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Abstract
In order to assist physicians in diagnosis and treatment planning, accurate and automatic methods of organ segmentation
are needed in clinical practice. UNet and its improved models, such as UNet + + and UNt3 + , have been powerful tools
for medical image segmentation. In this paper, we focus on helping the encoder extract richer features and propose a N-Net
for medical image segmentation. On the basis of UNet, we propose a dual encoder model to deepen the network depth and
enhance the ability of feature extraction. In our implementation, the Squeeze-and-Excitation (SE) module is added to the dual
encoder model to obtain channel-level global features. In addition, the introduction of full-scale skip connections promotes
the integration of low-level details and high-level semantic information. The performance of our model is tested on the lung
and liver datasets, and compared with UNet, UNet+ + and UNet3+ in terms of quantitative evaluation with the Dice, Recall,
Precision and F1 score and qualitative evaluation. Our experiments demonstrate that N-Net outperforms the work of UNet,
UNet + + and UNet3 + in these three datasets. By visual comparison of the segmentation results, N-Net produces more
coherent organ boundaries and finer details.

Keywords Deep learning · Image segmentation · Encoder–decoder · Convolutional neural network

1 Introduction

Medical research produces a large number ofmedical images
[1], mainly including computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound imaging, and more.
The purpose ofmedical image segmentation is to segment the
parts with some special meanings, extract relevant features
and provide reliable basis for clinical diagnosis and pathol-
ogy research. With the successful application of medical
images in clinical medicine, image segmentation is playing
a more and more important role in medical images. Because
medical images have a series of problems such as inho-
mogeneity and individual difference, manual annotation is
still used in clinical practice. This work is time-consuming
and requires experienced specialists to complete. Therefore,
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accurate and reliable automatic segmentation method is in
high demand,which can reduce theworkload of clinicalmed-
ical experts and improve efficiency.

Recently, convolutional neural networks (CNNs) have
achieved advanced performance in a wide range of visual
recognition tasks [2–6]. Jonathan et al. began to try to use
CNNS to complete the end-to-end automatic segmentation
tasks and proposed fully convolutional neural network (FCN)
[7]. FCN popularized the use of end-to-end CNNs in image
segmentation. Themain contributions of FCN are as follows:
FCN used the convolutional layer instead of the full connec-
tion layer to obtain image spatial information as much as
possible; the deconvolution layer was used to upsample the
feature images to obtain the segmented image which meets
the size requirement. Since FCN, CNNs have been widely
used in the field of image segmentation, which greatly pro-
motes to develop many segmentation models, e.g., PSPNet
[8], RefineNet [9] and a series of DeepLab version [10–12],
UNet [13] and so on. Recently, there were many new appli-
cations of FCN to medical image segmentation. Tong et al.
[14] proposed a shape representationmodel constrained fully
convolutional neural networks. This model combined a fully
convolutional neural network with a shape representation
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model (SRM) to segment nine organs in the head and neck
from computed tomography (CT) images. Wang et al. [15]
proposed a dual-input V-mesh fully convolutional network to
segment the pancreas in abdominal CT images. They simul-
taneously sent the original CT scans and images processed by
a contrast-specific graph-based visual saliency (GBVS) algo-
rithm to the network to improve the contrast of the pancreas
and other soft tissues. Xue et al. [16] proposed a novel, auto-
matic multiorgan segmentation algorithm based on a new
hybrid neural-like P system to achieve the automatic seg-
mentation of organs-at-risk. These works have yielded good
results, but there is still room for improvement.

Medical images have two characteristics: particularity and
rarity [17, 18]. Particularity refers to the blurring of the
boundary of medical images. Rarity refers to the fact that
pixel-level annotation data of medical images are extremely
rare and difficult to obtain. UNet, which is based on an
encoder–decoder architecture [19], has been widely used in
medical image segmentation.UNet combined low-resolution
information with high-resolution information to accurately
locate and identify organs. And UNet has fewer parame-
ters thanFCN(VGG16Backbone)[7], so high-qualitymodels
can be trained with fewer medical images. Many image
segmentation studies [20–22] showed that feature maps of
different scales contain unique image information. Further,
these multi-context representations [11, 19, 20, 23] are man-
ually designed, lacking flexibility to model the multi-context
representations. This makes that long-range object relation-
ships in the whole images cannot be fully leveraged in these
approaches [11, 14, 20, 23], which is pivotal importance in
many medical imaging segmentation problems. UNet solves
the problem of information loss and feature information
fusion by designing skip connections. The skip connections
of UNet ensure that the finally recovered feature maps inte-
grate more low-level features. Although UNet is suitable for
medical image segmentation, its segmentation accuracy on
many datasets still has much room for improvement. These
improved UNet models dominate the literature in medical
image segmentation and have achieved outstanding perfor-
mance in a broad span of applications, such as brain [24] or
cardiac imaging [25].

In order to recede the fusion of semantically different fea-
tures from the ordinary skip connections in UNet, UNet+ +
[26] further strengthens ordinary skip connections by intro-
ducing nested and dense skip connections. Moreover, UNet
+ + introduced a deep monitoring mechanism so that dense
network structures can be pruned, which makes the model
more flexible.

To further make up for the lost information, UNet3 +
[27] redesigned the interconnections between encoder and
decoder, In order to learn hierarchical representation from
full-scale aggregated feature maps, full-scale in-depth super-
vision is further adopted in UNet3 + . UNet3 + produced

accurate segmentation results, highlights organs and pro-
duces coherent boundaries. It is worth mentioning that it
surpasses all previous state-of-the-art methods (PSPNet [11],
DeepLab version [10–12], UNet + + [26], Attention UNet
[28]) in quantitative testing on two datasets. AlthoughUNet3
+ has achieved excellent performance, there is still a lot of
room for improvement.

In this paper, we present N-Net in order to obtain more
accurate medical segmentation images. The main contri-
butions of this paper are summarized as follows: (1) We
propose N-Net to achieve accurate medical image segmenta-
tion. Unlike UNet+ + and UNet3+ , we pay more attention
to the extraction of feature in encoder and propose a dual
encoder model. (2) We introduce the improved SE module
[29] into the dual encoder model and evaluate the effective-
ness of the SE module to improve the performance of the
segmented network. (3) We propose a mixed loss function
to better adapt to our experiment and evaluate the effective-
ness of the mixed loss function to improve the segmentation
accuracy. (4) We conduct abundant experiments on lung and
liver datasets, where N-Net yields consistent improvements
over a number of baselines.

2 Methods

2.1 Overview of N-Net architecture

Our N-Net structure is illustrated in Fig. 1, we improve the
UNet architecture and propose the dual encoder model with
the SE model. The convolutional layer connection is shaped
like N, so we named this architecture N-Net. The two par-
allel paths of the dual encoder are connected layer by layer
through ordinary skip connections. We let Xi

DC, X
i
EN and

Xi
DE (i = 1, 2, 3 …), respectively, denote the convolutional

layers of the three branches (two parallel branches of the dual
encoder and the decoder branch) of N-Net. The structures of
these two parallel convolutional layers of the dual encoder
are similar, and they consist of two convolutional units. Each
convolution unit consists of a convolution layer, a batch nor-
malization layer and aReLUactivation layer. After each Xi

DC
and Xi

EN (i = 1, 2, 3 …), the 2 × 2 max pooling reduces the
size of the feature maps by half, In order to recover the lost
spatial information in the pool layer, the decoder adopts a
series of bilinear upsampling operations. After each upsam-
pling operation, Xi

DE (i = 1, 2, 3…), which consists of 320
filters of size 3 × 3, a batch normalization and a ReLU acti-
vation function, is appended. Finally, the probability map of
segmentation is output by using 3× 3 convolution layer and
sigmoid activation function, and its size is the same as the
original input.
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Fig. 1 UNet and N-Net architecture. The arrows represent the different operations

Fig. 2 The dual encoder model in N-Net

2.2 Dual encoder model

In the process of encoding and decoding, some information
must be lost. In order to reduce the loss of information, we
introduce a dual encoder model, which consists of Xi

DC (i =
1, 2, 3, 4) and Xi

EN (i = 1, 2, 3…). As depicted in Fig. 2, the
two parallel branches each have 4 max pooling layers with of
size 2× 2. Then, through the max pooling operation, the two
parallel branches correspond to the same resolution of the
convolutional layer. The difference between the Xi

DC and the
Xi
EN (i = 1, 2, 3…) is that Xi

DC (i = 1, 2, 3…) use the dilated
convolution to extract the feature information. Control the
number of channels to allow the fusion of the feature maps
of the Xi

DC and the Xi
EN (i = 1, 2, 3…) to provide the next

layer of the Xi+1
EN (i = 1, 2, 3…) as input.

The dual encoder model not only deepen the network
depth but also integrate comprehensive information. The
dual encoder model and full-scale connections make up for
the information lost by max pooling operations and inte-
grate full-scale information to capture fine-grained details
and coarse-grained semantics on a full-scale basis. The dual
encoder model uses different convolutions to extract multi-
scale feature information to enrich semantic information. The
use of dilated convolution can obtain a larger receptive field.
In the case of the same feature maps, the dilated convolu-
tion can improve the effect of small object recognition and
segmentation in the task.

In order to further enhance the capability of N-Net feature
extraction, we introduce the improved SE model in the skip
connections of dual encoder model as Fig. 3. Each Xi

DC (i =
1, 2, 3, 4) generates a side output from which the SE module
learns the importance of different channel features. As Fig. 3
shows, the first step in SEmodel is the global average pooling
(GAP) of the H×W features for each channel to get a scalar,
which is called Squeeze. Given the input feature maps F ∈
RC×H×W , GAP generates a feature vector Z ∈ RC×1×1.
GAP can be formally defined as:

Zn = 1

H × W

H∑

x=0

W∑

y=0

Fn(x , y) (1)

where Fn is the nth channel feature map of F , n ∈
{1, 2 . . . , C } and (x , y) is a pixel in Fn .

We employ two fully connected layers. The first fully con-
nected layer reduces the number of channels to C/r, where
r is the scaling factor determined by the results of subse-
quent experiments. And the number of channels backs to C
after the second fully connected layers. The ReLU function
after the first fully connected layer is employed to guarantee
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Fig. 3 An example to explain how the SE Model gets channel information

that multiple channels can be emphasized and the sigmoid
function after the second one is performed to generate the
non-linear relationships among different channels. The two
FC get a weight value between 0 and 1. Finally, multiplicat-
ing each element of each H ×W feature by the weight of the
corresponding channel gives the new feature maps, which is
called excitation. The weight value ω to recalibrate channels
of input features is calculated as:

ω = σ
(
W2δ

(
W1ρ

(
X In
SE

)))
(2)

where the σ(·) denotes the sigmoid function, and δ(·) denotes
the ReLU activation function. The ρ(·) denotes the global
average pooling layer. Then, a dimensionality- reducing fully

connected (FC) layer parameterized by W1 ∈ R
C
r ×C and a

dimensionality-increasing FC layer parameterized by W2 ∈
RC×C

r are applied to obtain the “excitation” weight ω.
A complete SE block can be defined as a transformation

mapping the input featuremap X In
SE ∈ RC×H×W to the output

feature map XOut
SE ∈ RC×H×W :

XOut
SE = H

(
Fscale

(
ω, X In

SE

)
+ H1

(
X In
SE

))
(3)

where transformation H1(·) represents two convolution oper-
ations with the batch normalization and the ReLU activation,
andH(·) represents a similar convolution operation tomodify
the dimension.Fscale

(
ω, X In

SE

)
refers to channel-wise multi-

plication between the weight ω and the input feature map
X In
SE.
This attention mechanism allows the model to pay more

attention to the channel features with the most informa-
tion, while suppressing those features that are not important.
The whole operation can be regarded as learning the weight
coefficients of each channel, thus making the model more
discriminative to the characteristics of each channel. This
can help us get more accurate information about the location
and edges of the organs.

2.3 Loss function

Loss function is used to quantify the difference between the
estimation of the network and the ground truth. The quality
of the training model has a certain relationship with the loss
function. Focal Loss [30] is a loss function commonly used in
image detection and segmentation. Focal loss was proposed
to address the extreme foreground–background class imbal-
ance encountered during training of dense detectors in the
object detection mission, which is defined as

LFL(ρt ) = −αt (1 − ρt )
γ log(ρt ) (4)

ρt

{
p if y = 1
1 − p otherwise

(5)

αt

{
α if y = 1
1 − α otherwise

(6)

where p ∈ [0, 1] is the model’s estimated probability for
a class labeled y = 1, α ∈ [0, 1] is a weighting factor,
and γ ≥ 0 is a tunable focusing parameter. Focal loss sets
(1 − ρt )

γ as modulating factor. The aim is to reduce the
weight of the easily classified samples so that the model can
focusmore on the difficult classified samples during training.
The parameters of focal loss are set to γ = 2, α = 0.25 as
per [30].

Luo et al. introduce a novel soft IoU loss [31] to obtain
more accurate road topology in aerial images. This loss func-
tion is differentiable and thus amenable to back propagation.
It was defined by replacing the indicator functions with the
softmax outputs, and it could be defined in as follows:

L IoU = 1 − 1

2

( ∑
i pi1 ∗ p∗

i1∑
i pi1 + p∗

i1 − pi1 ∗ p∗
i1

+
∑

i pi0 ∗ p∗
i0∑

i pi0 + p∗
i0 − pi0 ∗ p∗

i0

)
(7)

where pix is the prediction score at location i for class x, and
p∗
i x is the ground truth distribution which is a delta function

at y∗
i , the correct label.
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In order to capture the best characteristics of both loss
functions and train our task more easily and obtain more
accurate segmentation effect, we propose to combine them:

lossmix = β ∗ lossIoU + (1 − β) ∗ lossFL (8)

β is the parameter in the equation. According to a large num-
ber of experiments, we constantly adjust the β to compare
the experimental results, and we empirically set β = 0.15.

3 Experiments and discussion

3.1 Datasets

The datasets in our experiment are obtained through two dif-
ferent competitions. The first dataset is the lung dataset in
the Kaggle. This dataset about lung includes 267 CT images
and the corresponding 267 mask images labeled by experts.
We also add the liver dataset in the Chaos2019 [32–34] to
prove the universality of the model. We select the CT images
of 20 different patients. In total, 2377 slices will be provided
for training. Finally, we use 3616 COVID-19 disease X-ray
from version 4 of the COVID-19 Radiography Database [35]
to prove the universality of our model. Both the datasets con-
sist of RGB images containing different regions-of-interest
(ROI) with image size of 512 × 512 pixels. Each of them is
divided into three subsets, where 70% of the images are used
for training, 10% for validation, and 20% for testing. The
network is trained for 100 epochs. In order to save training
time, the datasets are resampled to 240 × 240 pixels for our
experiments. In addition, the training sets are additionally
expanded by data augmentation methods including rotation,
translation, and flip.

3.2 Training

The proposed N-Net was trained on a NVIDIA RTX 2060
SUPER GPU, with 12 GB of RAM. The implementation of
our method is based on Python 3.6 under the same conditions
of a personal computer equipped with PyTorch framework.
We utilize the stochastic gradient descent to optimize our
network and its hyper-parameters are set to the default values.
The loss function used in all comparisonmodels is Focal loss.

Dice coefficient is used as themain evaluationmetric for each
case.

3.3 Experiments

3.3.1 Evaluation metrics

In order to evaluate our method quantitatively, we use four
evaluation metrics including Dice, Recall, Precision and F1
score. Among them, the four evaluation indicators can be
defined as

Dice = 2 × TP

(TP + FN) + (TP + FP)
,

Recall = TP

TP + FN

Precision = TP

TP + FP

F1 = 2 × TP

2 × TP + FP + FN
(9)

where TP is the number of pixels with label 1 and predicted
value 1, TN is the number of pixels with label 0 and predicted
value 0, FP is the number of pixels with label 0 and predicted
value 1, and FN is the number of pixels with label 1 and
predicted value 0.

For these metrics, the higher the value, the better the seg-
mentation effect. The high Recall means that the more true
mask pixels are predicted. The high Precision indicates that
the true value of the mask accounts for a large proportion
of the prediction results. The high Dice coefficient indicates
that the prediction result is highly similar to the true value,
and the model is excellent. F1 score can be regarded as a
harmonic average of the Precision and Recall of the model.

3.3.2 Comparison with UNet, UNet++ , UNet3+

We compare the proposed N-Net with UNet, UNet + + ,
UNet3 + and use Focal loss as the loss function to train the
network to ensure fair comparison. Tables 1, 2 and 3 compare
the number of Dice, Recall, Precision and F1 score of UNet,
UNet + + , UNet3 + and the proposed N-Net architecture
on the datasets. In Table 4, we also recorded the time spent

Table 1 Comparison of U-Net,
U-Net + + , U-Net3 + and
N-Net on lung dataset

Architecture Dice Recall Precision F1

UNet 0.9203 0.8750 0.9733 0.9215

UNet + + 0.9218 0.8723 0.9844 0.9249

UNet3 + 0.9246 0.8798 0.9815 0.9278

N-Net 0.9329 0.8950 0.9856 0.9381
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Table 2 Comparison of U-Net,
U-Net + + , U-Net3 + and
N-Net on liver dataset

Architecture Dice Recall Precision F1

UNet 0.8154 0.7614 0.9302 0.8374

UNet + + 0.8277 0.7927 0.9137 0.8489

UNet3 + 0.8349 0.7820 0.9398 0.8537

N-Net 0.8619 0.8118 0.9508 0.8758

Table 3 Comparison of U-Net,
U-Net + + , U-Net3 + and
N-Net on COVID-19 dataset.
The best results are highlighted
in bold

Architecture Dice Recall Precision F1

UNet 0.9455 0.9079 0.9834 0.9441

UNet + + 0.9489 0.9112 0.9872 0.9476

UNet3 + 0.9525 0.9237 0.9853 0.9535

N-Net 0.9559 0.9245 0.9892 0.9557

Table 4 Time spent of N-Net and other 3 precious models

Method Train time (s) Test time (s)

UNet 635 1.567

UNet + + 1500 1.321

UNet3 + 2609 1.042

N-Net 2354 1.301

training 40 epochs and the time spent testing five images
on lung dataset. It is worth mentioning that all results are
directly from single-model test without relying on any post-
processing tools. As seen, the segmentation performance of
UNet + + and UNet3 + on the datasets is better than UNet.
This improvement is attributed to both models improve the
ordinary skip connections of UNet. N-Net achieves a excel-
lent performance gain over both UNet + + and UNet3 + ,
obtaining average improvement of 0.023, 0.018 and 0.0104
point in Dice coefficient. N-Net not only has a good per-
formance in the Dice coefficient, but also has the highest
Recall rate among the four models compared. Its Recall is
0.01 to 0.03 points higher than that of the other three mod-
els, indicating that N-Net can be closer to the ground truth
and obtainmore accurate segmentation results.Moreover, the
model proposed by us has the highest Precision, indicating
that the predicted values of the proposed model have more
effective values and there are less redundant error pixels.

To visualize the impact of the different encoder–decoder
models, Figs. 4, 5 and 6 display the segmentation results on
six images on the lung, liver and COVID-19 datasets. The
proposed N-Net network achieves qualitatively better results
than other encoder–decoder networks. It can be observed that
our proposedmethod not only accurately localizes organs but
also produces coherent boundaries, even in small object cir-
cumstances. Compared with our proposed model, the results

Fig. 4 Results on three images on the lung dataset

Fig. 5 Results on three images on the liver dataset

Fig. 6 Results on three images on the COVID-19 dataset
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Table 5 Quantitative comparison
among different values of r r Dice Recall Precision F1 Params (M)

2 0.9350 0.9004 0.9793 0.9377 41.37

4 0.9360 0.9027 0.9788 0.9392 41.19

8 0.9377 0.9053 0.9794 0.9408 41.11

16 0.9357 0.9015 0.9794 0.9388 41.06

Table 6 Comparison of N-Net and other 3 precious models

Method DiceLung DiceLiver DiceCovid

PSPNet[8] 0.9258 0.8247 0.9512

DeepLabV3[10] 0.9215 0.8233 0.9475

CE-Net[36] 0.9261 0.8337 0.9537

N-Net 0.9329 0.8619 0.9559

of other three models have more obvious organ confusion. In
the threefigures,we can see that in the segmentation results of
UNet and UNet + + , the boundary of the organ is relatively
blurred, and it even breaks where the organ joins together.
Both UNet3 + and N-Net are able to produce smooth lung
segmentation edges. But N-Net segments the organ mar-
gins in greater detail. These visual results indicate that our
approach can successfully recover finer segmentation details.

3.3.3 Estimation of r of SE model

Asdescribed in Sect. 2.2, the scaling factor r is a hyperparam-
eter that allows us to vary the capacity and computational cost
of the SE module, which needs to be set carefully. To inves-
tigate the tradeoff between the performance determined by r
and the computational burden, we experiment with a range
of different values of r.

As shown in Table 5, the larger the r value, the greater
the extrusion of features, and the fewer parameters (Params)
of N-Net are needed. Note that when r = 8, the values of
Dice, Recall, Precision, and F1 reach the maximum values.
However, the number of parameters increased by 0.05 M.
Therefore, we set r = 8 to trade off performance against
computational burden.

3.3.4 Comparison with other previous models

To further verify the superiority of our network, we compare
N-Net with other previous models in this section. A quanti-
tative evaluation of the results is presented in Table 6, from
which we can observe that the proposed method is competi-
tive with other existingmethods by achieving the best values.
And we can conclude that the proposed N-Net achieves the
state-of-the-art results.

Table 7 Gain comparison after N-Net uses SE module and the mixed
loss

Architecture DiceLung DiceLiver DiceCovid

N-Net(focal loss) 0.9329 0.8619 0.9559

N-Net(SE Model + focal
loss)

0.9377 0.8670 0.9592

N-Net(SE Model + UNet
loss[13])

0.9382 0.8667 0.9590

N-Net(SE Model + mixed
loss)

0.9412 0.8703 0.9633

3.3.5 Ablation experiments

To demonstrate the effectiveness of the mixed loss function
proposed in this method, we briefly compare the segmenta-
tion accuracy between N-Net with the mixed loss and that
with focal loss and UNet loss. The quantitative results are
given in Table 7, from which we can observe that the mixed
loss outperforms thework of focal loss andUNet loss. Hence,
we can conclude thatmixed loss ismore appropriate formed-
ical image segmentation.

In order to further demonstrate the improvement effect
of introducing SE module on the dual encoder model, we
conduct ablation experiments. Table 7 summarizes the quan-
titative comparison results. Moreover, taking advantages of
the SE module, the dual encoder model of N-Net learns the
importance of different channel features.

4 Discussion

We enlarge the position marked by the red boxes in Figs. 4
and 5 to fully display the details of segmentation results.
The artifacts and noises in CT images often affect the seg-
mentation results of models. As shown in Fig. 7, there are
obvious holes and spots in the segmentation results compared
with the ground truth. These holes and spots show that mod-
els do not effectively distinguish artifacts and noises, which
leads to the production of some false negatives and false pos-
itives. It can be seen that our proposed model can effectively
reduce the generation of such false negatives and false posi-
tives. This is because the models lack sufficient information
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Fig. 7 Illustration of details of segmentation results. (a1, b1, c1) are
enlarged CT images. (a2)–(c2), (a3)–(c3), (a4)–(c4) and (a5)–(c5) are
the segmentation results of UNet, UNet + + , UNet3 + and N-Net,
respectively. The yellow part indicates the correct segmentation area,
and the red part and the green part indicate the false positive area and
the false negative area, respectively

to distinguish artifacts and noises. Compared with the other
three models, the dual encoder model of N-Net can extract
features more effectively and obtain more comprehensive
information. Before generating the final segmentation mask,
the richer feature maps provided by the dual encoder model
help the decoder obtain more image information. The above
experiments demonstrate that N-Net can effectively reduce
the false positives and false negatives of the segmentation
results.

5 Conclusion

In this paper, we propose a medical image segmentation
method based on the improved UNet model, called N-Net.
Based on the encoder and decoder structure of UNet, a novel
dual encoder model is proposed to aggregate more context
features. The SE module and the mixed loss function are
further introduced to yielding more accurate segmentation.
Extensive experiments are conducted to assess the impact
of the proposed model. We also compare our model with
advanced encoder–decoder structure networks. Experimen-
tal results show that the proposed model is superior to the
comparedmethods both quantitatively and qualitatively. This
proves the efficiency of ourmethod in providing accurate and
reliable automatic segmentation of medical images.
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