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Abstract
One of the main challenges in the current pandemic is the detection of coronavirus. Conventional techniques (PT-PCR) have
their limitations such as long response time and limited accessibility. On the other hand, X-ray machines are widely available
and they are already digitized in the health systems. Thus, their usage is faster and more available. Therefore, in this research,
we evaluate how well deep CNNs do when it comes to classifying normal versus pathological chest X-rays. Compared to
the previous research, we trained our network on the largest number of images, 103,468 in total, including 5 classes such as
COPD signs, COVID, normal, others and Pneumonia. We achieved COVID accuracy of 97% and overall accuracy of 81%.
Additionally, we achieved classification accuracy of 84% for categorization into normal (78%) and abnormal (88%).

Keywords Optimization of convolutional neural network · Automatic diagnosis of COVID-19 · X-ray · Swarm intelligence

1 Introduction

The most talked-about current pandemic, COVID-19, has
resulted in a massive global tragedy and has had a significant
influence on many lives throughout the world. The first case
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of the fatal virus was reported in Wuhan, a Chinese province
in December 2019 [1]. The virus swiftly spread throughout
the world, affecting a wide range of countries.

One of themost frequently used techniques for diagnosing
COVID-19 is reverse transcription-polymerase chain reac-
tion (RT-PCR). Early identification of the disease has relied
heavily on radiological imaging techniques such as computed
tomography (CT) and X-ray [2]. X-ray scans have been uti-
lized in the screening of COVID-19 patients since PCR has a
diagnostic sensitivity of 60%-70%. In a few recent studies, it
is observed that X-ray and CT imaging scans of people who
have COVID-19 symptoms are altered [3]. Zhao et al. [4]
found dilatation and consolidation in COVID-19 patients, as
well as ground-glass opacities.

The rapid rise in positive COVID-19 cases has increased
the need for researchers to employ Artificial Intelligence
(AI) in conjunction with the expert opinion to assist clin-
icians in their jobs. In this regard, deep learning models
have begun to gain momentum. Because radiologists are in
short supply in hospitals, AI-based diagnostic models might
be beneficial in giving prompt assistance to patients. Hem-
dan et al. [5] proposed seven Convolutional Neural Network
(CNN) models to diagnose COVID-19 from X-ray images,
including improved VGG19 and Google MobileNet. With
an accuracy of 92.4%, Wang et al. [6] identified COVID-19
images from normal and viral pneumonia patients. Similarly,
Ioannis et al. [7] used 224 COVID-19 images and achieved
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a class accuracy of 93.4%. Opconet, an optimized CNN,
was suggested in [8] with a total of 2800 images and a
92.8% accuracy score. Apostolopoulous et al. [9] created a
MobileNet CNNmodel utilizing extricated features. Various
other methods, such as InceptionV3, ResNet50, GCN, and
Inception-ResNetV2, were used for classification [10–13].
In [14], a transfer learning-based method was employed in
order to classify existence or absence of COVID-19 chest
X-ray pictures utilizing three models such as ResNet18,
ResNet50, SqueezeNet, and DenseNet121. In [15], CNN’s
key hyperparameters are tuned using (i) MLP and GreyWolf
Optimizer (GWO), and (ii) MLP and Whale optimization +
BAT method.

Although all of the above-mentioned state-of-the-art
approaches use CNN, the methods do not take into consid-
eration more than 6432 images. Using such a small dataset
causes many real life cases to be missed out. Data augmenta-
tion canbeperformed to overcome this issue.But, in this case,
data augmentation techniques such as rotation and resizing
of the pictures are not enough to cover wide range of pos-
sible cases for COVID-19 instances, viral pneumonia, and
normal chest X-ray scans. As a result, the generated CNN
models fail to properly distinguish these diseases. Although
some degree of inaccuracy in recognizing viral pneumonia
cases is acceptable, misclassification of COVID-19 patients
as normal or viral pneumonia might confuse physicians and
management. The proposed study attempts to solve the con-
straints described above by creating an automated diagnostic
method for screening COVID-19 patients using chest X-ray
images trained on 103,468 images considering 5 classes such
as COPD signs, COVID, normal, others and Pneumonia.

The remaining part of this paper is structured as follows:
Section 2 explains the dataset in details. Section 3 introduces
the proposed method. Section 4 presents the experimental
results. Finally, Sect. 5 concludes the paper.

2 Dataset description

Four distinct datasets make up our data collection. We com-
bined the following datasets PADCHEST dataset [16],
BIMCV-COVID19+ dataset [17], COVID-19 Radiography
Database ([18] and [19]), and Chest X-ray Images (Pneumo-
nia) [20]. We employ 297,541 frontal chest X-ray images
from 86,876 individuals by merging all the datasets. We
did not apply a processing technique on the images while
collecting the dataset. There are an average of 3-4 images
per subject due to the follow-up scans. As a result, for all
studies, patient-wise splits are taken into account to divide
the patients into training, validation, and test groups. Some
anomaly classes provide geographical information in the
PLCO dataset. Table 1 depicts the number of images that
each anomaly was found in. Multiple anomalies can be seen

Table 1 Number of images for each anomaly in the dataset

Class Number of samples

Normal 62,115

Pulmonary fibrosis 760

Heart insufficiency 1722

COPD signs 23,280

Pneumonia 7747

Tuberculosis sequelae 399

Emphysema 734

Pulmonary artery hypertension 8

Tuberculosis 152

Atypical pneumonia 234

Bone metastasis 150

Lung metastasis 326

Pulmonary oedema 458

Asbestosis signs 69

Pulmonary hypertension 148

Post radiotherapy changes 138

Respiratory distress 35

Lymphangitis carcinomatosa 21

Lepidic adenocarcinoma 11

Covid 3616

Viral pneumonia 1345

in a single picture. Furthermore, the collections comprise
178,319 images that do not exhibit any of the previously
described anomalies; these images are not listed in Table 1.

Weused a total of 103,476 images in our experiments.As it
canbe seen inTable 1, there is a hugebias between the classes.
For example “normal” and “COPD signs” have 62,115 and
23,280 samples, respectively, while many other classes have
less than 1,000 samples each. In order to prevent this dataset
bias, we grouped up similar classes under the same label and
proceeded on the experimentswith the newly assigned labels.
Also, we excluded 136 images that have broken file format
hence creating problems for us while reading the file.

Given D1 = 14 abnormalities of the ChestX-ray14 dataset
and D2 = 12 abnormalities of the PLCO dataset, we define
D = D1 + D2 = 26 classes for our network. In our first set
of experiments, we splitted the dataset into 5 classes (See
Table 2). Since “normal”, “COPD signs”, “pneumonia”, and
“covid” has plenty of samples, we kept them as they are. On
the other hand, we combined all the smaller classes under
one label called “others”.

In our second set of experiments, we splitted the dataset
into 2 classes (See Table 3). We kept “normal” class as it is,
and combined all other classes under “abnormal” label where
“normal” indicates image of a healthy lung, and “abnormal”
indicates an unhealthy lung.
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Table 2 Dataset splitted into 5 labels

Class Number of samples

Normal 62,108

COPD signs 23,277

Pneumonia 9092

Covid 3616

Others 5239

Table 3 Dataset splitted into 2 labels

Class Number of samples

Normal 62,108

Abnormal 40,132

3 Proposedmethod

3.1 Network

In our method, we firstly extract the most important features
of the images that are distinguishing between the classes.
Then, we use a classifier to obtain the results. Considering
X-ray scans of lungs, distinguishing features can be obtained
from the texture. For example, X-ray scan of a lung with
pneumonia has abnormalities in the texture compared to a
normal, i.e. healthy lung (See Table 4). Our aim is to catch
such features to find patterns for each class.

The state-of-the-art research show that one of the most
successfulways of obtaining texture features from the images
is using CNN-based deep learning methods [15,21–23].
Thanks to their convolutional structure, these methods pro-
cess each pixel and their relation with neighbouring pixels
together. This way, they successfully find the features in the
images. Therefore, we used a CNN-based network as our
feature extractor.

In our method, we pass the processed images to a Incep-
tionV3 network which we use as our boneback for feature

extraction. In order to pick the best boneback network here,
we experimented with different boneback networks and
picked InceptionV3 since it performs the best in our case.
Discussion on these experiment can be found in the results
section. InceptionV3 is a convolutional neural network-based
architecture which is made of symmetric and asymmetric
blocks. As it can be seen in Fig. 1, the network has a deep
architecture in which the convolution layers create the base,
and fully connected layers are used to make a connection to
output. Average pooling, max pooling, batch normalization
and dropouts are also used in the network to improve the
performance.

Lastly, we use a classifier to obtain the final label using
the features extracted. In our classifier, firstly, we pass the
features through a normalization layer. This is done to regu-
larize the data. We use batch normalization which processes
the data batch by batch and subtracts mean, and divides by
standard deviation [25].After that, two fully connected layers
with sizes of 64 and 32 are added to model the relationship
between the extracted features and the final classes. We used
ReLu activation in these layers. Additionally, we included
dropout layers with 0.5 rate after each fully connected layer
to prevent overfit. Finally, an output layer is included to obtain
the final prediction per class.

3.2 Training

The training has been carried out with a batch size of 128.
We used 20 epochs as this epoch number is enough for
converging in our case. Higher epoch numbers are resulted
with overfitting. 5 folds cross-validation is applied to avoid
a biased data split. Larger fold numbers are not preferred as
it increases the training time a lot.

For all of our experiments, we splitted the dataset into
training and testing sets with a ratio of 0.75 and 0.25, respec-
tively. Only the training set is used for training and validation
while testing set is used only for the testing after the training
process is completed.

Table 4 Samples from the dataset

Normal Covid Pneumonia
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Fig. 1 InceptionV3 architecture [24]

Table 5 Results for each backbone for 2-class and 5-class

Backbone 2-class (%) 5-class (%)

VGG16 83.84 79.14

InceptionV3 84.57 81.03

ResNet50 83.08 74.61

NasNetMobile 73.41 68.13

All the experiments are done on a PC with Ubuntu 20.04
installed. Main hardware used are Intel�CoreTM i7-5820K
central processing unit, NVIDIA TITAN Xp graphics pro-
cessing unit and 96 gigabytes of memory.

4 Results

In this task, X-ray images are very similar to each other,
resultingwith a low inter-class variance in the dataset. There-
fore, extracting the distinctive features is important to have a
good performing method. In our experiments, we focused on
this idea to improve the performance. We conducted experi-
ments with different feature extraction backbones to evaluate
their contributions to the overall performance. As explained
in Sect. 3 in details, we selected the most commonly
used state-of-the-art CNN-based networks, i.e. VGG16 [26],
InceptionV3 [24], ResNet50 [27], NasNetMobile [28], for
this experiment. We conducted the same experiment for both
5-class and 2-class dataset label grouping.

In Table 5, you can see how well our method performs
when different backbones are used. We measured the perfor-
mances on the test split for both 2-class and 5-class splits.
From the table, we can see that performances of all the back-
bones are better for 2-classmerge compared to 5-classmerge.
This is an expected result for us as 2-class split in this task

Table 6 Class accuracies when InceptionV3 is used as backbone

2-class accuracies Normal 78.33%

Abnormal 88.60%

5-Class accuracies COPD signs 62.93%

Covid 97.03%

Normal 93.20%

Pneumonia 64.46%

Others 34.25%

is created between normal and abnormal (diseased) X-ray
images. Variance between the diseased and normal images is
higher than the variance in 5-class dataset. In 5-class merge,
the network needs to characterize and separate four patho-
logical classes from each other. However, this is a hard task
as these classes have a low variance among each other. Sec-
ondly, ‘others” class in 5-class merge has a low accuracy,
resulting with a decrease in the overall accuracy. Looking at
the accuracies in the table, we can see that VGG16, Incep-
tionV3 and, ResNet50 perform very close to each other for
2-class. However, their performances differ for 5-class as
InceptionV3 leads with 81.03% test accuracy.

In order to elaborate on the performance more, we present
the class accuracies of our method using InceptionV3 back-
bone for 2-class and 5-class splits in Table 6. We discuss that
themain difference between class accuracies is caused by the
low variance and difference in the sample counts between
them. Also, it is notable that in Table 6, “others” class has a
very low accuracy. As explained in Sect. 2, we merged many
classes which have a low sample count to create “others”
class. Therefore, this class both have a low sample count and
a hard-to-characterize sample set. We argue that these two
factors are themain reasons behind the low accuracy for “oth-
ers” class. Furthermore, we calculatedMatthews Correlation
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Table 7 Comparison with the state-of-the-art methods

Ref Number of images Database Used Backbone Used Covid-19 acc.

Proposed 103468 PADCHEST BIMCV-COVID19+
COVID-19 Radiography Chest X-ray

InceptionV3 0.97

[8] 2800 Chest X-ray OptCoNet 0.98

[30] 1125 Chest X-ray DarkCovidNet 0.98

[31] 196 Chest X-ray JSRT VGG16 0.93

[7] 1428 Chest X-ray Covid-19 X-ray Pneumonia X-ray MobileNetV2 0.98

[32] 502 Chest X-ray CoronaHack NLM JSRT DenseNet103 0.92

[33] 2905 COVID-19 Radiography A novel CNN 0.89

[15] 6432 Chest X-ray ResNet-50 1

[15] 2905 COVID-19 Radiography ResNet-50 1

Coefficient (MCC) [29] since the dataset is imbalanced. The
model gets MCC as 0.6745 and 0.6541 for 2-class and 5-
class, respectively.

Finally, our best results are obtained by using InceptionV3
as our backbone with no filtering applied. We obtained
84.57% test accuracy for the 2-class label merge and 81.03%
test accuracy for the 5-class label merge. Notably, we
obtained 97.03% test accuracy on predicting COVID diag-
nosed X-ray images in our 5-class dataset. Also, we obtained
“normal”, i.e. healthy class prediction accuracy of 93.20%
with 5-class and 78.33% with 2-class.

We compare our results with the state-of-the-art methods
in Table 7. Our method with 97.03% accuracy on the COVID
images is one of the best performing methods for COVID
detection. It is important to notice that the datasets for the
other methods have at most 6,432 images. This sample count
is very low compared to our 103,468 images. Our dataset,
although splitted to 5 classes, has cases from 20 different dis-
eases, which is much higher compared to the-state-of-the-art
studies. Certainly, this variety and size adds additional value
to our results as our method results with a better generaliza-
tion. We should note down that the generalization problem
is one of the main reasons why such methods have not been
trusted for COVID detection in practice. COVID detection
is of utmost importance; therefore, COVID accuracy is the
main metric for our study. And, our method produces very
good results for thatwhile improving the generalization capa-
bilities.

Additionally, we show the training accuracies for our
method in Tables 8 and 9 for each class merge separately.
We can see that in both cases, there is only a small difference
between the training and test accuracies that tells us overfit-
ting or underfitting is not a priority in our training. However,
there are some low accuracies for some classes, i.e. “others”
in 5-class merge. This can be explained by the mixed data
samples in “others” class which makes characterization of
this class harder than others.

Table 8 Training and validation accuracy between 2 classes Normal
(0) and Abnormal class (1)

Precision Recall f1-score Support

Normal 0.82 0.78 0.80 10,029

Abnormal 0.86 0.89 0.87 15,531

Accuracy 0.85 25,560

Macro avg 0.84 0.83 0.84 25,560

Weighted avg 0.84 0.85 0.85 25,560

Table 9 Training and validation accuracy between 5 classes

Precision Recall f1-score Support

COPD Signs 0.68 0.63 0.66 5830

Covid 0.94 0.97 0.96 843

Normal 0.84 0.93 0.89 15,629

Others 0.58 0.34 0.43 1308

Pneumonia 0.92 0.64 0.76 2223

Accuracy 0.81 25,833

Macro avg 0.78 0.70 0.74 25,833

Weighted avg 0.80 0.81 0.80 25,833

5 Conclusion

One of the most used techniques for diagnosing certain dis-
eases is assessing pathological chest X-rays. However, this
task is yet to be fully automated, while such an automation
would save hours of medical professionals. In the previ-
ous research, CNNs and similar structures are proposed as
a method to automatically differentiate between the normal
and diseasedX-ray chest images.However, one of the lacking
point of previous research was relatively small dataset, i.e.
low sample size, bias between classes, low generalization,
etc.
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In order to address such issues, we evaluated how well
deep CNNs perform on pathological chest X-ray classifica-
tion using largest number of images, i.e. 103,468 images.
We experimented with different class splits and different
methods to finally obtain 84.57% accuracy for classify-
ing between normal and diseased images. Moreover, we
obtained 81.03% accuracy for classifying between 5 classes,
i.e. COPD signs, COVID, Pneumonia, normal and others.
Our method acquired 97.03% accuracy for COVID class
which is significant if the method is used for COVID detec-
tion.

One of the shortcomings of our method is that, “others”
class in the 5-class split includes images frommany diseases.
This makes the class hard to characterize, therefore causing
a decrease in the performance. A further study can be done
with an improvement of the data in this class. Alternatively,
the network can be improved so that it learns low-performing
classes better.
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