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Abstract
Iterative reverse filters have been recently developed to address the problem of removing effects of a black box image filter.
Because numerous iterations are usually required to achieve the desired result, the processing speed is slow. In this paper,
we propose to use fixed-point acceleration techniques to tackle this problem. We present an interpretation of existing reverse
filters as fixed-point iterations and discuss their relationship with gradient descent. We then present extensive experimental
results to demonstrate the performance of fixed-point acceleration techniques named after: Anderson, Chebyshev, Irons, and
Wynn. We also compare the performance of these techniques with that of gradient descent acceleration. Key findings of
this work include: (1) Anderson acceleration can make a non-convergent reverse filter convergent, (2) the T-method with an
acceleration technique is highly efficient and effective, and (3) in terms of processing speed, all reverse filters can benefit
from one of the acceleration techniques.

Keywords Reverse image filter · Fixed-point iteration acceleration · Gradient descent acceleration

1 Introduction

In a reverse filtering problem, a filter denoted g(.) is given
as a black box of which the user can provide an input x and
observe an output b = g(x) without knowing exactly how
the filter produces certain effects. The problem is to estimate
the original input signal x from the black box filter g(.) and
the observation b.

This problem has been studied by researchers in recent
years [1–8]. Methods that have been developed to solve this
problem are based on the formulation of either a fixed-point
iteration or theminimization of a cost function using gradient
descent. In both formulations, the solutions are semi-blind in
the sense that although they do not assume any knowledge
of the filter, they rely on the input–output relationship of the
filter. A notable very recent development is to extend the
semi-blind reverse filtering problem to include noise in the
filteringmodel [6, 7] which leads to new results in deblurring
and de-filtering.

B Fernando Galetto
f.galetto@latrobe.edu.au

Guang Deng
d.deng@latrobe.edu.au

1 Department of Engineering, La Trobe University, Bundoora,
Victoria 3086, Australia

This paper presents an experimental study of acceler-
ating this class of semi-blind reverse filtering methods. It
extends our previous work [8] in which some well-known
accelerated gradient descent methods [9] have been used
for the acceleration. A major motivation for this work is
to explore the application of acceleration techniques for
fixed-point iteration to accelerate this class of filters. A fur-
ther motivation comes from increasing research interests in
applying such techniques in accelerating machine learning
algorithms, which include techniques named after Ander-
son [10], Aitken [11], and Chebyshev [12, 13]. We note
that numerical techniques are well established in acceler-
ating fixed-point iterations through sequence transformation
or extrapolation [14]. We refer to reference [15] for a review
of algorithms dealing with fixed-point problems involving
both scalar and vector variables. Reference [16] provides a
historical account for the main ideas and development of
acceleration techniques based on sequence transformation.
Filters can benefit from one of the acceleration techniques.

As an extension to [8], the novelty of this paper is the appli-
cation of fixed-point acceleration techniques in this particular
problem, which is, to our best knowledge, not reported in the
literature. We also make some modifications to the accel-
eration techniques such as a modified Chebyshev sequence
and adopting a particular type of Anderson acceleration. The
main contribution of this work is summarized as follows. In
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Table 1 Reverse filters in terms of fixed-point iteration. The symbol
||.||2 represents matrix 2-norm

Method Fixed-point x = f (x) (Sect. 2.2)

T [1] fT (x) = x + e(x)

R [3] fR(x) = αx + λe(x)

P [4] fP (x) = x + ||e(x)||2
2||p(x)||2 p(x)

TDA [8] fT DA(x) = x + t(x)

F [2] fF (x) = F−1
(

F(b)
F(g(xk ))F(xk )

)

p (this work) f p(x) = x + 1
2 p(x)

section 2.2, we formulate the T-method [1], TDA-method
[8], and P-method [4] from a fixed-point iteration point of
view. In addition, we derive a new iterative filter called the
p-method. We have adopted a version of the Anderson accel-
eration [17] (Sect. 3.1). We have proposed a new way to
define the Chebyshev sequence [12] (Sect. 3.2). We have
also tested two vector variable acceleration methods which
are related to Aitken’s method [18]: Irons’ method [19] and
Wynn’s Epsilon algorithm [20] (Sect. 3.3). In Sect. 4, we
present results of reversing the effects of a guided filter and
a motion blur filter and compare the performance of accel-
eration techniques of both fixed-point and gradient descent.
We then report results of extensive evaluation of accelera-
tion techniques for reversing effects of 14 black box filters,
which are commonly used in image processing. Details of
experimental setup and more results can be found in the sup-
plementary material, which also includes further discussion
of techniques used in this paper.

2 Filters and fixed-point iterations

2.1 A summary of reverse filters

We follow the terminology used in [4] where a particular
reverse filter was called a method. Related previous works
are summarized in Table 1 where variables are defined as the
following.

• e(x) = b − g(x)

• p(x) = g(x + e(x)) − g(x − e(x))

• t(x) = g(x + e(x)) − g(x)

Methods in Table 1 are presented from a fixed-point iter-
ation (detailed in Sect. 2.2) point of view. In Sect. 2.3, we
briefly discuss implementations and relationships between
fixed-point iteration and gradient descent in iterative reverse
filters. To make the discussion self-contained, we present
a brief review of each method by pointing out its main idea

and advantages/limitations in the supplementary material for
easy reference.

2.2 Reverse filters as fixed-point iterations

A fixed-point problem, denoted by: x = f (x), f : RN →
R

N , can be solved by the Picard iteration

xk+1 = f (xk) (1)

Starting with an initial guess x0, the iteration is performed
until a convergence criterion is met. Formulating a reverse
filter method as a fixed-point iteration may have two con-
vergence problems: (a) the iteration may never converge and
(b) the convergence is linear which can be extremely slow.
This is especially problematic when the evaluation of f (x)

is computationally expensive [21]. We remark that there are
other type of iterations such as Mann iteration [22] and seg-
menting Mann iteration [23] which are in the same form as
the over relaxation method [12] defined as

xk+1 = xk + ωk ( f (xk) − xk) (2)

where ωk is a real scalar coefficient. In this work, we focus
on both iterations as candidates for accelerations. Next, we
derive the reverse filters from a fixed-point iteration point of
view.

T-method We recall that the T-method can be derived by
rewriting the filter model b = g(x) as a fixed-point problem
in which

x = fT (x) = x + e(x). (3)

TDA-method From the T-method, we can write g(x +
e(x)) − g(x) = 0. Adding x to both sides, we have the
TDA-method

x = fT DA(x) = x + g(x + e(x)) − g(x) (4)

The p-method We use a small letter "p" to distinguish
between the one developed in this section and the one devel-
oped in reference [4]. When x is the fixed point, we have
e(x) = 0. Thus, we rewrite the filter model as

x − e(x) = x + e(x) (5)

This equation can be further rewritten as

x + 1

2
g(x − e(x)) = x + 1

2
g(x + e(x)) (6)

where the scaling factor 1/2 is introduced such that a con-
nection between the p-method and the P-method can be
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developed. Re-arranging, we have the following fixed-point
problem

x = f p(x) = x + 1

2
(g(x + e(x)) − g(x − e(x))). (7)

Comparing the p-method with the P-method, we can see
that the former is without the computational expensive fac-
tor ||ek ||2

2|| pk ||2 . Also, since the P-method can be regarded as an
approximation of gradient descent, the p-method can be sim-
ilarly interpreted because they share the same form.

2.3 Relationship with gradient descent

Referring to Table 1, we can implement the reverse filter
methods either as a Picard iteration using equation (1) or the
segmenting Mann iteration using equation (2). An interest-
ing connection between the segmenting Mann iteration and
the gradient descent can be established by relating the two
implementations as follows. The implementations of gradi-
ent descent (where c(x) is a cost function to be minimized)
and segmenting Mann iteration can be written as

• Gradient descent: xk+1 = xk + λk(−∇c(xk))
• Mann iteration: xk+1 = xk + ωk( f (xk) − xk)

Comparing these two points of views, we can clearly see the
following relationship:

− ∇c(x) = f (x) − x (8)

In addition, such relationship can be established from
an optimization point view. The problem of estimating an
unknown image from the observation b and a black box filter
g(x) can be formulated as solving a minimization problem
with the cost function c(x). Assume there is a least a local
minimum x̄ which satisfies the condition: ∇c(x̄) = 0. The
optimization problem becomes one that solves a system of
nonlinear equations. One way to solve this problem is to for-
mulate it as a fixed-point iteration writing:

x = x − ∇c(x) (9)

In terms of fixed-point iteration defined in (1), we have
f (x) = x − ∇c(x). We then perform the segmenting Mann
iteration by substituting f (x) into equation (2); we have the
same equation as that of the gradient descent.

Therefore, a reverse filter based on the segmenting Mann
iteration is equivalent to the same filter based of the gradi-
ent descent. We remark that it is well known that gradient
descent can be regarded as a fixed-point iteration when we
define f (xk) = xk −λk∇c(xk)where λk is a scaling param-
eter. In this section, we specifically point out the equivalence

Table 2 Abbreviations of acceleration techniques

Gradient descent Fixed-point

ADAM Adaptive Movement AAcc Anderson

Estimation

MGD Momentum CHB Chebyshev

NAG Nesterov EPSILON Wynn

SGDR Stochastic grad IRONS Irons

descent warn start

between the segmentingMann iteration and gradient descent.
This relationship allowsus to explore the applicationof accel-
eration techniques fromboth gradient descent andfixed-point
literature.

3 Acceleration techniques

We review four acceleration techniques: Anderson acceler-
ation [17], Chebyshev periodical successive over-relaxation
[12], Irons acceleration [19], and Wynn’s ε-algorithm [20].
Table 2 shows the abbreviations of acceleration techniques.

3.1 Anderson acceleration

Anderson acceleration (AAcc) [17, 21] uses the following
equation to perform the iteration.

xk+1 = f (xk) −
m−1∑
j=0

θkj ( f (xk−m+ j+1) − f (xk−m+ j ))

(10)

The parameters θ = {θkj } j=0:m−1 are determined by solving
a minimization problem:

min
θ

||F(xk) −
m−1∑
j=0

θkj (F(xk−m+ j+1) − F(xk−m+ j ))||22
(11)

where F(x) = f (x) − x. The implementation does not
require derivatives which makes it ideal to accelerate reverse
filtering methods. In our experiment, we use a particular ver-
sion1 of the Anderson acceleration and set m = 2. The two
optimized parameters θ0 and θ1 can be easily computed.

1 https://ctk.math.ncsu.edu/TALKS/Anderson.pdf.
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3.2 Chebyshev successive over-relaxation

Referring to equation (2), the Chebyshev periodical suc-
cessive over-relaxation (Chebyshev) [12] uses a periodic
sequence with a period of τ . The sequence is defined as:

ωk =
[
λ2 + λ1

2
+ λ2 − λ1

2
cos

(
2k + 1

2τ
π

)]−1

(12)

where λ2 and λ1 are the lower and upper bound of the
sequence and are user-defined parameters. A recent paper
also showed that using the Chebyshev sequence as the coef-
ficients for Anderson acceleration leads to good results in
machine learning applications [13]. In reference [24], it was
shown that using the settings of λ1 = 0.18, λ2 = 0.98 and
τ = 8 leads to good acceleration of the T-method in revers-
ing a mild smoothing effect of a low-pass filter operating on
images of low-resolution hand-written numbers.

In our experiments, we observed that a direct application
of the above Chebyshev sequence to the reverse filters did
not produce satisfactory results. We found that when λ1 = 0
and λ2 = 1 and the value of the sequence is hard-thresholded
to an upper limit α as defined in equation (13), all methods
can produce consistently good results over a broad spectrum
of filters to be reversed.

ωk = min

(
α, 2

(
1 + cos

(
2k + 1

2τ
π

))−1
)

(13)

We now comment on the choice of the period τ . For a
function f which is L-Lipschitz, the convergence condition
is ωk ≤ 2−δ

1+L < 2 for some δ > 0 (Proposition 6, [23]). In
light of this convergence condition, we have the following
remarks.

• Within one period, the sequence is non-linearly increas-
ing with k. The minimum and maximum can be calcu-
lated as:

– min{ωk} = ω0 = 2
1+cos( π

2τ )

– max{ωk} = ωτ−1 = 2
1−cos( π

2τ )

It is because cos
(

π
2τ

)
is an increasing function of τ and

cos
(

π
2τ

) → 1 when τ >> π/2. We have 1 ≤ ω0 <

ωk . Similarly, the maximum value of ωτ−1 is unbounded
when τ >> π/2. A bigger τ value leads to a bigger value
of ωτ−1.

• Setting a bigger τ value has three effects.

• Increasing the number of iterations in which ωk > 1
before the sequence is reset to ω0.

• Increasing the value of ωk when k is closed to τ .
• Decreasing ω0 to near 1.

• At iterations where ωk > 2, the result is pushed away
from a potential local minimum [25]. In fact, the use of
the Chebyshev sequence in accelerating the segmenting
Mann iteration is closely related to the so-called cosine
annealing with warm start.2 Let Nτ be the number of
coefficient satisfyingωk > 2. A bigger τ value will result
in a bigger Nτ .We observed in our experiments thatwhen
Nτ is too large; the result is pushed too far away from
the optimum, leading to sub-optimal results or unstable
iteration. One way to tackle this problem is to properly
choose τ such that Nτ is small and to clip the value of
ωk to a predefined value α. In our experiments, we set
τ = 32 and α = 3 for T-, TDA- and p-Method. We set
α = 1 for the P-method.

3.3 Irons andWynn acceleration

Both Irons’ method [19] and Wynn’s ε-method [20] can be
regarded as a generalization of Aitken’s 
2 process [18]. A
comprehensive study of howAitken’s
2 process can be gen-
eralized to dealwith vector variables is presented in reference
[15] which provides the following results.

• Irons’ method

xk+1 = f ( f (xk)) − (
 f (xk))T
2xk
||
2xk||2 
 f (xk)

• Wynn’s ε-method

xk+1 = f (xk) + ||
xk ||2
 f (xk) − ||
 f (xk)||2
xk
||
2xk ||2

where 
x = f (x) − x, 
 f (x) = f ( f (x)) − f (x), and

2x = 
 f (x)−
x. In our implementation, the 2nd term in

Irons’ acceleration ismodified as (
xk)2×
2xk
||
2xk||2 . All arithmetic

operations are calculated pixel-wise.

3.4 Computational complexity

Computational complexity in one iteration is presented in
Table 3, where symbols C, C , and # represent the com-
plexity of reverse filtering method, the complexity the black
box filter g(.), and the number calls of g(.). Methods that
do not need to calculate the matrix norm have complexity:
C1 = max (O(n),C) where n is the number of pixels in the
image. On the other hand, methods that need to calculate
the matrix norm have complexity: C2 = max (O(n2),C).
Reverse filtering methods with gradient descent acceleration
and Anderson/Chebyshev acceleration have the same com-
putational complexity as those without acceleration.

2 See, for example: https://pytorch.org/docs/stable/generated/torch.
optim.lr_scheduler.CosineAnnealingLR.html.
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Table 3 Computational complexity in one iteration. The 3rd row is for
no acceleration or gradient descent (GD) accelerations. The last 2 rows
are for fixed-point accelerations (ε=EPSILON)

T TDA P p

Acceleration C # C # C # C #

None/GD C1 1 C1 2 C2 3 C1 3

AAcc/CHB C1 1 C1 2 C2 3 C1 3

IRONS/ε C2 2 C2 4 C2 6 C2 6

4 Results and discussion

We demonstrate and compare the effectiveness of acceler-
ation techniques to improve the performance of 4 reverse
image filters (T-, TDA-, P- and p-method). The F-method
and algorithms presented in reference [7] are not considered
because they assume that the black box filter g(.) is locally
linear. This is assumption is not true for highly nonlinear fil-
ters.Results in reversing effects of a guidedfilter and amotion
blur filter are presented in sects. 4.1 and 4.2. Results using
a dataset to evaluate the performance of acceleration tech-
niques for 14 black box filters are summarized in sect. 4.3.

4.1 Self-guided filter

We use a guided filter [26] in a self-guided configuration
to slightly blur the cameraman.tif image using a patch size
of 5 × 5 and ε = 0.05. Figure1 shows that a higher
PSNR value has been achieved for T-, TDA-, and the pro-
posed p-method, when a fixed-point acceleration technique
is applied. The effect of periodically resetting of the Cheby-
shev sequence can also be observed. The P-method is only
improvedby IRONSacceleration. For gradient descent accel-
eration techniques, Fig. 2 shows that T-, TDA-, and the
proposed p-method are improved with the acceleration. The
performance of the P-method has a slight improvement when
using NAG acceleration. Other gradient descent acceleration
methods do not lead to performance improvement for the
P-method.

Comparing Fig. 1 with Fig. 2, we can see that in general,
gradient descent acceleration leads to a better performance
improvement than fixed-point acceleration. Figure3 presents
the original image and its filtered input as well as the restored
versions. We only display the result of the original methods
and the best performer for each acceleration type. We can
see that the acceleration techniques are able to recover the
details and edges smoothed by the self-guided filter.

Fig. 1 Reversing a self-guided filter using different reverse filtering methods and accelerated fixed-point iteration

Fig. 2 Reversing a self-guided filter using different reverse filtering methods and accelerated gradient descent
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Fig. 3 Result of reversing a self-guided filter with different methods after 200 iterations. a Ground truth. b Blurred image. c–f Results using T-,
TDA-, P-, and p-methods without acceleration. g T+AAcc. h T+NAG

Fig. 4 Reversing a motion blur filter with different reverse filtering methods and accelerated fixed-point iteration

4.2 Motion blur filter

An image is blurred by a filter of parameters of l = 20 and
θ = 45◦. Experimental results are presented in Figs. 4 and 5.
The original T-method is not able to reverse the effect of this
filter since the PSNRdecreases after each iteration.Anderson
acceleration (AAcc) helps to achieve a steady improvement
in PSNR. The EPSILON acceleration also achieves improve-
ment but has significant fluctuations in PSNR. All other
methods fail to make the T-method convergent. This result
highlights the importance of studying fixed-point accelera-
tion techniques in reverse filtering. Performances of methods
of TDA, P and p are improved by all acceleration techniques.

The PSNR values achieved by applying gradient descent
acceleration techniques are higher than those achieved by
applying fixed-point acceleration.

Figure6 shows results without applying acceleration and
two best results with accelerations which are P+EPSILON
and P+NAG. The T-method leads to a totally distorted image
after 200 iterations, while TDA-, P- and p-method are able to
recover most of the missing details. However, some artifacts
or distortion appeared on the girl’s face. Comparing Fig. 6e
with the best results shown in Figs. 6g and h, we can see that
with the same number of iterations, acceleration techniques
lead to significant improvement in image quality (Table 4 ).
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Fig. 5 Reversing a motion blur filter with different reverse filtering methods and accelerated gradient descent

Fig. 6 Result of reversing a motion blur filter with different methods after 200 iterations. a Ground truth. b Blurred image. c–f Results using T-,
TDA-, P-, and p-methods without acceleration. g P+EPSILON. h P+MGD

Table 4 Parameter settings for acceleration method. Irons, Epsilon, and Anderson accelerations are parameter-free

Accel. T TDA P p

NAG/MGD α = 1, β = 0.9 α = 1, β = 0.9 α = 1, β = 0.9 α = 1, β = 0.9

ADAM β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999

SGDR T = 5, λmin = 1, λmax = 2 T = 5, λmin = 0, λmax = 3 T = 5, λmin = 0, λmax = 1 T = 5, λmin = 0, λmax = 3

CHB α = 3, T = 32 α = 3, T = 32 α = 1, T = 32 α = 3, T = 32

4.3 Results of reversing 14 black box filters

Weperform an extensive evaluation of the performance of the
reverse filters and acceleration techniques by using 14 black
box filters and 20 images. Experimental setup is detailed in
the supplementary material. Let pk(i) and p0(i) represent,

respectively, the PSNR value at the kth iteration and 0th iter-
ation when reversing the effect of a filter on the i th image.
We define the percentage of improvement in PSNR as:

p̄k(i) = pk(i) − p0(i)

p0(i)
× 100 (14)
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Table 5 Test results measured by the percentage of improvement in PSNR. Only results from the best performing acceleration method are listed.
Fixed-point acceleration methods are highlighted with italic

Filter T TDA P p

WF [27] 29.9 AAcc 35.7 NAG 40.2 IRONS 35.6 NAG

Disk averaging filter 36.5 AAcc 38.7 MGD 46.6 EPSILON 38.7 MGD

Motion blur filter 36.3 AAcc 43.7 MGD 51.7 EPSILON 43.7 MGD

GF [26] 200.9 NAG 78.9 AAcc 95.7 IRONS 78.4 AAcc

GF+Gauss. filt. 49.2 MGD 16.7 MGD 21.4 IRONS 16.7 MGD

SSIF [28] 1059.4 AAcc 936.5 AAcc 1053.4 IRONS 948.0 AAcc

WLS [29] 23.0 SGDR 11.1 ADAM 12.0 ADAM 11.6 NAG

RTV [30] 35.9 SGDR 16.5 IRONS 20.6 IRONS 16.0 IRONS

Gauss. filt. 10.2 AAcc 8.9 MGD 11.5 IRONS 8.9 MGD

AMF [31] 99.7 IRONS 57.7 NAG 60.0 NAG 58.7 NAG

ILS [32] 59.2 NAG 29.4 NAG 31.6 IRONS 29.0 NAG

L0 [33] 11.2 EPSILON 6.0 EPSILON 6.1 EPSILON 6.1 EPSILON

BF [34] 105.4 AAcc 58.1 ADAM 60.8 ADAM 58.2 ADAM

LLF [35] 38.1 AAcc 25.4 EPSILON 24.6 EPSILON 26.9 AAcc

Bold values indicate the best performing method for each filter

For each image, there is a sequence p̄k(i). Let h(i) =
maxk{ p̄k(i)} be the maximum percentage of improvement
achieved for each image at a certain iteration index. We aver-
age the results over 20 images as the final measure of the
performance:

p = 1

20

20∑
i=1

h(i) (15)

We compute the performance index p for each combination
of reverse filtering methods and acceleration techniques. The
best performing acceleration techniques are shown in Table
5. Other results are presented in supplementary material. We
have the following observations.

• All reverse filters are improved to some extent by at least
one acceleration technique.

• When the T-method converges, its accelerated versions
achieve higher PSNR improvement than TDA-, P- and
p-methods. When it does not converge, only Anderson
acceleration makes it converge. Other acceleration tech-
niques fail to make it converge.

• Overall, the T-method together with a particular acceler-
ation has the best performance in 10 out of 14 filters. It
is also the least complex method. Both fixed-point and
gradient descent acceleration techniques contribute to the
success of the T-method.

• Out of the 56 cases, gradient descent accelerations
are the winners in 26 cases, while fixed-point accel-
erations are the winners for 30 cases. Anderson and
EPSILON/IRONS accelerations performwell with the T-
method and the P-method, respectively. Gradient descent

accelerations perform well with TDA-method and p-
method.

• It is a challenge task to reverse the effect of certain filters
such as L0 and Gaussian filter with large standard devi-
ation. The average maximum improvement in PSNR is
around 10%.

5 Conclusion

Although fixed-point acceleration is well developed in
numerical methods, its applications in signal and image
processing are emerging and its application in reverse fil-
tering presented in this paper is new. We have reformulated
several reverse filters as fixed-point iterations. We have
conducted extensive experiments to demonstrate the per-
formance of such techniques and made a comparison with
gradient descent accelerations. We show that (1) the Ander-
son acceleration is the only technique which can make the
otherwise non-convergent T-method convergent, (2) when it
is convergent, the T-method together with an acceleration
technique (either fixed-point or gradient descent) in most
cases outperforms other reverse filtering methods, and (3)
effects of some image filters are more difficult to reverse
and the achievable PSNR improvement is about 10% or less.
While the success of Anderson acceleration inmaking a non-
convergent T-method convergent highlights the importance
of this work, it also calls for further study of themathematical
property behind the success.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-023-02584-
1.
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