group: {sharp-
ness, equalize, solarize, posterize, auto-contrast, brightness
change}, which retains the diversity of anomaly. Enhanced
texture image D and original image I are masked through
mask M . Subsequently, they are blended with the original
image I processed through mask P̄m to obtain final simu-
lated anomaly-generating image IA.

IA = (1 − β) (I � M ) + β (D � M ) + I � P̄m (2)

where β denotes the opacity parameter during blending,
which is randomly and uniformly sampled from [0.1, 1.0],
P̄m is the inverse of Pm .

Fig. 3 Multi-scale anomaly mask map

In addition to applying various data augmentations to
anomaly texture source image D , there are other functions.
This strategy randomly rotates 30% of input images I and
Perlin noise P within [−90◦, 90◦], which strengthens robust-
ness. Furthermore, Perlin noise can randomly change the
size during simulated anomaly generation by considering the
diversity of various component anomalies in actual industrial
environments. Thus, the granularity of the noise image is con-
trolled to obtain anomaly mask image Pm with various sizes
and shapes (Fig. 3).

3.2 Autoencoder reconstruction

An efficient channel attention (ECA) [19] mechanism, intro-
duced in the encoding phase of the autoencoder, effectively
captures cross-channel interaction information and enhances
the network’s feature extraction capability. The autoencoder
can reconstruct the local anomalous pattern of input image IA
into a pattern closer to the normal sample distribution.Mean-
while, it maintains the non-anomalous areas of the original
image unaltered and obtains reconstructed image Ir with the
equal size to the original image. Figure4 presents the archi-
tecture of the autoencoder.

ECA uses a dynamic convolution kernel to address the
issue of extracting different range features for input feature
maps with different numbers of channels. The convolution
kernel adaptively changes its size through a function (Fig. 5).

k = ψ (C) =
∥
∥
∥
∥

log2 (C)

γ
+ b

γ

∥
∥
∥
∥
odd

(3)

where k is the convolution kernel size, C is the number of
channels, ‖ ‖odd indicates that k can only be odd, andγ = 2
and b = 1 are used to change the ratio between the number
of channels C and the convolution kernel size.
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Fig. 4 Architecture of the autoencoder

Fig. 5 Process of efficient channel attention (ECA)

3.3 Segmentation

A U-net [25]-like structure is employed by the segmenta-
tion network. Input IA and output Ir of the autoencoder are
first concatenated along the channel dimension. They are
then fed into the segmentation network to provide enough
information for anomaly localization. Simultaneously, five
downsampling convolution blocks are applied formulti-scale
feature extraction. This part includes the original image with
a total of 6 scales, which can fully extract features. The fea-
ture map of equivalent size from the feature extraction part
is copied and fused at each stage of network upsampling.
Eventually, the image is restored to its original size to obtain
an accurate anomaly segmentation map. Figure6 shows the
architecture of the segmentation network.

3.4 Loss function

Structural similarity index mean (SSIM) [26] has become
a common loss function in computer vision. It is typically
utilized to evaluate the similarity of two images and considers
three key features of an image (i.e., luminance, contrast and
structure).

SSIM (x, y) = l (x, y)α × c (x, y)β × s (x, y)γ (4)

where l (x, y), c (x, y) and s (x, y) are the luminance simi-
larity, contrast similarity and structure similarity of images x

Fig. 6 Architecture of the segmentation network

and y, respectively. α, β and γ represent the balanced hyper-
parameters.

The L2 loss is commonly utilized for anomaly detection
algorithms, but adjacent pixels are assumed to be inde-
pendent. Therefore, the SSIM loss is used enhance the
interactivity between pixels additionally.

LSSIM (I , Ir ) = 1

NP

H
∑

i=1

W
∑

j=1

1 − SSIM (I , Ir )(i, j) (5)

where H andW are the height andwidth of original image I ,
respectively. NP is the number of pixels in I ; Ir is the recon-
structed image. SSIM (I , Ir )(i, j) is the SSIM value of I and
Ir centered on coordinate (i, j), so the loss of reconstruction
is defined by

L rec (I , Ir ) = λLSSIM (I , Ir ) + L2 (I , Ir ) (6)

where λ is the balanced hyperparameter of two kinds of
losses.

Focal loss [27] (Lseg) is applied to the segmentation net-
work because it can solve imbalance between positive and
negative samples and improve the robustness of accurate seg-
mentation of complex samples. According to the network’s
reconstruction and segmentation goals, the overall loss dur-
ing training is defined by

L (I , Ir , Ma, M) = L rec (I , Ir ) + Lseg (Ma, M) (7)

where I is the input image; Ir is the reconstructed image; M
is the output segmentation mask; and Ma is ground truth.
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4 Experiments

MVTecAD [12] and BTAD [13] datasets for anomaly detec-
tion and localization were tested to evaluate the effectiveness
of our method. Our method was more targeted at anomaly
detection in images with background interference. The
MVTecAD and BTAD datasets contained different cate-
gories of anomaly images. However, the inclusion of image
data without backgrounds (e.g., texture category images)
was deemed irrelevant for demonstrating the efficacy of
our methodologies. Therefore, not all categories in the two
datasets were tested. The optimizer used in the training phase
was Adam [28], with a total of 700 iterations. The initial
learning rate was set to 0.0001 and decayed at the 560th and
630th iterations with a decay factor of 0.2. The input image
size was uniformly scaled to 256×256, and the input batch
size was 16.

A series of evaluation standards were calculated to quan-
titatively assess the detection capacity. The area under the
receiver operating characteristic (AUROC) curve was the
primary metric to compare the anomaly detection results.
However, most of the anomalous areas were relatively small
in practical applications. The metric value was affected by
a large number of non-anomalous pixels while only a small
number of anomalous pixels were detected. As a result, the
pixel-level AUROC did not reflect the localization accuracy
well. Therefore, thework additionally calculated the average
precision (AP)metric,which represented the region under the
curve of precision and recall rates. It was particularly well
suited for highly imbalanced categories, notably in anomaly
detection scenarios with precision playing a pivotal role.

4.1 Comparison with existingmethods

Our approach is comparedwith unsupervised anomaly detec-
tion methods for images developed in recent years, includ-
ing GANomaly [15], PaDiM [11], STAD [29], CutPaste
[20], and DRAEM [21]. GANomaly combines autoencoders
and generative adversarial networks; PaDiM extracts patch
embeddings from the input image using a previously trained
CNN; STAD solves the unsupervised anomaly segmentation
problem using a student–teacher network; and CutPaste and
DRAEM attempt to generate simulated anomalous samples
during training. In summary, our method outperforms other
methods and achieves the highest AUC andAP scores at both
the image level and pixel level.

Table 1 displays the image-level AUROC metric. Our
method achieves the highest or second-highest AUROC
scores in each of the five categories in theMVTecADdataset.
Compared to the advanced method DRAEM, our method
further improved the average image-level AUROC score by
0.3% across. This improvement is evident not only on the
screw dataset, where anomalous regions are minimal and

Table 1 Comparative results of image-level AUROC (%) on the
MVTecAD dataset

Class GANomaly CutPaste DRAEM PaDiM Ours

Hazelnut 87.4 92.0 100 92.0 99.7

Pill 67.1 86.1 94.3 93.3 92.4

Screw 100 81.3 94.1 85.8 98.1

Toothbrush 70.0 100 100 96.1 100

Zipper 74.4 97.9 100 90.3 100

Average 79.8 93.5 97.7 91.5 98.0

Bold numbers indicate the maximum value of the performances

Fig. 7 Anomaly case analysis. a Anomaly image; b Reconstructed
image; c Ground truth; and d Detect result

challenging to distinguish, but also on the toothbrush dataset
with limited training samples, highlighting the effectiveness
of our approach.

The pixel-level AUROC and AP metrics in Table 2
show the excellent performance of our method. The average
AUROC is improved by 0.6% over PaDiM, and the aver-
age AP is significantly improved by 12.5% over DRAEM.
These improvements can be owing to the ECA mecha-
nism, which enhances the model’s reconstruction ability
for images containing irregular workpiece anomalies. Addi-
tionally, the foreground enhancement strategy eliminates
background interferences, which allows the model to acquire
more valuable information.

The pill dataset shows the poorest detection performance.
The original training samples of the pills all have spots of
the same color. However, several samples only have differ-
ent spot colors and no surface anomalies during testing. The
modelmistakenly identifies this type of anomaly as a staining
anomaly rather than a category anomaly in this case. It leads
to significant disparities between the segmentation result and
the ground truth and affects the detection metric (Fig. 7).

To fully demonstrate our advantages, the same settings are
used as the MVTecAD dataset to test the more challenging
BDAD dataset without any data augmentation. The anomaly
detection results are compared with traditional algorithms
[13, 21, 30]. As shown in Table 3, our method outper-
formsother advanced algorithms in termsof averageAUROC
scores at the image level and pixel level for two categories
within the BTAD dataset, demonstrating exceptional effi-
cacy.

Figure8 shows the visualization of anomaly detection
results, and each column displays the anomalous image,
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Table 2 Comparative results of
pixel-level AUROC (%) and AP
(%) on the MVTecAD dataset

Class STAD DRAEM PaDiM Ours
AUROC AP AUROC AP AUROC AP AUROC AP

Hazelnut 98.2 57.8 99.3 82.4 98.1 61.1 99.6 87.2

Pill 96.5 62.0 97.2 42.3 95.7 61.2 95.3 63.7

Screw 97.4 7.8 99.1 62.0 98.4 21.7 99.7 68.2

Toothbrush 97.9 37.7 97.4 46.1 98.8 54.7 99.0 69.5

Zipper 95.6 36.1 98.5 72.1 98.4 58.2 98.9 78.8

Average 97.1 40.3 98.3 61.0 97.9 51.4 98.5 73.5

Bold numbers indicate the maximum value of the performances

Table 3 Comparative results of image-level and pixel-level AUROC (%) on the BTAD dataset

Class P-SVDD DRAEM VT-ADL Ours
Image level Pixel level Image level Pixel level Image level Pixel level Image level Pixel level

01 95.7 91.6 95.2 88.6 97.6 99.0 97.3 90.9

02 82.1 91.0 99.4 87.6 82.6 77.0 99.8 91.8

Average 88.9 91.3 97.3 88.1 90.1 88.0 98.6 91.4

Bold numbers indicate the maximum value of the performances

Fig. 8 Visualization of anomaly detection results

ground truth, reconstructed image, and detection result in
sequential order. It can be observed that our algorithm can
clearly reconstruct anomalous imageswhile accurately locat-
ing surface anomalies on the products.

4.2 Ablation study

To validate the effectiveness of our method, ablation studies
were carried out by applying the foreground enhancement
strategy and adding multiple ECA modules to the baseline
model. The baseline model directly simulated anomalies by
adding noises to the input image without any enhancement
strategy. Additionally, the network did not contain any atten-
tionmodule. Tables 4 and 5 show the ablation results for each
dataset. By comparing, it is evident that both modules show
improvements compared to the baseline model. Our method
significantly improves the average pixel-level AP scores by
13.6% in theMVTecAD dataset when both modules are used

Table 4 Ablation results on MVTecAD dataset

Foreground ECA Image level Pixel level Pixel level
Enhancement Module AUROC % AUROC % AP %

96.7 97.0 59.9√
97.3 97.7 67.7√
97.0 97.5 62.5√ √
98.0 98.5 73.5

Bold numbers indicate the maximum value of the performances

Table 5 Ablation results on BTAD dataset

Foreground ECA Image level Pixel level
Enhancement Module AUROC % AUROC %

91.7 79.4√
98.2 88.0√
97.3 87.7√ √
98.6 91.4

Bold numbers indicate the maximum value of the performances

simultaneously. Similarly, our method notably increases the
average image-level and pixel-level AUROC scores by 6.9%
and 12% in the BTAD dataset, respectively. The ablation
results further demonstrate the effectiveness of each module.

In Fig. 9, each group presents the input anomaly image
as well as the localization result of the baseline model, the
model with only added ECA modules, the model only using
foreground enhancement strategy, and the model combin-
ing foreground enhancement strategy and ECA modules. It
is evident that the combination of the foreground enhance-
ment strategy and the ECA modules yields the best anomaly
localization results.
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Fig. 9 Comparison of ablation results

5 Conclusion

A self-supervised method for surface anomaly detection
was proposed in this paper. The method only required nor-
mal samples during training and simulated real anomalies
through an anomaly generation strategy with the fore-
ground enhancement. It could mitigate the impact of invalid
information in the background on model learning to some
extent. Accurate anomaly detection results could be obtained
through an autoencoder with efficient channel attention and
a U-net-like network for fine segmentation, addressing the
issue of imprecise anomaly localization in existing methods.
Experimental results on the MVTecAD and BTAD datasets
demonstrated that our method achieved excellent perfor-
mance in anomaly detection and localization. In particular,
compared with other advancedmethods, the pixel-level aver-
age AP was significantly improved by 12.5%. The proposed
method provided a better depiction of anomaly segmentation
details and exhibits superior overall detection performance.
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