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Abstract
Identification of Parkinson’s disease (PD) patients at risk for development of dementia is crucial for early intervention.
However, diagnosing dementia in PD patients requires the use of a time-consuming and complex battery of psychological
tests performed by an experienced psychologist. The study aims to prove the usefulness of convolutional neural networks
for the identification of brain areas related to the progress of cognitive impairment by using standard magnetic resonance
imaging (MRI) sequences. T1 & T2 sequences of 18 patients were used in the pilot study. Activation maps were generated,
and the brain regions most involved in the classification process were identified, showing areas potentially significant in the
diagnosis of cognitive impairment severity. The cerebellum was proven significant for distinguishing the above-mentioned
classes in relative cerebellum volume (ANOVA p value = 0.0038 with large effect size η2 = 0.5254) and folding (p value =
0.0031, η2 = 0.5357), which is consistent with reports by other authors. Our analysis demonstrates that convolutional neural
networks combined with a proper image preprocessing pipeline could be used for feature extraction in MRI sequences and
can successfully support the identification of disease-specific abnormalities of the brain image.

Keywords Parkinson’s disease · Dementia · Image biomarkers · Deep learning · Feature engineering · MRI

B Joanna Polanska
joanna.polanska@polsl.pl

Aleksandra Suwalska
aleksandra.suwalska@polsl.pl

Joanna Siuda
jsiuda@sum.edu.pl

Szymon Kocot
szymko1995@gmail.com

Weronika Zmuda
wzmuda@sum.edu.pl

Monika Rudzinska-Bar
mrudzinska@afm.edu.pl

1 Department of Data Science and Engineering, Faculty of
Automatic Control, Electronics, and Computer Science,
Silesian University of Technology, Gliwice, Poland

2 Department of Neurology, School of Medicine, Medical
University of Silesia, Katowice, Poland

3 Department of Neurology, Faculty of Medicine and Health
Sciences, Andrzej Frycz Modrzewski Krakow University,
Krakow, Poland

1 Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disease which manifests cardinal motor
symptoms of resting tremor, rigidity, bradykinesia and loss
of postural stability [1]. The disease may also include a vari-
ety of non-motor symptoms, such as cognitive impairment,
depression, sleep disturbances and autonomic dysfunction
that affect patients’ quality of life [2].

During the early stages, cognitive functions are impaired
in about 40% of PD patients, and almost 80% will develop
dementia in the course of the disease [3]. Cognitive impair-
ment may range from mild deficits up to dementia [4]. Early
identification of PD patients at risk for the development of
dementia is crucial for assuring patients’ well-being and
proper medical intervention. Therefore, searching for easily
accessible biomarkers is an important endeavour.

Neuroimaging investigations of cognitive impairment in
PD is a topic of growing interest. Structural magnetic res-
onance imaging (MRI) studies have already established
that patients who have Parkinson’s disease with dementia
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(PDD) have atrophy of the parietal–temporal lobes, entorhi-
nal cortex, hippocampus, prefrontal cortex and posterior
cingulate-unlike PD patients without dementia or healthy
controls [5, 6]. Recently, research of new methods for
improving the performance of MR image classification has
started to be applied for medical purposes [7].

Many medical research problems are solved with the use
of deep learning. Examples of applications include auto-
matic segmentation of brain tumours [8], brain anatomical
structures [9] and lesions [10], as well as the diagnosis of
some neurological disorders such as Alzheimer’s disease
[11]. These methods have also found their application in
the evaluation of Parkinson’s disease symptoms, handwrit-
ten tests [12] and FP-CIT SPECT for dopamine transporter
imaging [13], from which data is then used for training and
classification by a deep neural network. The obtained class
activation maps can provide information that actively sup-
ports the identification of parts of MR images that play a
crucial role during the decision making process.

The study aims to demonstrate that convolutional neural
networks may serve as a tool in feature engineering allowing
identification of the damaged brain areas visualised by MRI
in PD patients suffering from varying severities of cognitive
impairment.

2 Materials andmethods

Twenty-one successive patients with previously diagnosed
Parkinson’s disease who reported to the out-patient clinic at
the Medical University of Silesia, Katowice were recruited
for the study. Finally, 18 PD patients without cognitive com-
plaints or with differing severity of cognitive impairment
constructed the patient groups. The demographic and clin-
ical data of the patients are presented in Supplementary File
1. The subgroup of nine age-matched patients (3 persons per
each diagnosis status) was additionally chosen from the ini-
tial 21 patients to inspect the identified biomarkers with no
presence of the confounding factor. These patients were age-
matched with the use of a k-nearest neighbour algorithm,
treating the PD patients with mild cognitive impairment as
the reference group (tests for mean value equality: patient
age at the exam p = 0.1275, age at the onset p = 0.2593,
disease duration p = 0.9746). PD was diagnosed according
to the UK PD Society Brain Bank criteria (UKPDSBB) [14].

The informed consentwas obtained from all the patients to
include their medical and personal information in the study,
preserving their privacy.

2.1 Clinical assessment

All subjects enrolled in the conducted study were carefully
examined by a specialist and were subject to the Hoehn–

Yahr test to estimate the stage of Parkinson’s disease. All
available additional data such as disease onset, duration
and information about the treatment were collected in a
specially prepared survey. All patients were subjects in a
complex testing scenario, including a neuropsychological
test, Mini-Mental State Examination, Clock Drawing Test
and Beck Depression Inventory. Other tests (Rey Auditory
Verbal Learning Test, forward & backward Digit Span sub-
scale of Wechsler Adult Intelligence Scale, Trail Making
Test (TMT parts A&B) and Benton Visual Recognition Test
(BVRT) were performed to estimate the strength of subjects’
cognitive abilities.

Based on the results of the neuropsychological assess-
ment, patients were then divided into three groups: cogni-
tively normal (PD-CN), PD with mild cognitive impairment
(PD-MCI) and PD with dementia (PDD). Cognitive impair-
ment (MCI or dementia) was diagnosed according to Move-
ment Disease Society criteria [4, 15].

2.2 MRI acquisition

MRI scans were obtained using a General Electric 1.5 Tesla
system. T1- and T2-weighted sequences were acquired for
each patient. The in-plane resolution for the images was
0.65 × 0.65mm, slice thickness of 6mm, repetition time of
3.6 s and echo time of 95 ms. The total number of 2D scans
acquired in the group of 18 patients was 5984, for an average
of 332.5 2D scans per patient.

2.3 Data preprocessing and statistical analysis

The MRI data were subjected to a complex, specialised pre-
processing pipeline. As a first step, the T1 and T2 images
were co-registered using the FSL-FLIRT program [16, 17].
Data with visible crosstalk artefacts/slice overlap artefacts
were identified and corrected. The median of Hodges–
Lehmann estimates of pairwise between-slice MRI signal
intensity difference was calculated for each MRI sequence
per each 3D study, and the affected 3D studies were identi-
fied with the use of Tukey’s criterion. The next steps were
(1) correction of magnetic field inhomogeneity, performed
with the use of N4ITK [18]; (2) image intensity normali-
sation [19] to ensure the same signal range on each MRI
sequence, and (3) brain extraction performed with FSL-BET
(Brain Extraction Tool) [20]. The images were downsized
to a common resolution of 160x160 pixels. Additionally, the
images were internally normalisedwith the use of the z-score
algorithm. The final number of 2D scans used in the study
was 5,760.

The Shapiro–Wilk test was applied to verify the hypothe-
sis of numerical descriptor distribution normalitywithin each
subgroup. Bartlett’s test was used to check variance homo-
geneity. Depending on the test results, parametric ANOVA
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Fig. 1 Structure of the proposed convolutional neural network

or nonparametric Kruskal–Wallis ANOVAwas performed to
test the hypothesis of mean/median value equality across all
subgroups. The Benjamini–Hochberg procedure was applied
to correct for multiple testing. Post hoc Tukey–Kramer
testing was used in the pairwise comparisons. Eta-squared—
ANOVA-related effect size measure [21]—supported the
findings obtained by standard statistical testing. Addition-
ally, the above described statistical analysis was performed
for the subgroup of the nine age-matched patients.

2.4 Convolutional neural networks (CNN) model

MR T1- and T2-weighted modalities were used to train the
network.

The applied CNN consisted of 4 convolutional layers (ker-
nel size of 3 × 3 pixels), followed by a max-pooling (kernel
size of 2 × 2 pixels, a stride of 2) and batch normalisation
modules. Each hidden layer was activated with the use of
ReLU. Additionally, an image augmentation routine, includ-
ing various image transformations such as rotation, rescaling
and shifting, was applied, which doubled the training set to
11,520 2D scans. Nadam was used as the optimizer with a
learning rate of 0.001. The simplified structure of the pro-
posed network is shown in Fig. 1.

The CNN model was built and trained to estimate param-
eters used in the process of creating activation maps of the
neuronal layers’ classification.Togenerate an activationmap,
some ready-to-use solutions exist. The most commonly used
is Grad-CAM [22, 23], which computes a gradient of the
score for a considered class with respect to the feature map
activations of the last convolutional layer. Gradients that con-
tribute to the prediction are rescaled and resized to match
the original image size. CNN training was performed inde-
pendently in three one-versus-other classification scenarios.

The patient-level leave-one-out cross-validation schema was
applied as presented in Fig. 2. Gradient-weighted class acti-
vation maps, rescaled to the targeted resolution, were con-
structed for each patient, and the regions with the highest
average across all patients activation values were recognised.

The segmentation of the identified distinguishing brain
area was performed with MiMSeg [24]. The segmented
areas’ relative volume and folding were estimated, and the
basic descriptive statistics within each patient group were
calculated. Similar to the statistical analysis of the clini-
cal parameters, the hypothesis of mean value equality was
verified by applying the ANOVA after checking if the test
assumptions were upheld. Post hoc pairwise comparisons
were performed to seek for group differences. A p value of
less than 0.05 was assumed as statistically significant.

3 Results

The severity of cognitive impairment could be assessed based
on significant brain areas that are identified by visualis-
ing activation maps for a given disease entity. Regions of
the highest importance were found in the frontal, posterior,
temporal and cingulate cortex, gyrus lingualis, cerebellum,
caudate nucleus and thalamus; exemplary maps are shown in
Figs. 3, 4 and 5.

The cerebellum was chosen for further detailed analysis
due to showing the highest importance in the automated diag-
nosis performed by the trained convolutional neural network.
The average activation maps of the cerebellum for the three
patient groups are presented in Fig. 6. The cerebella were
automatically segmented withMiMSeg. Cerebellum volume
and folding were calculated and compared across the patient
groups to verify the hypothesis of cerebellum importance in
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Fig. 2 Diagram of a single loop of the leave-one-out validation experiment. The experiment was repeated for each patient independently

Fig. 3 Class activation maps for
the strongest features reflecting
the brain region identified in the
comparison of patients with no
dementia and for patients
diagnosed with MCI

Fig. 4 Class activation maps for
the strongest features reflecting
the brain region identified in the
comparison of patients with no
dementia and patients with
dementia

Fig. 5 Class activation maps for
the strongest features reflecting
the brain region identified in the
comparison of patients with
dementia and patients diagnosed
with MCI
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Fig. 6 Average activation maps
of the cerebellum for the three
different patient groups

Fig. 7 Distribution of the
relative cerebellum volume and
folding among three patient
groups

the context of dementia development. The distributions of
the obtained values are shown in Fig. 7.

Thehypothesis of amonggroupmeanvalue equality of rel-
ative cerebellum volume and folding was investigated with
the use of ANOVA tests (Supplementary File 2). The sta-
tistically significant change in relative cerebellum volume
(Kruskal–Wallis ANOVA p value = 0.0176) and cerebellum
folding (p value = 0.0057) of large effect size [25] were iden-
tified among the groups of patients, showing volume and
folding decrease with the progress of dementia. The findings
remain significant in the subgroup of age-matched patients
(p = 0.0273 in both cases), even with a much larger effect
size.

4 Discussion

It is well documented that grey matter volume loss and corti-
cal Lewy bodies pathology are involved in the development
of cognitive decline in Parkinson’s disease [26]. In cross-
sectional studies about Parkinson’s disease dementia (PDD),
greater atrophy was observed in the frontal and temporal
lobes compared to controls [27, 28]. Our findings are con-
sistent with this study, identifying the most involved areas in
cognitive decline within the same brain regions.

Widespread atrophic changes are especially present in
the limbic/paralimbic area [29, 30]. Abnormalities associ-
atedwith cognitive impairmentwithin the posterior cingulate
cortex (PCC), which is a part of the limbic system, arise

from neurodegenerative processes. Moreover, finding PDD
patients’ metabolic deficits in this region strongly suggests
the possible influence of Alzheimer’s-like pathology in PD
dementia [26, 29, 31] due to the region being heavily con-
nected to the entorhinal cortex. Our results have also shown
strong differences in PCC between PD patients with normal
cognition and PD patients with dementia.

These subcortical atrophic changes are consistent with
pathological studies of PD dementia [28, 30]. The predom-
inant pattern of left hemisphere cortical atrophy in PD was
described byClassen et al., where the rates of left hemisphere
cortical atrophy were also strongly correlated with disease
duration [32]. Other reports demonstrate that left-lateralised
atrophy and left predominance is found in different neurode-
generative disorders with dementia [33, 34].

In our study, the strongest association between the severity
of cognitive impairment and cortical atrophy was detected
in the cerebellum. More recent pathological studies have
shown that there is an alpha-synuclein aggregation pathol-
ogy present in the cerebellum [35].

5 Conclusions

Our analysis proved that convolutional neural networks could
be successfully used for feature engineering even in cases
of small sample studies. The proposed method utilises only
widely available basic MRI sequences and, after very care-
fully designed image preprocessing and normalisation, can
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detect changes for which more time-consuming and expen-
sive medical tests are currently being used.

6 Limitations

Some limitations of our study should be recognised. We
recruited a relatively small group of PD patients. However,
we obtained significant and strong results in all discussed
brain regions, and our results are in agreement with related
literature. Additionally, the classical p values are supported
by sample-size-independent effect size estimates. Another
limitation was the fact that our PDD group was the oldest,
and the age at disease onset was also higher in this group.
To limit the impact of these confounding factors, an addi-
tional validation on a smaller group of age-matched patients
was performed, which confirmed our findings. According to
the clinical variability in PD, we can distinguish two types
of the disease—one with the onset of old age and another
of younger age [36]. The groups are characterised by rapid
and slower disease progression, respectively, and along with
advanced age, the risk of developing dementia in PD patients
increases to 80% [37]. However, usually ageing results in dif-
fuse, not focal cortical thinning [38], and our results showed
a specific pattern of focal cortical and subcortical atrophy
referring strictly to cognitive impairment, assuming that age
was not a confounding factor.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-023-02643-
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