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Abstract
The linear canonical transform (LCT) plays an important role in signal and image processing from both theoretical and
practical points of view. Various sampling representations for band-limited and non-band-limited signals in the LCT domain
have been established. We focus in this paper on the derivative sampling reconstruction, where the reconstruction procedure
utilizes samples of both the signal and its first derivative. Our major aim was to incorporate the reconstruction sampling
operator with a Gaussian regularization kernel, which on the one hand is applicable for not necessarily band-limited signals
and on the other hand hastens the convergence of the reconstruction procedure. The amplitude error is also considered with
deriving rigorous estimates. The obtained theoretical results are tested through various simulated experiments.

Keywords Linear canonical transform · Sampling theory · Truncation and amplitude errors

1 Introduction

The linear canonical transform (LCT) is a three-parameter
transform

(
La,b,d f

)
(t) = 1√

2iπb

∫ ∞

−∞
e

i
2b [ax2+dt2−2xt] f (x)dx, (1)

where a, b, d are fixed real constants and b �= 0. While
the case b = 0, cf. [7,11,13] can be also considered with
a four-parameter transform, it is not of interest in this work
as it is nothing but a chirp multiplication. Integration (1)
converges for L p(R)-functions, p ≥ 1. For simplicity, we
replace La,b,d by L and use the subscripts only when it is
necessary. The LCT turns out to be the fractional Fourier
transform (FrFT) when a = d = cosα and b = sin α; to
the Fourier transform when a = d = 0, b = 1; and to the
Fresnel transform when a = 1, b ∈ R, b �= 0, d = 0, see
[16,26,30,31] for more details. For this reason, the LCT has
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become a basic tool in signal and image processing, cf., e.g.,
[7].

For the derivations of sampling theorems of Shannon
type in the LCT domain, the space of band-limited signals
in the LCT and FrFT domains is precisely investigated in
[8,14,28,30]. Sampling theorem of Shannon type has been
derived extensively, see, e.g., [1,3,5,6,10,11,15,19,23,24,29],
using different approaches. The associated truncation, ampli-
tude, and jitter errors are analytically considered in [2,3,9,22,
25].

The space of band-limited signals in the LCT domain
is defined as follows. Let � > 0 be fixed. A signal f
is said to be band-limited with band width � if f ∈
L2(R) and (L f )(t) = 0, |t | > �. This space is denoted
by B2

�. Thus, f ∈ B2
� if and only if there is a band-

limited signal in the classical sense with band width�/b, φ,

for which f (t) = ei(
a
2b )t2φ(t). The derivative sampling

theorem for f ∈ B2
� is given in [11], see also [12],

by

f (t) :=
∑

n∈Z
e−i( a

2b )
(
t2−(nh)2

) {(
1 + ia

b
nh(t − nh)

)
f (nh)

+ (t − nh) f ′(nh)

}
sinc 2

(
h−1t − n

)
, (2)

where h ∈ (
0, 2πb

�

]
is fixed and
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sinc (t) :=
⎧
⎨

⎩

sin (π t)

π t
, t �= 0,

1, t = 0.
(3)

The convergence of (2) is absolute on C and uniform on
compact subsets of C. See also [21,27] for derivative sam-
pling theorem in the FrFT domain.

The rate of convergenceof (2) is slow, unless f decays fast.
Our purpose in this work is to incorporate (2) with a Gaus-
sian regularization kernel that hastens the reconstruction rate.
In addition, we do not necessarily assume the reconstructed
signals to be band-limited and/or to have a finite energy,
i.e., square integrable. The regularized sampling theorem is
derived in the next section. Section 3 is devoted to inves-
tigating the associated amplitude error, which results from
using approximate samples in the reconstruction procedure.
In Sect. 4, we carry out several numerical experiments.

2 Regularized Gaussian Sampling of
Derivative Representation

For fixed x ∈ R, N ∈ N, define the integer-type interval

ZN (x) := {n ∈ Z : |n − �x + 1/2	| ≤ N } , (4)

where �·	 is the floor function, see Fig. 1.
Let h ∈ (

0, 2πb
�

)
, α := (

2π − h�
b

)
/2, a, b ∈ R, b >

0, N ∈ N be also fixed. As we have indicated in the previ-
ous section, the reconstruction (convergence) rate of (2) is
slow, unless f (t) decays fast. We incorporate (2) with the
Gaussian function G(t) = e−t2 , t ∈ C,which decays fast as
|t | → ∞. Indeed, define the regularized Gaussian sampling
of derivative representation operator for f : C → C to be

(Hh,N f
)
(t) :=

∑

n∈ZN (t)

{(
1 + ianh

b
(t − nh) + 2α

Nh2

× (t − nh)2
)
f (nh) + (t − nh) f ′(nh)

}

× e−i( a
2b )

(
t2−h2n2

)
sinc 2(h−1t − n)

× e− α
N ( t

h −n)
2
. (5)
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Fig. 2 The rectangle C4 for t = 3
2 + i

For defining (5), no conditions are imposed on f , neither
integrability nor analyticity. In the following, we estimate
| f (t)−(Hh,N f

)
(t)| for analytic functions with a prescribed

growth. Let ϕ : [0,∞) → [0,∞) be non-decreasing and
E�/b(ϕ) denote the space of all entire functions f for which

| f (t)| ≤ ϕ(|x |) e a
b xy e

�
b |y|, t = x + iy ∈ C. (6)

The major result of this section is the following theorem,
which gives an estimate of the error associated with (5).

Theorem 1 Let f ∈ E�/b(ϕ), t = x + iy ∈ C, x, y ∈
R, |y| < N. Hence,

| f (t) − (Hh,N f
)
(t)| ≤ 2 e−αN

√
παN

e
a
b xy | sin2(h−1π t)|

× ϕ (|x | + h(N + 1))

× λN

(
h−1y

)
, (7)

where

λN (t) := 2 cosh(2αt) + O(N−1/2) (N → ∞), (8)

locally uniformly on R.

Proof We may assume that �/b < 2π, h = 1, and y ≥ 0,
cf. [4]. Let N0 := N +1/2, m0 := �x +1/2	, and CN be the
positively oriented rectangle (more precisely the boundary
of the rectangle) whose vertices are (±N0 +m0, y± N ), see
Fig. 2.

For t = x + iy ∈ C, |y| < N , consider the function

Kt (ζ ) := sin2 (π t)

2π i
× e−i( a

2b )(t
2−ζ 2)− α

N (t−ζ )2 f (ζ )

(ζ − t) sin2 (πζ )
. (9)
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The residue theorem implies, t /∈ Z,

∮

CN

Kt (ζ )dζ = 2π iRes(Kt ; t)

+ 2π i
N+m0∑

n=−N+m0

Res(Kt ; n). (10)

Obviously,

Res(Kt ; t) = lim
ζ→t

(ζ − t)Kt (ζ ) = f (t)

2π i
, (11)

Res(Kt ; n) = lim
ζ→n

d

dζ

{
(ζ − n)2Kt (ζ )

}

= sin2 (π t)

2π i
lim
ζ→n

d

dζ

{
e−i( a

2b )(t
2−ζ 2)− α

N (t−ζ )2

(ζ − t)

× f (ζ )

(
ζ − n

sin
(

�
b ζ

)

)2
⎫
⎬

⎭

= −1

2π i

{(
1 + ian

b
(t − n) + 2α

N
(t − n)2

)
f (n)

+ (t − n) f ′(n)

}
× sinc 2(π t − n)

× e−i( a
2b )

(
t2−n2

)− α
N (t−n)2 . (12)

Combining (11), (12), and (10) yields

∮

CN

Kt (ζ )dζ = f (t) − H1,N [ f ](t). (13)

In the case t = n ∈ Z, we have

f (n) = H1,N [ f ](n).

Now, we estimate the integration

∮

CN

Kt (ζ )dζ = sin2 (π t)

2π i

4∑

k=1

Ik, (14)

Ik : =
∫

ck

e−i( a
2b )(t

2−ζ 2)− α
N (t−ζ )2

(ζ − t) sin2 (πζ )
f (ζ ) dζ, (15)

and c1, c2, c3, and c4 are the line segments AB, BC, CD,

and DA, respectively, cf. Fig. 2. Let us estimate these four
integrals. For I1, let ζ = N0 + m0 + iη ∈ c1. Then,

I1 = i
∫ N+y

−N+y

[
e−i( a

2b )(t
2−(N1+iη)2)− α

N (t−N1−iη)2

(N1 + iη − t) sin2 π(N1 + iη)

× f (N1 + iη)

]
dη, N1 = N0 + m0. (16)

To estimate I1, we estimate the integrand over c1. Inequal-
ity (6) implies

| f (N1 + iη)| ≤ ϕ (|x | + N + 1) e
a
b N1η e

�
b |η|. (17)

We also have
∣∣∣e−i( a

2b )t
2
∣∣∣ = e

a
b xy, (18)

∣∣∣ei(
a
2b )(N1+iη)2

∣∣∣ = e− a
b N1η, (19)

∣
∣∣e− α

N (t−N1−iη)2
∣
∣∣ = e− α

N (x−N1)
2
e

α
N (y−η)2 . (20)

Using (17)–(20), we obtain

|I1| ≤ ϕ(|x | + N + 1)e
a
b xye− α

N (x−N1)
2

×
∫ N+y

−N+y

e
�
b |η|e α

N (y−η)2

|N1 + i t − t | | sin2 π(N1 + iη)|dη. (21)

Since
∣∣∣
∣sin π

(
n + 1

2
+ iv

)∣∣∣
∣ = cosh(πv), n ∈ Z, v ∈ R,

then

|sin π (N1 + iη)| = cosh (πη) ≥ eπ |η|

2
. (22)

Using the fact t − 1 < �t	 ≤ t, t ∈ R implies

|N1 + iη − t | ≥ N . (23)

Substituting from (22) and (23) in (21) yields

|I1| ≤ 4ϕ(|x | + N + 1) e
a
b xy e−αN

N

×
∫ N+y

−N+y
e
−
(
2π− �

b

)
|η|+ α

N (y−η)2

dη

= 4ϕ(|x | + N + 1)e
a
b xye−αN

N

×
∫ N

−N
e−2α|u+y|+ α

N u2du. (24)

Using the estimate obtained by Schmeisser and Stenger
for the last integral, cf. [20, p. 205], I1 is estimated via

|I1| <
8ϕ(|x | + N + 1) e

a
b xy e−αN eαy2/N

αN
(
1 − (y/N )2

) . (25)

In a similar manner, we estimate I3 to have

|I3| <
8ϕ(|x | + N + 1) e

a
b xy e−αN eαy2/N

αN
(
1 − (y/N )2

) . (26)
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Let ζ = ξ + i(y + N ) ∈ c2, i.e., N2 ≤ ξ ≤ N1 where
N2 = −N0 + m0. Then, I2 turns out to

I2 = −
∫ N1

N2

[
e−i( a

2b )(t
2−(ξ+i(y+N ))2)− α

N (x−ξ−i N )2

(ξ − x + i N ) sin2 π(ξ + i(y + N ))

× f (ξ + i(y + N ))

]
dξ. (27)

Inequality (6) leads to

| f (ξ + i(y + N ))| ≤ ϕ (|x | + N + 1) e
a
b (y+N )ξ e

�
b |y+N |.

(28)

Moreover, we have

∣∣∣ei(
a
2b )(ξ+i(y+N ))2

∣∣∣ = e− a
b (y+N )ξ , (29)

∣
∣∣e− α

N (x−ξ−i N )2
∣
∣∣ = e− α

N (x−ξ)2eαN . (30)

Hence,

|I2| ≤ ϕ(|x | + N + 1) e
a
b xy eαN e

�
b |y+N |

×
∫ N1

N2

e− α
N (x−ξ)2

(ξ − x + i N ) sin2 π(ξ + i(y + N ))
dξ.

(31)

The inequalities

|sin π (ξ + i(y + N ))| ≥ sinh π (y + N )

= eπ |y+N |

2

(
1 − e−2π |y+N |) , (32)

and

|ξ − x + i N | ≥ N , (33)

imply

|I2| ≤ 4ϕ(|x | + N + 1) e
a
b xy eαNe

−
(
2π− �

b

)
|y+N |

N
(
1 − e−2π |y+N |)2

×
∫ N1

N2

e− α
N (x−ξ)2dξ

≤ 4ϕ(|x | + N + 1) e
a
b xy e−2αye−αN

√
Nα

(
1 − e−2π |y+N |)2

×
∫ ∞

−∞
e−u2du

= 4πϕ(|x | + N + 1)e
a
b xye−2αye−αN

√
Nαπ

(
1 − e−2π |y+N |)2 . (34)

Likewise,

|I4| ≤ 4πϕ(|x | + N + 1)e
a
b xye2αye−αN

√
Nαπ

(
1 − e−2π |y−N |)2 . (35)

Combining (25), (26), (34), and (35) yields

∣∣∣∣

∮

CN

Kt (ζ )dζ

∣∣∣∣ ≤ 2 e−αN

√
παN

e
a
b xy | sin2(π t)|

×ϕ (|x | + (N + 1)) λN (y) , (36)

where

λN (t) := 4eαt2/N

√
παN [1 − (t/N )2] + e2αt

(
1 − e−2π(N−t)

)2

+ e−2αt

(
1 − e−2π(N+t)

)2 . (37)

The proof is completed as λN (·) has the asymptotic (8)
locally uniformly on R.

Remark 1 The following special cases canbedirectly deduced
from Theorem 1:

(i) Let f be entire, and there be M, κ ≥ 0 such that

| f (x + iy)| ≤ M e
a
b xy eκ|x |+ �

b |y|. (38)

For h ∈ (
0, π

(
�
b + 2κ

))
, and |y| < N , estimate (7)

becomes

| f (t) − (Hh,N f
)
(t)| ≤ 2M e−(α−hκ)N

√
παN

e
a
b xy

×
∣
∣∣sin2(h−1π t)

∣
∣∣ eκ(|x |+h)

× λN

(
h−1y

)
. (39)

The proof is based on the fact that we can take ϕ(x) =
Meκx .

(ii) If f ∈ B∞
� (in the LCT domain), i.e.,

| f (x + iy)| ≤ ‖ f ‖∞ e
a
b xy e

�
b |y|, (40)

then Theorem 1 implies

| f (t) − (Hh,N f
)
(t)| ≤ 2e−αN

√
παN

e
a
b xy

∣∣∣sin2(h−1π t)
∣∣∣

×‖ f ‖∞ λN

(
h−1y

)
. (41)
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(iii) If f ∈ B2
�, then we have, cf. [18, p. 319], ‖ f ‖∞ ≤√

�/πb ‖ f ‖2 and consequently

| f (t) − (Hh,N f
)
(t)| ≤ 2

√
� e−αN

π
√

αNb
e
a
b xy | sin2(h−1π t)|

× ‖ f ‖2 λN

(
h−1y

)
. (42)

3 Amplitude error

The amplitude error associated with (5) arises if the exact
samples f (nh), f ′(nh) are replaced by approximate closer
ones f̃ (nh), f̃ ′(nh). Let εn := f (nh) − f̃ (nh), ε′

n :=
f ′ (nh) − f̃ ′ (nh) be uniformly bounded, i.e., there exists
a sufficiently small ε > 0, such that |εn|, |ε′

n| < ε. The
amplitude error is defined for t ∈ R in this case to be

A(ε,Hh,N ; t) := (Hh,N f
)
(t) − (Hh,N f̃

)
(t)

=
∑

n∈ZN (t)

{(
1 + ianh

b
(t − nh) + 2α

Nh2

× (t − nh)2
)

εn + (t − nh)ε′
n

}

× e−i( a
2b )

(
t2−h2n2

)
sinc 2(h−1t − n)

× e− α
N ( t

h −n)
2
. (43)

Theorem 2 Let f ∈ B∞
� . Assume that |εn|, |ε′

n| < ε. Then,
we have for t ∈ R

∣
∣A(ε,Hh,N ; t)∣∣ ≤ ε e− α

4N

{

2

(

1 +
√

Nπ

α

)(
1 + h

π
+ 2α

Nπ2

)

+ ah2

πb

[

2
∣
∣∣�h−1x + 1/2	

∣
∣∣

(

1 +
√

Nπ

α

)

+ 1 + N

α
−
√

Nπ

α
− N

α
e−α(N+1)

]}

. (44)

Proof Let f ∈ B∞
� and t ∈ R. Using triangle inequality,

∣
∣A(ε,Hh,N ; t)∣∣ ≤ ε

⎧
⎨

⎩

∑

n∈ZN (t)

∣
∣
∣
∣sinc

2(h−1t − n)e− α
N

( t
h −n

)2
∣
∣
∣
∣

+ ah2

πb

∑

n∈ZN (t)

(∣∣
∣n sin(h−1π t)

∣∣
∣

×
∣∣
∣
∣sinc (h−1t − n) e− α

N

( t
h −n

)2
∣∣
∣
∣

)

+ 2α

Nπ2

∑

n∈ZN (t)

∣∣
∣
∣sin

2(h−1π t) e− α
N

( t
h −n

)2
∣∣
∣
∣

+ h

π

∑

n∈ZN (t)

(∣
∣
∣sin(h−1π t) sinc (h−1t − n)

∣
∣
∣

×
∣∣
∣
∣e

− α
N

( t
h −n

)2
∣∣
∣
∣

)}
. (45)

Since | sin(t)|, |sinc (t)| ≤ 1, et > 0, t ∈ R,

∣∣A(ε,Hh,N ; t)∣∣ ≤ ε

⎧
⎨

⎩

∑

n∈ZN (t)

e− α
N ( t

h −n)
2

+ ah2

πb

∑

n∈ZN (t)

|n| e− α
N ( t

h −n)
2

+ 2α

Nπ2

∑

n∈ZN (t)

e− α
N ( t

h −n)
2

+ h

π

∑

n∈ZN (t)

e− α
N ( t

h −n)
2

⎫
⎬

⎭
. (46)

Simplifying (46), we obtain

∣
∣A(ε,Hh,N ; t)∣∣ ≤ ε

{(
1 + h

π
+ 2α

Nπ2

) ∑

n∈ZN (t)

e− α
N ( t

h −n)
2

+ ah2

πb

∑

n∈ZN (t)

|n| e− α
N ( t

h −n)
2

⎫
⎬

⎭
. (47)

Let �h−1t + 1/2	 − n = l. Then,

∑

n∈ZN (t)

e− α
N ( t

h −n)
2 ≤

∑

|l|≤N

e− α
N (l−1/2)2

= 2e− α
4N + 2

N∑

l=1

e− α
N (l+1/2)2

≤ 2e− α
4N + 2

∫ N

0
e− α

N (s+1/2)2ds

≤ 2e− α
4N + 2

√
N

α

∫ ∞
√

α
4N

e−u2du. (48)

Using the inequality, cf. [17],

∫ ∞

x
e−u2du ≤ 2 e−x2

x + √
x2 + 4/π

, x > 0, (49)

we obtain

∑

n∈ZN (t)

e− α
N ( t

h −n)
2 ≤ 2e− α

4N

(

1 +
√

Nπ

α

)

. (50)
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Likewise, letting �h−1t + 1/2	 − n = l, then

∑

n∈ZN (t)

|n|e− α
N ( t

h −n)
2 ≤

∑

|l|≤N

(∣∣∣�h−1t + 1/2	 − l
∣∣∣

× e− α
N (l−1/2)2

)

≤
∣∣∣�h−1t + 1/2	

∣∣∣

×
∑

|l|≤N

e− α
N (l−1/2)2

+
∑

|l|≤N

|l| e− α
N (l−1/2)2 . (51)

Estimate (50) implies

∑

n∈ZN (t)

|n|e− α
N ( t

h −n)
2 ≤ 2e− α

4N

∣∣∣�h−1t + 1/2	
∣∣∣

×
(

1 +
√

Nπ

α

)

+ e− α
4N

+ 2
N∑

l=1

l e− α
N (l+1/2)2

≤ e− α
4N

[
2
∣
∣∣�h−1t + 1/2	

∣
∣∣

×
(

1 +
√

Nπ

α

)

+ 1

]

+ 2
∫ N

0
u e− α

N (u+1/2)2du. (52)

Simple calculations and using inequality (49) yield

∫ N

0
u e− α

N (u+1/2)2du = 1

2
e− α

4N

(
N

α
−
√

Nπ

α

− N

α
e−α(N+1)

)
. (53)

Hence,

∑

n∈ZN (t)

|n|e− α
N ( t

h −n)
2 ≤ e− α

4N

[

2
∣∣∣�h−1t + 1/2	

∣∣∣

×
(

1 +
√

Nπ

α

)

+ 1 + N

α

−
√

Nπ

α
− N

α
e−α(N+1)

]

. (54)

The proof is accomplished by combining (50), (54), and
(47). �

4 Numerical experiments

This section includes two examples illustrating the above
method. In the first example, we compare the results obtained
byGaussian regularization of derivative sampling in the LCT
domain, which is investigated in this paper, with the deriva-
tive sampling theorem in the LCT domain f DN (t). Here,
f DN (t) is the truncated reconstruction formula of (2), i.e.,

f DN (t) :=
∑

|n|≤N

e−i
( a
2b

)(
t2−(nh)2

) {(
1 + ia

b
nh(t − nh)

)
f (nh)

+ (t − nh) f ′(nh)

}
sinc 2

(
h−1t − n

)
. (55)

The other example is devoted to the comparison between
the absolute error

∣
∣ f (t) − (Hh,N f̃

)
(t)

∣
∣ and its associated

bound. LetB(Hh,N ; t) andA(ε,Hh,N ; t) be the error bounds
of (41) and (44), respectively. For t ∈ R, N ∈ Z

+, we have

∣∣ f (t) − (Hh,N f̃
)
(t)

∣∣ ≤ ∣∣ f (t) − (Hh,N f
)
(t)

∣∣

+ ∣∣(Hh,N f
)
(t) − (Hh,N f̃

)
(t)

∣∣

≤ B(Hh,N ; t) + A(ε,Hh,N ; t).
(56)

Since
(Hh,N f

)
(t) duplicates f (t) at the points kh for

k ∈ Z, it looks reasonable to study the absolute errors at the
intermediate points xk := (

k − 1
2

)
h.

Example 1 Consider the B2
π/2-function

f (t) =
e−i t

2
2 cos

(
π t√
2

)

π2(2t2 − 1)
, (57)

where a = b = 1/
√
2, h = √

2, and � = π/2. Table 1
and Figs. 3–4 exhibit comparisons between the approxima-
tions of f using f DN (·) and (Hh,N f

)
(·). In Fig. 3 we restrict

ourselves to the case when N = 2, t ∈ (−4, 4) is real, while
in Fig. 4 we illustrate the case when |t | < 2, t ∈ C, N = 10.
It is noted fromTable 1 thatwhile the obtained error estimates
are topping the absolute (exact) error, they are pretty close
to the exact error. Moreover, the regularized Gaussian sam-
pling of derivative representation is giving a more accurate
reconstruction of signals than the derivative sampling theo-
rem. Furthermore, as N increases, the gap between the exact
error | f (·)− (Hh,N f

)
(·)| and its bound narrows noticeably.

Example 2 Consider the B∞
π -function

f (t) = e
−i t2

2
√
3 sin

(
2π t√
3

)
. (58)
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Table 1 Comparison between
f DN (·) and (Hh,N f

)
(·) of

Example 1 where h = √
2 and

a = b = 1/
√
2

xk N | f (xk) − f DN (xk)| Bound | f (xk) − (Hh,N f
)
(xk)| Bound

5 8.00 × 10−6 7.26 × 10−3 1.50 × 10−8 4.93 × 10−5

x1 10 6.24 × 10−7 2.99 × 10−3 1.84 × 10−12 1.24 × 10−8

15 1.32 × 10−7 1.79 × 10−3 7.99 × 10−13 3.77 × 10−12

5 8.90 × 10−6 7.51 × 10−3 4.85 × 10−8 4.93 × 10−5

x2 10 6.43 × 10−7 3.02 × 10−3 2.57 × 10−12 1.24 × 10−8

15 1.34 × 10−7 1.80 × 10−3 2.24 × 10−16 3.77 × 10−12

5 1.13 × 10−5 8.13 × 10−3 6.91 × 10−8 4.93 × 10−5

x3 10 6.84 × 10−7 3.07 × 10−3 3.91 × 10−12 1.24 × 10−8

15 1.38 × 10−7 1.81 × 10−3 3.80 × 10−16 3.77 × 10−12

5 1.74 × 10−5 9.60 × 10−3 7.54 × 10−8 4.93 × 10−5

x4 10 7.54 × 10−7 3.15 × 10−3 4.96 × 10−12 1.24 × 10−8

15 1.44 × 10−7 1.83 × 10−3 5.19 × 10−16 3.77 × 10−12

5 3.95 × 10−5 1.57 × 10−2 7.11 × 10−8 4.93 × 10−5

x5 10 8.67 × 10−7 3.27 × 10−3 5.68 × 10−12 1.24 × 10−8

15 1.53 × 10−7 1.85 × 10−3 6.38 × 10−16 3.77 × 10−12
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Fig. 3 Illustrations associated with Example 1. Here t ∈ [−4, 4]. The
green continuous lines in (a) and (b) are real parts of f (t), while the red

dashed lines in (a) and (b) are real parts of f D2 (t) and
(
H√

2,2 f
)

(t),

respectively. The green continuous lines in (c) and (d) are imaginary
parts of f (t), while the red dashed lines in (c) and (d) are imaginary

parts of f D2 (t) and
(
H√

2,2 f
)

(t), respectively

Here, a = 1/2, b = √
3/2, � = π . Tables 2, 3,

and 4 demonstrate the absolute error
∣
∣ f (·) − (Hh,N f̃

)
(·)∣∣

and its associated bound B(Hh,N ; ·) +A(ε,Hh,N ; ·), where
ε = 10−7, N = 5, 10, and h = 1, 1/2, 1/4, respectively.
We notice from Tables 2, 3, and 4 that, as predicted by the
theory, the number of correct digits increases when N dou-
bles. Moreover, the precision increases when N is fixed but
h decreases, as expected in the over sampling case. Further-
more, the error bounds are quite realistic; that is, they do not
overestimate the absolute error very much. Graphs of the real

and imaginary parts of f (t) and
(
H 1

2 ,10 f̃
)

(t) on the interval

(a) (b)

(c)

Re(f(t))
Re f10D (t) Re(f(t))

Re (H 2 ,10 f)(t)

Im(f(t))
Im f10D (t) Im(f(t))

Im (H 2 ,10 f)(t)

(d)

Fig. 4 Approximations of (57) illustrated throughout the complex
domain. Here, |t | < 2. The orange surfaces in (a) and (b) are real
parts of f (t), while the blue surfaces in (a) and (b) are real parts of

f D10(t) and
(
H√

2,10 f
)

(t), respectively. The orange surfaces in (c) and

(d) are imaginary parts of f (t), while the blue surfaces in (c) and (d)

are imaginary parts of f D10(t) and
(
H√

2,10 f
)

(t), respectively

[−4, 4] are exhibited in Fig. 5. It is noted from Fig. 5 that(
H 1

2 ,10 f̃
)

(t) denoted by dashed line overlaps f (t) exactly,

denoted by continuous line.

5 Conclusion

This paper regularizes the derivative sampling theorem for
signals in the LCT domain through incorporating the recon-
struction sampling representation with a carefully scaled
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Table 2 Exact error∣∣ f (xk) − (Hh,N f̃
)
(xk)

∣∣ and its
associated bound
B(Hh,N ; xk) + A(ε,Hh,N ; xk)
of Example 2 where ε = 10−7,
N = 5, 10, and h = 1

h = 1 N = 5 N = 10

xk Absolute error Bound Absolute error Bound

x2 4.25 × 10−4 1.65 × 10−3 4.18 × 10−7 2.36 × 10−6

x4 6.65 × 10−5 1.65 × 10−3 9.07 × 10−8 2.54 × 10−6

x6 5.00 × 10−4 1.65 × 10−3 4.79 × 10−7 2.72 × 10−6

x8 4.97 × 10−4 1.65 × 10−3 4.64 × 10−7 2.90 × 10−6

x10 6.03 × 10−5 1.65 × 10−3 4.03 × 10−8 3.08 × 10−6

Table 3 Exact error∣∣ f (xk) − (Hh,N f̃
)
(xk)

∣∣ and its
associated bound
B(Hh,N ; xk) + A(ε,Hh,N ; xk)
of Example 2 where ε = 10−7,
N = 5, 10, and h = 1

2

h = 1
2 N = 5 N = 10

xk Absolute error Bound Absolute error Bound

x2 1.75 × 10−6 1.31 × 10−5 3.00 × 10−8 5.57 × 10−7

x6 2.33 × 10−6 1.32 × 10−5 8.82 × 10−9 6.33 × 10−7

x10 4.42 × 10−6 1.33 × 10−5 5.18 × 10−9 7.09 × 10−7

x14 2.64 × 10−6 1.33 × 10−5 3.66 × 10−9 7.85 × 10−7

x18 1.44 × 10−6 1.34 × 10−5 2.84 × 10−9 8.61 × 10−7

Table 4 Exact error∣∣ f (xk) − (Hh,N f̃
)
(xk)

∣∣ and its
associated bound
B(Hh,N ; xk) + A(ε,Hh,N ; xk)
of Example 2 where ε = 10−7,
N = 5, 10, and h = 1

4

h = 1
4 N = 5 N = 10

xk Absolute error Bound Absolute error Bound

x4 3.68 × 10−8 1.56 × 10−6 1.36 × 10−8 4.65 × 10−7

x12 3.68 × 10−7 1.58 × 10−6 4.22 × 10−9 5.01 × 10−7

x20 3.97 × 10−7 1.61 × 10−6 2.52 × 10−9 5.36 × 10−7

x28 7.46 × 10−8 1.64 × 10−6 1.80 × 10−9 5.72 × 10−7

x36 3.13 × 10−7 1.67 × 10−6 1.40 × 10−9 6.08 × 10−7
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Fig. 5 Illustrations associated with Example 2 where t ∈ [−4, 4]. (a) The blue continuous line is a real part of f (t), while the red dashed line is a

real part of
(
H 1

2 ,10 f̃
)

(t). (b) The blue continuous line is an imaginary part of f (t) and the red dashed line is an imaginary part of
(
H 1

2 ,10 f̃
)

(t)
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Gaussian regularization kernel. The new sampling operator
is applicable for band-limited and non-band-limited signals
provided that analyticity and growth conditions are deter-
mined. The truncation and amplitude errors are precisely
estimated.Numerical simulations have verified the efficiency
of the proposed sampling theorem.
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