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Abstract
This work aims to correct white-balance errors in sRGB images. These white-balance errors are hard to fix due to the nonlinear
color-processing procedures applied by camera image signal processors (ISP) to produce the final sRGB colors. Camera ISPs
apply these nonlinear procedures after the essential white-balance step to render sensor raw images to the sRGB space through
a camera-specific set of tone curves and look-up tables. To correct improperly white-balanced images, projecting non-linear
sRGB colors back to their original raw space is required. Recent work formulates the problem as an image translation problem,
where input sRGB colors are mapped using nonlinear polynomial correction functions to fix such white-balance errors. In this
work, we show that correcting white-balance errors in sRGB images through a global color mapping followed by spatially
local adjustments, learned in an end-to-end training, introduces perceptual improvements in the final results. Qualitative and
quantitative comparisons with recently published methods for camera-rendered image white balancing validate our method’s
efficacy and show that our method achieves competitive results with state-of-the-art methods.

Keywords Color constancy · White balance · Color correction · Image enhancement

1 Introduction and related work

White balance is a basic procedure that is nearly applied to
all images by the camera image signal processor (ISP). The
goal of image white balancing is to remove undesirable color
casts caused by scene lights. That is, this process aims to
normalize the camera-rendered image’s colors such that any
achromatic object appears grayish (i.e., R = G = B) [1].
While it cannot fix all other colors, white-balance correction
is often assumed to approximate the color constancy (i.e.,
object color appearance remains constant under different
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lighting conditions of the scene) [2]. Image white balancing
does not target only the aesthetic aspect of camera-rendered
images but also improves the accuracy of other computer
vision tasks, such as image classification and image seman-
tic segmentation [3–5].

Cameras apply white balance by first estimating the scene
illumination color. This estimation is performed by a color
constancy method, which typically falls into one of the fol-
lowing categories: (1) statisticalmethods (e.g., [6–8]) that use
heuristic statistical-based hypotheses to estimate the illumi-
nant color of the captured image, and (2) learning methods
(e.g., [9–15]) that rely on machine learning techniques to
learn to predict the illuminant color given the input image
[10,13,14] or its color histogram [9,11,15]. Then, a global
color channel scaling operation is applied to remove such
undesirable color casts. This white-balance procedure is
applied to camera sensor raw image (i.e., a linear represen-
tation of the incoming light), and afterwards camera ISPs
apply a set of nonlinear procedures to render the final output
image in the sRGB space [16,17]. Due to these nonlinear pro-
cedures, adopting the simple color scaling process—that is
intended to fix linear raw images—does not work properly to
fix camera-rendered images with white-balance errors [16].

An intuitiveway to deal with such errors is to reconstruct a
linear version of the input image followed by fixing its white
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Fig. 1 This work focuses on fixing potential white-balance errors in
camera rendered sRGB images. Our method consists of a two-stage
learning framework that first applies a global correction to input image
colors, and then a local process is applied to produce the final result.
Our method produces competitive results compared to state-of-the-art
methods (i.e., KNN-WB [16] and D-WB [20]) (color figure online)

balance, and then re-processing the image to its final form
in the sRGB space. Though it seems trivial, this solution is
impractical as camera ISP’s procedures are unknown and a
careful camera calibration process is required to accomplish
this linearization task [16,17].

Recently, Afifi et al. [16,18–20] proposed solutions to
deal with such white-balance errors in the camera-rendered
sRGB images without a need for raw reconstruction. The
authors in [16,18–20] proposed to process the input improp-
erlywhite-balanced images in the sRGBspace to generate the
correctly white-balanced images. This sRGB-level process-
ing was performed by a polynomial color mapping—e.g.,
the KNN white balance method (KNN-WB) [16] and the
interactive white-balance method (I-WB) [19]—or via deep
neural networks—e.g., the deep white balance methods (D-
WB) [18,20].

Inspired by this research direction, our solution also pro-
poses to avoid any raw reconstruction and processes the
input image in its original space (i.e., the sRGB space). Due
to the remarkable results achieved by deep learning meth-
ods in several research fields, such as computer networking
and communications [21–23], we propose a deep learning-
based method to solve our problem. In contrast with prior
work (e.g., [16,18–20]), our proposed solution consists of
two different stages to re-white balance the input image. The
first stage estimates global mapping parameters to correct
the input image colors without considering its spatial infor-
mation. Then, the second stage locally processes our initial
corrected image based on its spatial information to generate
the final corrected image. Figure 1 shows our result compared
to the state-of-the-art methods [16,20].

The major contributions of this work can be summarized
as follows:

1. Wepropose a novel framework tofixwhite-balance errors
in sRGB images through a two-stage correction proce-
dure.

2. Unlike recentwork that treats improperlywhite-balanced
images through global color mapping operation, our
two-stage framework first processes input image colors
globally based on its color distribution to generate an ini-
tial corrected image. This initial solution is then improved
by learning a residual layer to locally adjust our initial
result to generate the final image. This two-stage strat-
egy improves the perceptual results by considering local
enhancements of the input image.

Extensive experiments are conducted on challenging test
sets, and we show that our method produces competitive
results when comparing with the state-of-the-art methods
for correcting improperly white-balanced sRGB images. The
rest of this paper is organized as follows. In Sect. 2, the
methodology is presented. Section 3 presents the evaluation
of our method through a set of experiments, ablation stud-
ies, and comparisons between the proposed method and the
state-of-the-art methods. Finally, the paper is concluded in
Sect. 4.

2 Method

We present a learning framework to correct the sRGB colors
of input images that were rendered with camera white-
balance errors. Figure 2 shows anoverviewof our framework.
As shown, our framework consists of two steps to re-white
balance the input sRGB image. In the first step, we apply
a global mapping to the input sRGB image, Iin, in order to
correct its colors in the sRGB space. This mapping process
can be described as follows:

ÎGcrr = C ϕ (Iin) , (1)

C = N1 (H (Iin) ,�1) , (2)

where ϕ is a kernel operator that projects the three sRGB
color channels into the high-dimensional space, as follows
ϕ

(〈R,G, B〉T ) = 〈R,G, B, RG, RB,GB, R2,G2, B2〉T ,
and C is a 3 × 9 matrix generated by our network N1 that
accepts the color histogram H (·) of Iin and processes it with
its trainable weights �1.

In Eq. (2), we mentioned that our first network, N1,
accepts a color histogram feature of the input image, Iin.
This histogram feature represents the color distribution of the
input sRGB image, Iin. To create a dense histogram feature,
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Fig. 2 Our re-white-balancing method processes the input image through two networks (N1 and N2). Our networks (i.e., N1 and N2) are trained in
an end-to-end manner to produce the final sRGB image, Îcrr with correctly white-balanced colors. See Sect. 2 for more details (color figure online)

we rely on the RGB-uv histogram proposed in prior work
[1,13,16,24]. In particular, we create a 64×64×3 histogram
feature of the input image Iin in the the log-chrominance
space [9,11,25] as follows:

H(Iin, d) =
∑

i

Iiny(i)abs(Iinu j(i) − u) <
ε

2
∧

abs(Iinv j(i) − v) <
ε

2
, (3)

where d refers to 〈u, v, c〉, j refers to each color channel
in the generated histogram feature, ε is the histogram’s bin
size, and i = {1, . . . , n} is the pixel index (here, n is the total
number of pixels in the input image). The values of Iiny(i) ,
Iinu j(i) , Iinv j(i) are computed as follows:

Iiny(i) =
√
I 2inR(i)

+ I 2inG(i)
+ I 2inB(i)

,

Iinu1(i) = log
(
IinR(i)

) − log
(
IinG(i)

)
,

Iinv1(i) = log
(
IinR(i)

) − log
(
IinB(i)

)
. (4)

Likewise, Iinu2 , Iinv2 , Iinu3 , and Iinv3 are generated as fol-
lows:

Iinu2 = −Iinu1 , Iinv2 = −Iinu1 + Iinv1 ,

Iinu3 = −Iinv1, Iinv3 = −Iinv1 + Iinu1 . (5)

Finally, the histogram feature is normalized by the sum-
mation of the histogram’s bin values.

This global correction is similar to what was proposed by
prior work [16,19] in the sense that the work in [16,19] also
uses global correction to map from the sRGB input colors to
the corresponding sRGBground truth colors. This global cor-
rection was computed based on a K nearest-neighbor search
(KNN) in prior work [16]. In contrast, our proposedmapping
is learned by a neural network and it is followedbyour second
step that locally processes the image. This ismotivated by the
fact that camera ISPs apply local tone mapping that results

in spatially varying color changes in the final sRGB image
[17]. Thus, we first generate our initial correction through a
global mapping followed by a local processing that is applied
in the second step.

The second step of our framework locally adjusts the fine-
details of the globally corrected image, ÎGcrr , via another
neural network N2. This fine-details adjustment is applied to
improve the quality of our initial correction and to deal with
over-saturated pixels that are hard to correct by solely global
polynomial mapping. Our second network, N2, accepts the
output of the first step and produces a residual layer to gener-
ate our final output image Îcrr as described in the following
equation:

Îcrr = N2

(
ÎGcrr ,�2

)
+ ÎGcrr , (6)

where�2 represents the trainable weights of our second net-
work N2.

2.1 Network architecture

As explained earlier, our framework consists of two neural
networks (i.e., N1 and N2). The first network, N1, accepts
a 64 × 64 × 3 histogram feature and produces the mapping
parameters in C . This network, N1, consists of four fully
connected layers, as shown in Fig. 2. We use the leaky ReLU
(LReLU) operator as our activate function applied to the out-
put of second and third fully connected layers. A dropout
rate of 0.5 is applied to the output of the third fully con-
nected layer. The output fully connected layer has 27 output
neurons to construct the mapping matrix C .

After processing the histogram feature of the input sRGB
image, Iin, we produce the globally corrected image, ÎGcrr

(as described in Eq. 1). This image is then fed to the second
network, N2, which is a U-Net-based network [26] with four
encoder blocks, four decoder blocks, two bottleneck blocks
and skip connections.
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Table 1 Results on the
Rendered WB dataset [16]

Method MAE �E 2000 [35] Model size Test time

Extrinsic test set (2881 images)

GW [34] 8.89◦ 10.74 – –

SoG [6] 9.54◦ 10.01 – –

FC4 [32] 8.92◦ 12.12 5.89 0.13

Quasi-U CC [33] 12.95◦ 11.82 622 MB 0.56

D-WB [20] 3.75◦ 4.90 16.7 0.21

KNN-WB [16] 4.48◦ 5.60 21.8 0.12

I-WB [19] 5.35◦ 6.74 0.038 0.04

Ours 4.33◦ 6.83 31.6 0.19

Cube test set (10,242 images)

GW [34] 6.85◦ 9.01 – –

SoG [6] 6.69◦ 7.70 – –

FC4 [32] 6.7◦ 10.4 5.89 0.13

Quasi-U CC [33] 6.35◦ 7.29 622 0.56

M-WB [31] 4.05◦ 4.89 5.10 0.23

D-WB [20] 3.45◦ 4.59 16.7 0.21

KNN-WB [16] 4.12◦ 5.68 21.8 0.12

I-WB [19] 4.64◦ 6.2 0.038 0.04

Ours 3.77◦ 6.44 31.6 0.19

In addition to our results, this table shows the results of the following methods: gray-world (GW) [34],
shades-of-gray (SoG) [6], FC4 [32], quasi-unsupervised color constancy (Quasi-U CC) [33], interactive white
balance (I-WB) [19], KNN white balance (KNN-WB) [16], and deep white-balance (D-WB) [20]. We used
the following evaluation metrics: the mean angular error (MAE) and 4E 2000 [35]. We also report model sizes
in mega-bytes of learning-based methods (including ours) and average testing GPU time to process a single
image in seconds. Our results are indicated with boldface

Table 2 Ablation study on the effect of the networks (i.e., N1 and N2) on our final results

Method MAE �E 2000 [35]

Ours (w/o N2) 10.12◦ 10.95

Ours (w/o N1) 4.72◦ 6.97

Ours (w/o Lper, λ = 0) 6.07◦ 8.31

Ours (w/ Lper, λ = 1) 5.85◦ 7.94

Ours (w/ Lper, λ = 0.5) 4.79◦ 7.25

Ours (w/ Lper, λ = 0.1) 4.33◦ 6.83

We further report the results of our method trained with and without the perceptual loss Lper. In these experiments, we used the Extrinsic Test Set
in the Rendered WB dataset [16]. The best results are indicated with boldface

Each encoder block in N2 consists of conv–LReLU–conv–
LReLU-maxpool layers, each bottleneck block has conv–
LReLU layers, and each decoder block consists of applying
a 2D transposed conv (Tconv) operator followed by conv–
LReLU–conv–LReLU layers. The first encoder block maps
the input images into a latent space with 24 output channels.
The output of each proceeding encoder block is doubled by
a factor of 2 to reach 192 output channels by the last encoder
block. After the second and fourth encoder blocks, we apply
an instance normalization operation [27]. Then, the latent
representation, X , produced by the last encoder block is first
processed by the latent feature generated by the first fully

connected layer in N1. This dual-use of the latent feature in
N1 helps the local network (i.e., N2) to get some cues of
the global color distribution in the image. We use the leaked
feature from N1 to apply an affine transformation to the latent
representation X as follows:

X ′
(i, j, f ) = t fX(i, j, f ) + s f , (7)

where {t1, t2, . . . , t192} and {s1, s2, . . . , s192} represent the
latent feature vector produced by the first fully connected
layer in N1 (see Fig. 2).
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Fig. 3 Qualitative results for
post-capture white-balance
correction on the Extrinsic Test
Set of the Rendered WB dataset
[16]. This figure shows the
results of: (1) KNN-WB [16],
(2) I-WB [19], and (3) our
method. For each image, we
show the corresponding ground
truth correctly white-balanced
sRGB image

Input image KNN-WB I-WB Our method Ground truth image

After applying this affine transformation (Eq. 7), the
output feature is processed by two bottleneck blocks with
384 and 192 output channels, respectively. Our decoders
then processes this latent representation along with the
skipped latent representation produced by each correspond-
ing encoder blocks. Note that the skip connections are taken
before applying the maxpool operator in each encoder block
and concatenated with the result of the 2D transposed conv
operator in each corresponding decoder block.

Finally, we apply a single conv layer with 1 × 1 kernel
followed by a tanh activation function to generate a residual
layer that is then used to generated the final output image Îcrr
(as described in Eq. 6).

2.2 Training details

Wetrainedour networks (i.e., N1 and N2) for 100 epochs in an
end-to-end manner to minimize the following loss function:

L = LN1 + LN2 + λLper, (8)

where LN2 is the L2 between our corrected image, Îcrr, and
the ground-truth white-balanced image, Icrr, LN1 is the L2
between the globally corrected image, ÎGcrr , and the ground-
truth white-balanced image, Icrr, Lper is the perceptual loss
[28] between Îcrr and Icrr, and λ and is a hyperparameter
used to control the effect of Lper on the final loss. In our
experiments, we set λ 0.1.

Note that as our framework is trained in an end-to-end
scheme, the output 3 × 9 correction matrix from N1 is first
applied to the input image, and then the first loss term in
Eq. (8),LN1 , is computed. ThisLN1 loss term encourages the
network to produce proper parameters in the output matrix
to correct the colors of Iin. That is, the network learns the
parameters of this matrix unsupervisedly. Afterward, the sec-
ond network, N2, receives the output of the globally corrected
image, ÎGcrr , and the second loss term, LN2 , encourages the

second network, N2, to correct local residual errors in ÎGcrr

to get the final corrected image, Îcrr.
To optimize Eq. (8), we used Adam optimizer [29] with

beta values 0.9 and 0.999 and learning rate of 10−4 dropped
by a factor of 0.5 each 25 epochs. We used mini-batch size of
16 and regularized the weights �1 and �2 of our networks
using L2 regularization with a multiplier of 10−5.

In order to improve the training process, we interchange-
ably optimize�1 to separately minimizeLN1 (by processing
the input data by only N1 and disabling N2), and then we
process the input data through the entire framework (i.e., N1

and N2) to minimize Eq. (8) at each iteration.
We train our framework using patch-wise training, where

we randomly select 128×128 training patches from the full-
size training images, while generate the histogram feature H
from the entire training images. This allows our first network,
N1, to have global cues of the color distribution in the training
image in order to predict suitable mapping parameters for
each image.We followed the same procedure in the inference
phase by using the histogram of the entire test image, while
feeding the full-size test image to our second fully connected
network, N2.

3 Experimental results

We trained our network on the Intrinsic Set of the Rendered
WB dataset [16]. This set includes 62,535 sRGB images ren-
dered by several DSLR camera devices. For evaluation, we
tested our method on the Extrinsic Test Set of the Rendered
WB dataset [16], which includes 2881 images captured by a
DSLR camera and several mobile phone cameras. Further-
more, we tested our method on the Cube Test Set that has
10,242 camera-rendered images with several white-balance
settings [16,30].
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Fig. 4 Qualitative results for
post-capture white-balance
correction on the Cube Test Set
of the Rendered WB dataset
[16]. This figure shows the
results of: (1) KNN-WB [16],
(2) I-WB [19], and (3) our
method. For each image, we
show the corresponding ground
truth correctly white-balanced
sRGB image

Input image KNN-WB I-WB Our method Ground truth image

Input image Without perceptual loss

With perceptual loss Ground truth image

Fig. 5 Qualitative comparison of our results with and without the per-
ceptual loss Lper. For each image, we show the corresponding ground
truth correctly white-balanced sRGB image

3.1 Comparisons

Wecompared our resultswith the recently publishedwork for
correcting improperly white-balanced images. In particular,
we reported the results of the followingmethods: deepwhite-
balance (D-WB) [20], KNN white balance (KNN-WB) [16],
the interactive white balance (I-WB) [19], and mixed white-
balance (M-WB) [31]. We further compare our method
with other deep-learning-based and statistical-based color
constancymethods: FC4 [32], quasi-unsupervised color con-

stancy (Quasi-U CC) [33], the shades-of-gray (SoG) method
[6], and the gray-world (GW) method [34] (Table 1).

We followed prior work [16,20] in adopting the mean
angular error (MAE) and 4E 2000 [35] as our evaluation
metrics. Table 3 shows the quantitative results. Finally, we
show qualitative comparisons in Figs. 1, 3, and 4.

3.2 Ablation studies

We studied the behavior of our method with different options
in design and loss function. The first part of Table 2 shows
the results of our ablation study. We reported our results
on the Extrinsic Set of the Rendered WB dataset [16] after
training our network without the global and local processing
networks; i.e., N1, N2, respectively. It is worth mentioning
that when we disabled N1, we substituted ÎGcrr with Iin in
Eq. (6). In addition to this ablation study, we showed the
results of our framework after training without the percep-
tual loss term, Lper (i.e., λ = 0), and with different values
of λ, which controls the contribution of the perceptual loss
in Eq. (8). The qualitative evaluation of our result with and
without the perceptual loss is shown in Fig. 5. Finally, we
studied the effect of different training mini-batch and image
patch sizes on our results. The results of this study are shown
in Table 3.

Table 3 Ablation study on the
effect the mini-batch size and
the input patch size on our
results

Setting MAE �E 2000 [35]

Mini-batch size = 4, patch size = 128 × 128 8.68◦ 9.69

Mini-batch size = 12, patch size = 128 × 128 7.27◦ 8.12

Mini-batch size = 24, patch size = 128 × 128 5.89◦ 7.99

Mini-batch size = 48, patch size = 128 × 128 5.37◦ 7.76

Mini-batch size = 12, patch size = 256 × 256 8.67◦ 9.69

Mini-batch size = 24, patch size = 256 × 256 4.33◦ 6.83

In these experiments, we used the Extrinsic Test Set in the Rendered WB dataset [16]. The best results are
indicated with boldface
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4 Conclusion

We have presented a deep learning framework to correct
sRGB images that were saved by camera ISPs with wrong
white-balance settings. Our framework processes the input
image through two main stages to first correct its colors by
learning a global mapping parameters that map the input
image colors to the corresponding corrected white-balanced
ones. Then, we produce a learnable residual layer that locally
adjusts our initial result. We have evaluated our two-stage
correction method on large test sets of improperly white-
balanced sRGB images and showed promising results that
are on par or better compared to recently published meth-
ods for color constancy and image white balancing. One
interesting direction in future work may be the use of XAI
techniques [36,37] for understanding (and possibly improv-
ing) the behavior of the proposed network.
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