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Abstract
Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring
complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images,
training data are currently scarce. Attention models, in particular the most recent self-attention methods, have shown to help
gather contextual information within deep networks and benefit semantic segmentation tasks. The recent attention-augmented
convolution model aims to capture long range interactions by concatenating self-attention and convolution feature maps. This
work proposes a novel attention-augmented convolutionU-Net (AA-U-Net) that enables amore accurate spatial aggregation of
contextual information by integrating attention-augmented convolution in the bottleneck of an encoder–decoder segmentation
architecture. A deep segmentation network (U-Net) with this attention mechanism significantly improves the performance
of semantic segmentation tasks on challenging COVID-19 lesion segmentation. The validation experiments show that the
performance gain of the attention-augmented U-Net comes from their ability to capture dynamic and precise (wider) attention
context. The AA-U-Net achieves Dice scores of 72.3% and 61.4% for ground-glass opacity and consolidation lesions for
COVID-19 segmentation and improves the accuracy by 4.2% points against a baseline U-Net and 3.09% points compared to
a baseline U-Net with matched parameters.

Keywords Attention mechanism · Attention-augmented convolution · Segmentation · U-Net · COVID-19 · Ground-glass
opacities · Consolidation

1 Introduction

The novel coronavirus disease 2019 (COVID-19) emerged
in early December 2019 in the Hubei province of the Peo-
ple’s Republic of China, being caused by the virus Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2). It rapidly spread to various countries and developed into
a global outbreak. The World Health Organization (WHO)
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declared the outbreak as a global pandemic on March 11,
2020 [1,2]. This also led to a massive strain on the healthcare
systems worldwide.

The gold standard for diagnosis of COVID-19 is reverse-
transcription polymerase chain reaction (RT-PCR) test [3].
However, it suffers fromvarious limitations, such as not being
universally available in large scales,manual, time-consuming
and varying accuracy [3,4]. Alternatively, radiography tech-
niques of chest X-rays (CXR) and CT have proven to be
good diagnostic modalities for detection of COVID-19 and
are being widely used for COVID-19 screening, primarily
because they are faster and cheaper than the standard tests
[5]. Thus literature suggests that a combination of clinical,
laboratory and radiological testing should be used for prog-
nosis and diagnosis of this disease [4,6].

It has been reported that prognosis and diagnosis using
CXR images have certain limitations in COVID-19 cases
(less efficient) [1,7].HenceCTproves to be advantageous and
an effective screening tool as it provides early stage detection
of the disease and segmentation of the lungs along with their
three-dimensional views [1,4].
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The important diagnostic features of COVID-19 on
CT are ground-glass opacity, consolidation, nodules, [3,4].
However, identification of these features becomes time-
consuming for radiologists and clinicians, considering the
rising number of cases, hence deep learning techniques and
computer vision can help in automatic segmentation of these
features [5,8].

Deep learning has been implemented on COVID-19 CT
data by performing automatic segmentation and classifica-
tion and has supported in improving diagnosis performance
significantly. Segmentation in COVID-19 cases includes
lung delineation and lesionmeasurement and is important for
diagnosis and quantitative analysis of the disease. For seg-
menting region of interest in CT, classic U-Net, U-Net++,
VB-Net, etc., have been used widely [1]. Li et al. used U-Net
to perform lung segmentation on chest CT and distinguish
COVID-19 cases from community-acquired pneumonia [9].
Shan et al. used a VB-Net to perform segmentation of lung,
lung lobes and infection and provided medical data such as
quantitative assessment of progression of the infection in
the follow-up, prediction of severity, visualization of lesion
distribution, etc. [10]. Qi et al. used U-Net-based algo-
rithm to segment lung lesions of COVID-19 patients and
extracted radiomics features for predicting duration of hos-
pital stay [11].

A number of studies have been done to classify COVID-
19 patients from non-COVID-19 subjects or other types of
pneumonia. A COVID-19 detection neural network, named
COVNet (convolutional ResNet-50 model), was introduced
in [9] to detect the disease from a mix of CT images of
three types-COVID-19, community acquired pneumonia and
non-pneumonia cases. Chen et al. classified COVID-19 and
non-COVID-19 cases by using U-Net++-based segmenta-
tion model and making a decision based on the appearance
of segmented lesions [12].

Zhenget al. [13] used a combinationof twomodels for seg-
mentation and classification—they employed a U-Net model
to perform lung segmentation and used the result as input to
3D CNN for predicting the probability of COVID-19 and
achieved an AUC of 0.959. Similarly, Jin et al. [14] proposed
a U-Net++-based segmentation model for lesion localiza-
tion and a ResNet50-based classification model to classify
COVID-19-positive and negative cases. This model success-
fully achieved an accuracy of 86.7% to classify the three
cases. In a similar study, three-class classification was done
to classifyCOVID-19, bacterial pneumonia andhealthy cases
by integrating a pretrained ResNet-50, the Feature Pyramid
Network (FPN) and the Attention module to represent more
detailed aspects of the images [15]. Gozes et al. [16] used
U-Net for segmentation of relevant lung regions and Resnet-
50 to perform the classification. The networks obtained an
AUC of 0.996 for classifying COVID-19-positive and nega-
tive cases.

2 Related work

U-Net [26] has been commonly used for segmenting lung
regions and lung lesions in COVID cases [1]. Various vari-
ants of U-Net have been developed to achieve reasonable
segmentation results in COVID-19 cases, and few of them
have been discussed in the previous section. Along with
segmentation, the attention mechanism has been reported
as an efficient localization method in screening which can
be adopted for application in COVID-19 cases [1]. Atten-
tion gates have also proved to be promising in 3D medical
segmentation when incorporated with U-Net [23]. Hence, in
this work, U-Net along with attention mechanism has been
implemented to improve the performance on semantic seg-
mentation on COVID-19 cases.

2.1 Attentionmechanism

Attention models initially were first introduced through
transformer models in natural language processing (NLP)
domain [21].NLPmodels performed betterwhen the encoder
and decoder were connected through attention blocks.
Boosted NLP performance encouraged researchers for fur-
ther research on attention mechanism in other domains.

Computer vision tasks subsequently benefited from atten-
tion mechanism to capture non-local interactions. Initial
approaches to augment convolutional models with content-
based interactions [18,19,23] was very promising. The sem-
inal work by Wang et al. [20] in non-local means was one of
the key milestones in progress of attention in vision appli-
cations. This was then followed by self-attention research
by Bello et al. [18]. These research initiatives have hugely
benefited computer vision tasks like image classification and
semantic segmentation. Jo et al. [23] subsequently integrated
attention-gates into U-Nets for 3D medical segmentation.
Parmar et al. [17] have also demonstrated building pure self-
attention vision models.

Bello et al. [18] prevail the convolution operator’s dis-
advantage of lack of global contexts by augmenting it with
self-attention. They augmented convolution operators with a
novel two-dimensional relative self-attention mechanism by
concatenating self-attention feature maps with convolutional
feature maps. The attention-augmented convolution attends
jointly to spatial and feature subspaces. They demonstrate
that attention augmentation gives significant improvement
in image classification (CIFAR-100, ImageNet) and object
detection tasks (COCO dataset).

Given an input activation map tensor of height H , width
W and channels Fin, Bello at al. [18] compute multihead
attention (MHA) on the flattened input matrixX ∈ R

HWxFin .
The single head self-attention is calculated using the formula:
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where Wq ,Wk ∈ R
Fin×dhk and Wv ∈ R

Fin×dhv are the lin-
ear transformations which map the activation map features
to queries Q, keys K and values V . The multi-head outputs
concatenated and then reshaped to match the original dimen-
sion of (H , W , dv). As the final step, the convolutional and
attentional feature maps are concatenated together to get the
attention-augmented convolution result [18].

The aim of this work is threefold.

1. First, evaluation of whether attention-augmented convo-
lution can be employed for semantic segmentation tasks
has been performed. To our best knowledge, this work
is the among the first to explore attention-augmentation
for semantic segmentation specifically in medical image
segmentation.

2. Second, it is appraised whether attention-augmented con-
volution can be integrated within a U-Net [23] to improve
medical image lesion segmentation for labeled datawhich
is relatively small, a common scenario currently for
COVID-19.

3. Third, empirical identification of the novel network con-
figuration (constellation) is performedwhere the attention
augmentation convolution can be integrated to get signif-
icant improvement in segmentation performance, while
still only marginally increasing the model complexity
(number of learnable parameters).

The attention-augmented U-Net (AA-UNet) module is an
important step to get better insight into the integration of
attention-augmented convolutionmodules into segmentation
contexts in general, and U-Nets in particular. It has been
found that modifying all the convolutions blocks in U-Net
into attention-augmented convolution blocks does negatively
impact the complexity of semantic segmentation networks.
Capturing only the necessary and essential non-local con-
textual information in a smart way by positioning it at the
bottleneck of U-Net, yields promising segmentation results.
It has been demonstrated that having the bottleneck attention
block enables the network to obtain longer range dependen-
cies on the smallest resolution of activation maps and get far
improved results withminimal increase inmodel complexity.

3 Methods

Similar to the notations in Bello et al. [18], the following
naming conventions have been used in this work: H , W and
Fin refer to the height, width and number of input filters of

the activation maps. Nh, dv and dk denote the number of
heads, depth of values, and the depth of queries and keys in
multihead-attention respectively.

3.1 Self-attention over (bottleneck) feature channel

Given an input image (tensor) of shape (H ,W ,Fin), it is
systematically processed through the proposed U-Net algo-
rithm, to compute the feature maps using regular convolution
operators. The activation maps are downsampled using max-
pooling operation. After the last downsampling operator in
the U-Net, when the feature maps are the smallest, the atten-
tion maps are computed on this reduced activation map. As
described by Bello et al. [18], the attention-augmented con-
volution concatenates the convolution features and attention
feature maps. The computed attention-augmented convo-
lution feature maps are concatenated with the convolution
activation maps from the last downsampling layer, and then
progressively upsampled through the upsampling path of the
U-Net. The details of the U-Net network architecture used in
this work and the integration of attention-augmented convo-
lution are detailed in the subsequent sections below.

3.2 Proposed AA-UNet network architecture

The architecture of the model combines the concepts of U-
Net [26] and attention-augmented convolution network [18].
This novel proposed network utilizes Attention-Augmented
convolutions within a medical segmentation deep learning
framework so as to utilize the characteristics of attention
augmentation framework to comprehend global perspective
and capturing long range dependencies. A block diagram
of the proposed attention-augmented U-Net (AA-UNet) is
shown in Fig. 1.

A U-Net structure from Oktay et al. [23,23] has been
used, adapting it slightly by reducing one downsampling (and
corresponding upsampling path), to best process the image
dimension of interest (256*256). It consists of three blocks
in the downsampling path and three blocks in the upsampling
block. Each block consists of 2×(batch normalization—2D
convolution (kernel size 3×3, stride 1, padding 1)—ReLU).
The last block consists of a 2D convolution with kernel size
1×1. For downsampling,max pooling is applied in the down-
sampling path to halve the spatial dimension of the feature
maps after each block. In the upsampling path ConvTrans-
pose2d is used to double the size of the spatial dimension of
the concatenated feature maps. The number of feature chan-
nels is increased 1–64–128–256–512 in the downsampling
path and decreased again accordingly in the upsampling path.
The U-Net’s last layer outputs a number of feature channels
matching the number of label classes for semantic segmen-
tation.
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Fig. 1 Sample slice from one of
the dataset and the
corresponding ground-glass
opacity lesion (GGO) marking
in first row and GGO and
consolidation lesion marking in
second row. Dataset from
website [22]

Fig. 2 A block diagram of the proposed attention-augmented U-Net
(AA-U-Net). Input image is progressively filtered and downsampled
by factor 2 at each scale in the encoding part. The attention-augmented
convolution is inserted as an extension of the U-Net’s bottleneck in

order to capture contextual information from only the necessary and
meaningful non-local contextual information in smart and efficient way

The local representation feature maps H being out-
put from the U-Net’s last block within the downsampling
path serve as input of reduced dimension to the attention-
augmented convolution module. The attention-augmented
convolution module is inserted in the bottleneck, as the fea-
ture maps are of reduced dimension, and hence the attention
maps have smaller, more manageable time and space com-
plexity hence reducing computational cost. In the original
attention-augmented convolution network [18], the attention-
augmented convolutionwas integrated into the ResNet archi-

tecture [21]. The last three stages of the ResNet architecture
were augmentedwith attention augmentation in each of these
residual layers. In the original work, attention-augmented
convolution was employed when the spatial dimension of
the activation maps was 28×28, 14×14, and 7×7. Bello et
al. [18] clearly documented in their paper that memory cost
for attention-augmented convolution is prohibitive for large
spatial dimensions—O((HW )2Nh))

In the proposed AA-UNet, the attention-augmented con-
volution is computed on the activation maps after the third
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and the final downsampling block of the U-Net (Fig. 2). The
number of activation channels is 128 at that downsampling
stage, and the image dimension is 32 × 32. In the current
realization of the integration, for the attention-augmented
convolution kernel size of three has been used, four atten-
tion heads, depth of values—dv is 4 and depth of queries and
key—dk is 40. The resulting attention activation featuremaps
are then concatenated with the regular convolution attention
maps from the last downsampling block. The concatenated
attention maps are then passed through the U-Net’s upsam-
pling path.

The infection class in COVID-19 data is generally under
represented as compared to the background class especially
in early stages of the disease. This leads to a large class
imbalance problem.As found in several studies, ground-glass
opacities generally precede consolidations lesions. This pro-
gression of the lesion development in COVID-19 leads to
the another scenario of class imbalance. In some patients,
only one of the lesions is largely present and the second
lesion is highly under-represented (less than 10% of the total
infection labels. This also leads to a second category of class
imbalance. To address all of these class-imbalance issues,
especially present in COVID-19 lesion segmentation scenar-
ios, use of inverse class-weighted cross-entropy loss has been
proposed. The weights are computed to be inversely propor-
tional to the square root of class frequency. Given a sample
with class label y, this inverse class-weighted cross-entropy
loss can be expressed as

CE(z, y) = wy

(
−log

(
exp(zy)∑C
j=1 exp(z j )

))
(2)

with C being the total number of classes and z the output
from the model for all classes. The weighting factor

wy =
√

1
zy

1
C

∑C
j=1

√
1
z j

(3)

is determined with help of the inverse square root of the
number of samples in each label class to address the problem
of training from imbalanced data. The training and valida-
tion sets also have different distributions, hence we have
computed the inverse weighting separately for the train and
validation sets. We have also used learning rate finder [27]
to find the optimal learning rate, and a 1 cycle learning rate
policy scheduler, where the maximum learning rate was also
determined using the learning rate finder.

4 Experimental setup and results

The publicly available COVID-19 CT segmentation dataset
[22] was used for analysis. 100 axial CT images from differ-
ent COVID-19 patients was considered. This first collection
of data was from the Italian Society of Medical and Interven-
tional Radiology.

The second dataset of axial volumetric CTs of nine
patients was used from Radiopaedia. This second dataset
with whole volumes having both positive (373 positive) and
negative slices (455 negative slices).

The experiments were performed with a threefold cross-
validation on this combined dataset consisting of 471 two-
dimensional axial lung CT images with segmentations for
ground-glass opacities (GGO) and consolidation lesions.
Each fold comprised data acquired from three different
patients plus one third of images from the 100 slice CT stack
taken from more than 40 different patients. The CT images
were cropped and rescaled to a size of 256 × 256. During
training, for data augmentation, random affine deformations
were performed.

Training was performed for 500 epochs using the Adam
optimizer and an initial learning rate of 0.002. Further, a
cyclic learning rate was used, with an upper boundary of
0.005 and a class-weighted cross-entropy loss to address the
problem of training from imbalanced data.

For the infection region experiments andmulti-class label-
ing, we compared the proposed model with cutting-edge
U-Net models: Oktay et al. [23].

The number of trainable parameter for the U-Net [23]
is 611K. For the proposed variant AA-UNet, the U-Net
incorporated with the attention-augmented convolution, the
parameter count was 982K. The performance with larger
bandwidth U-Net was also compared with increased num-
ber of trainable parameters—1070Kparameters. Fourwidely
adopted metrics were used, i.e., Dice similarity coefficient,
sensitivity (Sen.), specificity (Spec.) andmean absolute error
(MAE). If the final prediction is denoted as Fp and the object-
level segmentation ground truth asG, then the mean absolute
error which measures the pixel-wise error between final pre-
diction and ground truth is defined as

MAE = 1

w × h

w∑
x

h∑
y

| Fp(x, y) − G(x, y)) | (4)

A similar approach to Fan et al. has been adopted in
this study [25] and the results of the proposed AA-UNet
on detecting lung infections has been presented. The net-
work was trained on multi-class lung infection (GGO and
consolidation) and during evaluation, these multiple classes
were combined into one infection label. The threefold cross-
validation studies’ results have been presented in Table 1,
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Input Image GT UNET AA-UNET

Fig. 3 Visual comparison of multi-class lung segmentation results, where the red and green labels indicate the GGO and Consolidation, respectively

which has been averaged over multiple runs that were con-
ducted. The results from Fan et al. [25] and DDANet by
Rajamani et al. [28]were also included fromour earlierwork,
in each of these experiments. It has to be noted that Inf-Net
was only trained with the first dataset which is smaller (100
axial slices) and Semi-Inf-Net was trained with pseudolabels
from unlabeled CT images. DDANet [28] is improvisation
of another attention-based approach (Criss-Cross-Attention
[29]) to improve the performance of segmentation, and we
include the results fromCCA andDDANet (in bolditalics) as
baseline. AA-UNet achieves better performance than Criss-
Cross-Attention (CCA) and almost similar performance like
DDANet [28]. Figure. 3 captures the visual comparison of
multi-class lung segmentation results, where the red and
green labels indicate the GGO and Consolidation, respec-
tively.

As captured in Table 1, the proposed AA-UNet achieves
the best Dice scores in each of the folds. The best Dice score
obtained is 0.809 and least mean absolute error (MAE) is
0.0189. The average infection segmentation performance of
the network has been captured in the same Table 1. The
proposed AA-UNet has the best infection segmentation per-
formance in average with the average Dice score of 0.784).
In terms of Dice, the proposed AA-UNet out-performs the
cutting-edge U-Net model [23] by 1.05% on average infec-
tion segmentation.

The infection segmentation performance of AA-UNet on
each of the patients has also been included in the supplemen-
tary materials. In each of the patients, with the exception
of Patient-1, the proposed AA-UNet had the best Dice score

Table 1 Performance (averaged) of infection regions on COVID-19
datasets

Model Fold Dice Sen. Spec. MAE

Inf-Net [25] 0.682 0.692 0.943 0.082

Semi-Inf-Net [25] 0.739 0.725 0.960 0.064

0.809 0.876 0.990 0.0192

CCA [28] 0.798 0.781 0.888 0.986 0.0258

0.735 0.850 0.981 0.0357

0.814 0.889 0.989 0.0185

DDANet [28] 0.808 0.791 0.872 0.988 0.0240

0.750 0.825 0.985 0.0318

0.800 0.879 0.989 0.0208

U-Net 0.787 0.776 0.887 0.985 0.0274

0.740 0.823 0.984 0.0331

0.806 0.883 0.989 0.02005

U-Net(1070K) 0.802 0.780 0.844 0.990 0.024

0.7339 0.836 0.982 0.035

0.809 0.878 0.990 0.0189

AA-UNet 0.791 0.784 0.876 0.986 0.026

0.752 0.832 0.984 0.032

The data have been split into threefold, and the results have been aver-
aged over multiple runs for each fold. These are quantitative results of
infection regions computed fold-wise, with their 3D Dice scores
The bold represents the best results produced by our proposed method.
The bold italics represent the results produced by the models used by
the authors in their earlier work
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Table 2 Performance (averaged) on nine real CT patient data

Model Dice Sen. Spec. MAE % Gain

Inf-Net [25] 0.579 0.87 0.974 0.047

DDANet [28] 0.7789 0.8840 0.9915 0.0135

U-Net 0.7515 0.8811 0.9904 0.0149

AA-UNet 0.78 0.87 0.993 0.014 4

These are quantitative results of infection regions computed patient-
wise, with their 3D Dice scores. The best results are shown in bold font
and the Gain with respect to baseline UNet is shown in italics
The bold italics represent the results produced by the models used by
the authors in their earlier work

and theminimumMAE. The average across all the patients is
also captured in Table 2. The results from Fan et al. [25] as a
baseline and results fromDDANet byRajamani et al. [28] has
also been included. AA-UNet again achieves almost similar
performance like DDANet [28]. In terms of Dice, AA-UNet
method achieves the best competitive performance of 0.78
averaged across all the patients. It outperforms the baseline
best U-Net model Dice by 4% on infection segmentation.

The fold-wise performance of AA-UNet on multi-class
labeling has been included in the supplement section. The
average multi-label segmentation performance of the net-
work has been captured in Table 3. The obtained results
have been compared with the results from Inf-Net by Fan
et al. [25] and results from DDANet by Rajamani et al. [28].
The baseline U-Net [23] and proposed AA-UNet has far less
trainable parameters at (611K) and (982K) as compared
to 33M in Inf-Net [25]. AA-UNet again achieves almost
similar performance like DDANet [28], and DDANet is a
completely different attention mechanism which is more
computationally intensive. The proposed AA-UNet has the
best multi-label segmentation performance, also in average
with the best Dice score of 0.723) for GGO lesions and best
Dice score of 0.614) for consolidation lesions. The proposed
AA-UNet has average best Dice score of 0.668 for detecting
COVID-19 lesions. In terms of Dice, the proposed AA-UNet
out-performs the cutting-edgeU-Netmodel [23] by 4.22%on
average multi-label segmentation. The trainable parameters
in the proposed AA-UNet has been increased in this study
in comparison to the original U-Net. Hence the results have
been compared against U-Net with increased bandwidth and
1070K parameters.

The multi-label segmentation performance of AA-UNet
on each of the patients has been included in the supplemen-
tary materials. In terms of Dice, AA-UNet method achieves
the best competitive performance of 0.701 for GGO lesion
and 0.693 for consolidation lesion averaged across all the
patients. On average, the proposed AA-UNet outperforms
the baseline best U-Net model Dice by 2.86%onGGO, 6.4%
on consolidation and on average 4.06% on multi-label seg-
mentation. The distribution of the GGO and consolidation

Table 3 Quantitative results of ground-glass opacities and consolida-
tion

Model GGO Consol. Avg % #

InfNet+FCN 0.646 0.301 0.474 33.1M

InfNet+MC [25] 0.624 0.458 0.541 33.1M

CCA [28] 0.723 0.596 0.660 847K

DDANet [28] 0.734 0.613 0.673 849K

U-Net 0.717 0.566 0.641 611K

U-Net(1070K) 0.722 0.574 0.648 1.10 1070K

AA-UNet 0.723 0.614 0.668 4.22 982.7K

The results have been averaged across multiple folds and multiple runs.
The best results are shown in bold font
The bold represent the results produced by the models used by the
authors in their current work. The bolditalics represent the results pro-
duced by the models used by the authors in their earlier work

Table 4 Performance averaged across nine real CT patient data

Mean Pat. GGO % Cons. % Avg. %

UNet 0.683 0.651 0.671

UNet+CCA 0.679 0.666 0.674

AA-UNet 0.701 2.76 0.693 6.44 0.698 4.06

These are quantitative results of multi-label regions computed patient-
wise, with their 3D Dice scores

Table 5 Quantitative results of ground-glass opacities and consolida-
tion

Model GGO %Gain Consol %Gain

InfNet+FCN8s [25] 0.646 0.301

InfNet+MC [25] 0.624 0.458

U-Net 0.7167 0.57 0.5661

U-Net(1070K) 0.7221 0.60 0.5748

AA-UNet 0.7229 0.86 0.61 8.48

The results havebeen shownacross threefold and averagedovermultiple
runs. The best results are shown in bold font, and the%Gainwith respect
to baseline UNet is shown in italics

lesions are not even among the different patient scans. Some
patients had predominantly onlyGGO(Patient-8)while other
patients had predominantly consolidation (Patient-3). This
skew in distribution impacts the segmentation Dice scores
significantly, when the lesions are minimally represented in
the patients.

5 Discussion

Substantial research has been carried out on COVID-19
lesion segmentation and it still remains to be a very chal-
lenging problem. There are several challenges in obtaining
accurate lesion segmentation, and one major challenge is
the severe class-imbalance nature of the lesions. In the early
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stages of the disease, this class imbalance is very stark, and
hence, it gets very difficult to get good segmentation in such
contexts. Another particular challenge is when inter-class
skewed representation of the lesions, as COVID-19 lesion
segmentation is amulti-class segmentation problem. In some
patients, severe skewed lesion classes representations were
observed in this study, which is a challenge in getting good
segmentation results. Even though a large corpus of research
articles have been published, large public datasets is still
very limited. This poses another challenge until recently, to
develop compelling algorithms with superior performances.
Steadily the number of publicly availableCOVID-19 datasets
is increasing and this scenario could change quite dramati-
cally in the future. This would then enable further research
into more compelling algorithms to address this challenging
problem.

The proposed attention-augmented U-Net (AA-UNet) is
only one of the potential ways to integrate attention augmen-
tation that are smarter, elegant and have better performance
than earlier proposed U-Net. There are many research possi-
bilities to make this even better. There is no requirement or
limitation to integrate attention only at the bottleneck loca-
tion as is being computed in this work, primarily to make it
computationally tractable. The attention augmentation could
be integrated smartly into more locations. One of the next
research problems could be to explore what could be the opti-
mal or minimal number of non-local attention that needs to
be gathered to get the best results. It would also be interesting
to establish theoretical upper and lower bounds for number
of locations to get non-local attention and its impact on per-
formance. This work opens up all these and more possible
research directions and can be the trigger formore fundamen-
tal work on attention augmentation in semantic segmentation
tasks.

6 Conclusion

In this paper, a novel adaptation to the U-Net module with
attention augmentation has been proposed. This modified
U-Net framework (AA-UNet) improves the segmentation
of lesion regions in COVID-19 CT scans. The novel solu-
tion and smart combination of attention augmentation in the
bottleneck of U-Net has shown to be a working combina-
tion yielding superior and promising results. It has immense
potential in better aiding clinicians with state-of-art infection
segmentationmodels.AA-UNet achieves better performance
than Criss-Cross-Attention (CCA) and almost similar perfor-
mance like DDANet [28]. For future studies, incorporating
attention augmentation in other stages of the U-Net will
be explored. Deforming attention augmentation is another
potential direction of research that can be explored. are also
parameters in attention augmentation like the number of

attention heads, number of attention channels, which can dra-
matically impact the performance of the segmentation while
also steeply increasing the number of trainable parameters
and hence the GPU requirements. We will conduct further
research to find better constellations of utilizing attention
augmentation more effectively. The source-code and trained
models will be made publicly available.

The infection segmentation performance of AA-UNet on
each of the patients, multi-label segmentation performance
of AA-UNet on each of the patients and average of multi-
label segmentation performance across the patients have been
captured in the supplementary materials. Our proposed AA-
UNet has excellent Dice score with competitive performance
of 0.78 and MAE of 0.014 for infection segmentation have
been averaged across all patients.

The performance of AA-UNet on multi-class labeling has
also been captured. The threefold cross-validation studies’
results has been presented in Table 5, which was averaged
over multiple runs. The results from Fan et al. [25] has also
been included in each of the experiments. As captured in
Table 5, the proposedAA-UNet achieves the best Dice scores
in each of the folds. The best Dice score achieved for GGO is
0.7793 and best Dice score for consolidation is 0.7348. The
proposed model outperforms the cutting-edge U-Net model,
in terms of Dice, by 0.86% in GGO lesion and 8.48% in
consolidation lesion segmentation in average. The proposed
attention-augmentedU-Net is able to segment GGO and con-
solidation lesions far better than the state-of-art models or
baseline U-Net models.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-022-02302-
3.
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