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Abstract
The COVID-19 virus is increasingly crucial to human health since new variants appear frequently. Detection of COVID-
19 through respiratory sound has been an important area of research. This study analyzes respiratory sounds using novel
accumulated bi-spectral features. The principal domain bispectrum is used for computing accumulated bispectrum. The
resulting magnitude bispectrum is used in forming the bispectral image. In this work, a convolutional neural network (CNN)
and ResNet-50 algorithms are designed to classify respiratory sounds as either COVID-19 or healthy. The performance of
the proposed method is compared with the state-of-the-art methods. The proposed CNN-based method achieves the highest
accuracy of 87.68% for shallow breath sounds, and ResNet-50 achieves the highest accuracy of 87.62% for deep breath
sounds. Similarly, proposed methods gives the improved performance for other respiratory sounds.

Keywords Accumulated bispectrum · Bispectral image · CNN · COVID-19

1 Introduction

In February 2020, the World Health Organization (WHO)
declaredCoronaVirusDisease of 2019 (COVID-19) aworld-
wide pandemic [1]. As the COVID-19 virus has spread
worldwide, it is crucial to provide an accurate method for
determining whether or not an individual is infected. Fever,
dry cough, and breathing difficulties caused by acute respi-
ratory infections are some of the signs of COVID-19. It is
crucial to recognize COVID-19 quickly and prevent harm to
various organs.

Researchers are searching for bio-indicators to detect
COVID-19. These studies have either been based on the anal-
ysis of speech sounds [2–4],CT images, or chestX-rays.Also
this is receiving significant attention from the signal process-
ing and artificial intelligence researchers.

In [5], the Environmental Sound Classification 50 (ESC-
50) dataset is used to findCOVID-19. In this work, the author
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used a fusion of MFCC and its principal component analy-
sis (PCA) for support vector machine (SVM). They used
dataset with a small number of samples and achieved 95.6%
accuracy using 247 healthy samples and 70 COVID-19 sam-
ples. For detecting COVID-19 cough shallow (CS) samples
[6], authors used data samples from the Coswara and the
Virufy datasets. The entropy of Energy, MFCC, Zero Cross-
ingRate (ZCR), and spectral-based features are used in SVM,
KNN and RNN models. Their RNN model reported 81.25%
accuracy testing 200 samples of coswara dataset. In [7],
authors used empirical mode decomposition (EMD) based
45 features and discrete wavelet transform-(DWT) based 54
features. After applying the Relief feature selection method
and SVM linear classifier 98.4% accuracy and 98.6% F1-
score values were reported using balanced 595 COVID-19
positive and 592 COVID-19 negative VIRUFY dataset.

In [8, 9] authors reported transfer learning-based deep
neural network (DNN) classification methods for covid-19
identification using speech, cough, and breath samples with
a ROC-AUC of 0.923 0.982, and 0.942, respectively. A total
of 1171 respiratory sound samples are used for both classes to
extract theMFCC, ZCR, and kurtosis features from the audio
signal. SMOTE oversampling was utilized to balance the
training set. In [10], a fractal-dimension (FD) image is pro-
posed forCOVID-19 coughdetection. TheCoughvid,Virufy,
and Coswara datasets were used in this study and reported
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98.45%, 98.15%, and 97.59% accuracy, respectively. In this
author used two networks sequentially, the first to detect
the cough and the second to identify the COVID-19 sam-
ples, which increased the system complexity. The STFT and
MFCC features are utilized in [11] for COVID-19 cough
analysis and classification using SVM. Authors used 121
cough samples from the VIRUFY dataset.

In [12], the authors used 1040 COVID-19 and non-
COVID-19 cough samples fromDicova Dataset. The authors
extracted MFCC, ZCR, RMS energy and spectral features
and used VGG-13 for classification. They computed AUC
values using cross-entropy loss and focal loss methods. In
[13], the authors used 755 COVID-19 and 702 cough sound
samples to classify COVID-19 cough sounds using six deep
transfermodels. In this, the authors used scalograms for train-
ing the models. The authors reported 94.9% accuracy for
ResNet-18 model. In [14], the Cambridge, Coswara, and
COUGHVID datasets are combined and authors removed all
poor quality and noisy cough sounds.Overall they considered
2049 samples. The authors classified the samples as COVID-
19, non COVID-19 and symptomatic. They used MFCC,
spectral features, RMS energy, and ZCR are for training the
model.

In [15], they evaluated an ensemble model by combining
the ICBHI with the Coswara speech, cough, and breathing
datasets. Approximately 110 samples for theCOVID-19 pos-
itive and negative classes are utilized for respiratory analysis.
The CRNN, BiLSTM, and BiGRU models are implemented
using MFCC features. The accuracy reported for cough,
breath, and speech sounds is 98.25%, 90.66%, and 92.40%,
respectively. Here, authors have used only 110 samples.

In [16], the author has used a multi-branch input convo-
lution network with MFCC, spectrogram, and chromagram
features. The VIRUFY dataset achieved 61% accuracy and
90.4% accuracy in the NoCoCoDa dataset. Here, authors
used few samples for testing. In [17], the authors used
vowel sounds (/a, /e, /o) from the Coswara dataset. They used
822 training samples and 205 testing samples and reported
97.07% accuracy.

The various methods described above have been proposed
in the literature to capture the characteristics of COVID-
19 from respiratory sound signals. Most works use features
related to MFCC, spectral and basic features. The MFCC
and the features based on second-order statistics ignore the
signal’s nonlinear information. In the case of noisy data, the
performance of these methods degrades [18]. Additionally,
most of the research mentioned above used small datasets,
and the models are complex in many cases.

In the literature, we find many bispectrum-based works
that analyse the sound signals. A bispectrum phase recon-
struction algorithm has been proposed in [19]. An adap-
tive system identification method based on bispectrum is
described in [20]. The characterization of sleep spindles

using Higher Order Statistics (HOS) and spectra is described
in [21]. The authors have used HOS for computing modified
AMDF and modified AMDFSoA; further, these functions
are used to characterize sleep spindles [21]. In [22], a tech-
nique for cross term reduction in wigner-ville distribution
is described using modified bispectrum. The key difference
between these works and the proposed work is the use of
machine learning and deep learning algorithms. These works
do not use machine learning or deep learning algorithms for
the problems under consideration.

This work explores the use of higher-order spectra (HOS)
in COVID-19 detection. Here, we have proposed a 1-D
bispectrum obtained from a 2-D bispectrum by using the
accumulation of the bispectrum on the frequency variable.
Thus, this study uses novel features driven by HOS. The
magnitude of the accumulated bispectrum is used in form-
ing the image features that are further used to train the CNN
and ResNet-50 networks. Typically, these networks require
features in the form of images. We have created image fea-
tures using the magnitude of the accumulated bispectrum.
Thus, for COVID-19 detection using audio signals, accu-
mulated bispectrum-based magnitude features are proposed
in this work. A detailed performance analysis is presented
in the paper. The proposed method performs better than the
methods available in the literature.

The organization of the paper is as follows. The proposed
methodology is described in Sect. 2. Experimental results and
comparative study is presented in Sect. 3. A summary of the
proposed work and the conclusions are given in Sect. 4.

2 Proposedmethodology

To analyze the importance of respiratory sound signals in
detecting COVID-19, accumulated bispectrum-based fea-
tures and deep neural networks (DNN) are considered. A
description of the accumulated bispectrumbased features and
classification systems is given below.

The methodology followed in this work can be divided
into signal preprocessing and feature extraction parts shown
in Fig. 1. The signal preprocessing step involves normalizing,
silence removal, framing and windowing the raw data. The
feature extraction step computes the novel accumulated bis-
pectrum based features. The classification algorithms CNN
and ResNet-50 are trained and tested and the performance
evaluation is carried out using metrics, such as accuracy, F1-
score, etc. The following subsection explains the detailed
methodology.

This study uses the Coswara dataset, which is produced
by the Indian Institute of Science Bengaluru, India [23]. This
dataset is open and available online. It includes COVID-19
and healthy samples of healthy and shallow coughs, shal-
low and deep breaths, and vowel a/e/o sounds. This dataset
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Fig. 1 Flow diagram of the
proposed methods for
COVID-19 detection

contains over 2700 COSWARA sound samples, each with a
sampling frequency of 44.1 kHz.

This dataset is unbalanced data set, but the data should be
balanced to create a precise algorithm. For data augmentation
in this study, we used the SMOTE oversampling approach
[24]. There are binary classes available in the dataset used in
this work. The minority (COVID-19 positive) and majority
(COVID-19 negative) samples are available. The SMOTE
oversampling method generates an equal amount of minority
and majority samples. The above method has been applied
in several works [2, 8, 9].

2.1 Preprocessing

Preprocessing consists primarily of three steps. As illustrated
in Fig. 1, these steps are normalization, silence removal, and
pre-emphasis. The main objective of normalization is to
reduce the impact of amplitude fluctuations on the decision.
This is achieved using Eq. (1).

xN [n] = 0.9 ∗ x[n]
|max(x[n])| (1)

where xN [n] represents the normalised signal andmax(x[n])
represents the maximum magnitude of x[n]. Silence is
detected using signal power. An empirical threshold is used
to remove the silence from the normalized signal. Signal is
grouped as speech or silence, depending on whether it is
above or below this threshold. Further, this is given to the
pre-emphasis filter with coefficient set to 0.97.

This pre-emphasised signal is further used for windowing
and framing. The Hanning window length is 1024 samples,
and the hop length is 256 samples. The sampling frequency
is 44.1 KHz. These preprocessed sound samples are used for
further processing.

2.2 Respiratory sound feature extraction

In this work, we propose accumulated bispectrum-based fea-
tures for COVID-19 signal detection. These features are used

as image input to train the CNN and ResNet-50 networks.
Respiratory sound signals are used to compute the bispec-
trum as given in (2). This bispectrum is a two-dimensional
complex quantity.

B( f1, f2) = X( f1)X( f2)X
∗( f1 + f2) (2)

where X( f ) is the Fourier transform and X∗( f ) is complex
conjugate of X( f ). The details of the computation of princi-
pal domain bispectum are given in [25, 26]. This computation
only covers the frequency range of the principal domain as
shown in Fig. 2. The accumulation of this bispectrum is com-
puted by (3).

AB[ f1] =
(N−1)− f2∑

f2 = 0

B[ f1, f2] (3)

The resulting accumulated bispectrum will be a 1-
dimensional quantity representing an accumulated bispec-
trum (AB) along one frequency variable. The principle
domain bispectrum of each frame is shown in Fig. 2. The
AB is computed from this principal domain bispectrum.

Now, this AB is used to extract magnitude and phase val-
ues. The AB( f1) is a complex quantity. According to Eq. (4)
themagnitude andphase relationship between the bispectrum
of the signal is given by

AB( f1) = |AB( f1)|e j�( f1) (4)

Each frame’s AB magnitude values are stored as a row in
themagnitudeAB image. ThemagnitudeAB images are used
for further training and detecting COVID samples using the
CNN andResNet-50 classifiers. The results and performance
analysis is presented in the next section.

The first and second column of Fig. 3 shows an analysis of
the Healthy Cough (HC) and COVID-19 Cough (CC) sound
samples. Healthy Breath (HB) and COVID-19 Breath (CB)
sound is shown in the third and fourth column of Fig. 3.
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Fig. 2 Flow of extraction of
accumulated bispectrum

Fig. 3 Analysis of accumulated bispectrum

The audio signals are shown in the first row in Fig. 3. The
sample frames are shown in row two. The bispectrum and
accumulated bispectrum are shown in rows three and four
respectively. We can observe AB for healthy and COVID-19
coughs and note that AB is more concentrated in healthy
coughs, whereas AB energy is distributed in COVID-19
coughs.

2.3 Classification architecture

In this experiment, CNN and ResNet-50 architectures are
used to categorise COVID-19 or healthy sounds. When
the input layer receives an image in CNN, the convolution

and pooling layers extract the features through the layers.
Therefore, features are modified from low-level to high-level
features and classified through fully connected layers. Simi-
larly, transfer learning is defined as training a neural network
on a new task using the weights of another similar task.
ResNet50 is also a version of the ResNet transfer learning
model that contains 48 convolution layers, one max pool and
one average pool layer.

In this network, we used two convolutions and max-
pooling layers. The three fully connected layers have 32,
125, and 2 neurons respectively. All convolution layers used
3 × 3 kernel size and did not use zero padding. The convo-
lution processes in both CNN architectures employ the Relu
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Table 1 CNN parameters used for magnitude AB image features

Layer (type) Output shape No. of parameters

Input layer (100, 256, 1) 0

Conv2D (98,254, 24) 240

MaxPooling (49, 127, 24) 0

Conv2D (47, 125, 36) 7812

MaxPooling (23, 62, 36) 0

Flatten1 (None, 51,336) 0

Dense1 (None, 32) 1642784

Dropout (None, 32) 0

Dense2 (None, 125) 4125

Dense3 (None, 2) 252

activation function, while the output layer uses the softmax
activation function. After the convolutional layer, a 2×2 size
max-pooling layer is used. A dropout layer has been added to
prevent overfitting since some neurons were disabled during
the data training. The output shape and the number of train-
able parameters with respective layers are shown in Table 1.
We used 100 epochs and 125 batch sizes to train the CNN
architecture.

ResNet50 requires a 3-channel input; thus, the features are
modified to 3 channels by replicating the same single-channel
to all three channels to overcome this difficulty. The shape
of the input layer is (100, 256, 1); therefore, it also needs to
be resized into (100, 256, 3). Imagenet’s trainable parameter
has been set to include_top = False refers to the activation
of feature extraction, which removes the last dense layer.
Furthermore, ResNet-50 utilizes a total of four dense layers.
The last two layers contained 64 and 2 neurons, respectively,
while the first two used 1024 and 256 neurons. Furthermore,
this experiment has used regularisation methods to prevent
over-fitting as drop-out between the first and second dense
layers. There are 50 epochs used during ResNet-50 training.

The ADAM optimizer and binary cross-entropy are used
for the loss function in both classification architectures. Low
learning rates are preferred to preserve a large portion of
previous learning. The learning rate in this study is kept at
0.0001. Softmax activation function is used in the last dense
layer.

3 Results and discussion

In this section, we analyze and discuss the results. The aug-
mented data is divided into 80 and 20% for training and
testing purposes. The CNN and ResNet-50 classification
architectures used in this work are explained in the previous
section. The performance is shown using 2 × 2 confusion

matrices. Details of performance evaluation parameters are
described in [2].

The simulation results of the method given in [9] with
the updated larger dataset are shown in Table 2. The MFCC,
ZCR, and kurtosis features are used in [9]. As indicated in
[9], 13 MFCC and 26 features using first and second-order
time derivatives of MFCC are used. The ZCR and kurtosis
of the respiratory sound signal are used to capture additional
information about the characteristics of the sound. The 39
MFCC features are combined with the ZCR and kurtosis of
the respiratory sound signal and these features are applied to
the CNN and ResNet-50 model.

The results are shown in Table 2. For CNN model, the
F1 score is 82.22% and the accuracy is 84.15% for shallow
cough. For shallow breathing, the F1 score is 81.55%, and
the accuracy is 83.49%. The accuracy for vowel sounds is
relatively less than cough and breath sounds. For ResNet-
50 model, all sound types gives similar accuracy of around
83.2%.

The results of the method given in [13] are shown in
Table 3 for comparison purposes. In this method, scalo-
gram images are extracted using the Continuous Wavelet
Transform (CWT). The CWT coefficients provide a time-
frequency representation of the signal. CWT allows for
frequency content analysis over time.TheMorlet filter is used
in wavelets for capturing a signal’s high and low-frequency
components. The CWT is computed using the equation (5)
at a scale of (x > 0).

CWT(x,y) = 1√
x

∫ −∞

∞
f (s)ϑ

(
s − y

x

)
ds (5)

where ϑ(s) is a continuous function in both the time and
frequency domains and is called as the father signal. x is a
scale parameter and y is a position parameter.

By using CWT coefficients, a wavelet matrix with scale
and position information is generated. The results of this
method using the updated Coswara dataset are shown in
Table 3. These scalogram images are applied to the CNN
model. For shallow cough sounds, the F1-score is 81.63%,
and the accuracy is 83.08%. For shallow breath, the F1 score
is 80.97%, and the accuracy is 82.46%.

As can be seen in Tables 2 and 3, all respiratory sound
types in Table 2 have the higher accuracy values except for
vowel a and o. This shows that themethod [9] performs better
than the method in [13].

The results of the proposed method based on the mag-
nitude of AB are shown in Table 4. A five-time mean is
performed for all of the experiments. The proposed CNN
network performs better for shallow and deep breath sounds.
The 87.68% in accuracy (Acc) and F1-score (F1), 86.07%
for the shallow breath sound, is visible in Table 4. ResNet-50
performs relatively better thanCNNfor the deepbreath sound
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Table 2 Classification
performance using features
proposed in [9] with updated
dataset

Sound Accuracy F1-score Sensitivity Sepecificity AUC

CNN

Cough heavy 84.15 82.22 73.26 95.04 0.841

Cough shallow 83.2 81.11 72.09 94.32 0.832

Breath deep 82.51 80.27 71.18 93.84 0.825

Breath shallow 83.49 81.55 72.95 94.04 0.834

Vowel a 81.6 79.39 70.86 92.34 0.816

Vowel e 82.63 79.94 69.21 96.05 82.63

Vowel o 80.32 79.32 75.49 85.14 80.32

ResNet-50

Cough heavy 82.45 78.96 65.65 99.04 0.824

Cough shallow 83.08 79.7 66.41 99.75 0.830

Breath deep 83.25 80.05 67.24 99.26 0.832

Breath shallow 83 79.64 66.5 99.5 0.830

Vowel a 83.2 79.94 66.91 99.5 0.832

Vowel e 83.25 79.94 66.74 99.75 0.832

Vowel o 83.16 79.94 67.07 99.25 0.831

Table 3 Classification
performance using scalogram
image features proposed in [13]
with the updated dataset

Sound Accuracy F1-score Sensitivity Sepecificity AUC

CNN

Cough heavy 83.08 81.63 72.46 94.53 0.831

Cough shallow 80.16 80.00 68.97 95.33 0.810

Breath deep 81.85 80.32 70.42 94.53 0.818

Breath shallow 82.46 80.97 71.43 94.53 0.823

Vowel a 82.16 80.65 71.94 93.08 0.830

Vowel e 81.25 79.68 71.94 90.98 0.822

Vowel o 82.77 81.30 74.07 91.67 0.833

Table 4 Performance of
magnitude AB image features

Sound Accuracy F1-score Sensitivity Sepecificity AUC

CNN

Cough heavy 84.27 81.54 69.49 99.05 0.842

Cough shallow 84.34 81.53 69.1 99.59 0.843

Breath deep 87.45 85.81 75.89 99.02 0.874

Breath shallow 87.68 86.07 76.1 99.26 0.876

Vowel a 83.51 80.58 68.42 98.61 0.835

Vowel e 85.00 82.51 70.81 99.18 0.850

Vowel o 84.82 82.27 70.46 99.18 0.842

ResNet-50

Cough heavy 83.17 80.36 68.86 97.48 0.831

Cough shallow 84.14 82.43 74.39 93.9 0.841

Breath deep 87.62 86.02 76.22 99.02 0.876

Breath shallow 86.76 85.18 76.1 97.42 0.867

Vowel a 83.37 80.45 68.42 98.33 0.833

Vowel e 84.72 82.26 70.81 98.64 0.847

Vowel o 85.23 82.88 71.54 98.91 0.852
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type and its accuracy and F1-score are 87.62% and 86.02%,
respectively. The CNN outperformed ResNet50, according
to our results shown in Table 4 except in the case of deep
breath sound type.

The CNN extracted features faster as compared to Resnet-
50 fromAB images. The CNNmodel has significantly fewer
parameters than the huge ResNet50 model. This is happen-
ing due to ResNet-50 being pre-trained on the three-channel
dataset ImageNeT, its input layer has been modified from
one channel to three.

As indicated in Tables 2, 3 and 4, the proposed method
using magnitude accumulated bispectral image features out-
performs the methods in [9] and [13]. For a shallow breath
sound signal, the improvement in accuracy is 4.19% and in
F1-score is 4.52%. The results of the scalogram method are
given in Table 3. The proposed method provides an accu-
racy improvement of 5.22% and the F1-score improvement
is 5.1%. Similarly, the proposed method also gives improved
results for other respiratory sounds, as shown in Tables 2 and
3. These results suggest that the accumulated bispectrum is a
valuable tool in the analysis of the respiratory sound signals.

As discussed in the introduction, most of the authors have
used MFCC, ZCR, spectral features and scalogram-based
image features. These features are based on second-order
statistics like power spectrum, mel-spectrum, etc. The pro-
posed method based on the accumulated bispectral features
gives improved performance. This could be due to the fact
that the HOS has the ability to detect nonlinear properties
of the signals. Additionally, HOS are better at handling the
noise in the signals. The performance of the proposedmethod
is specifically better for the cases of coughing and breathing
sounds. The accuracy, F1-score, sensitivity and specificity
values are improved. The state-of-the-art methods are imple-
mented and tested for comparison purposes on the same
dataset.

4 Conclusion

A novel accumulated bispectrum magnitude image features
are proposed in this paper for detectingCOVID-19 sound sig-
nals, The proposed method captures the COVID-19-specific
characteristics of the respiratory sound signals. The accumu-
lated bispectrum image-based features perform better and
achieve the highest accuracy using a CNN classifier com-
pared to the state-of-the-art methods. The results for shallow
breath sound outperform the remaining respiratory sound
types and achieves 87.68% classification accuracy, and the
F1 score of 86.07%.

In this work, we have explored the use of the magnitude
of the accumulated bispectrum. In our future work, we will

explore use of accumulated bispectrum with various slices
and phase information for biomedical applications.
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