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Abstract
A method for estimating key parameters of ocean waves (the dominant frequency and the significant wave height) from
uncalibrated monoscopic video is proposed, based on temporal variation of the wave field, specifically time series of pixel
intensities. The methodology tracks the principal component of the movement of water in the video, which we propose is
associated with the dominant frequency of the ocean. To accomplish this, the singular spectrum analysis algorithm and the
extended Kalman filter are used. Then, the shape of an empirical spectrum is used in order to translate the dominant frequency
output into a significant wave height estimation.

Keywords Ocean video · Sea state · SSA algorithm

1 Introduction

The availability of the sea state is considered important in
the case of some critical maritime operations [4]; for exam-
ple, landing helicopters on ships is more dangerous in higher
sea states. Additionally, the construction of ocean structures,
platforms and ships is more robust when sea state informa-
tion is available. This brings the need for instruments that
can measure the ocean surface and techniques and methods
that can use this data in order to provide accurate and reliable
information about the state of the sea.

The ocean surface is usuallymeasuredwith in situ devices,
such as wave buoys and tidal gauges [15,20]. In the literature,
algorithms such as harmonic analysis [28] and the wavelet
network model [12] are applied on tidal gauge data in the
nearshore for the prediction of the water level. The ocean
surface can also be measured with remote sensing devices,
such as shipborne radars [8], satellites [6] and video cameras
[5].
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This work investigates the estimation of the sea state
from a single uncalibrated camera. We do not utilise tech-
niques that are used for the prediction of the wave elevation
from tidal gauges (such as harmonic analysis and wavelet
networks) because the pixel intensity from video does not
correspond directly to wave elevation. The pixel intensity
can be considered proportional to the lights reflected from
the water surface [11].

Remote sensing from simple video cameras has been
widely applied for acquiring the nearshore hydrodynamics
andmorphology [7,14,26]. The bathymetry is estimated with
a celerity-based depth-inversion method that utilises the dis-
persion relation of shallow water and the spatial correlation
of pixel intensity signals indicating propagation of waves.
Based on this information, the nearshore sea levels [9,18]
and current predictions [22] are acquired.

The present work presents a technique that is applicable to
real environments (unlike [11]), deep water (unlike [18,19,
27,29,30]), does not use in situ devices for calibration (unlike
[11,30]) and is validated with videos that have corresponding
in situ measurements in a variety of sea states (unlike [19,
23–25]). Unlike the techniques that estimate hydrodynamics,
morphology or sea state in the nearshore, this work does not
utilise information of foam from breaking waves. (In deep
water, foam is present in very high sea states.)

In our previous work [16], we use the linear Kalman fil-
ter and the least squares approximate solution in order to
form the uncalibrated ocean video amplitude spectrum. We
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then use ocean theory in order to calibrate this spectrum into
metres and estimate the significantwaveheight. In the present
work, the goal is to solve the same problem with a novel
methodology. We verify the sea state estimations with the
same video data as before.

We start, in Sect. 2, by providing an introduction to key
ocean theory used by the methodology, before describing the
methodology itself (Sect. 3), and then demonstrating its effi-
cacy on real videos of the sea,with in situ buoymeasurements
for validation (Sect. 4).

2 Ocean theory: the Pierson–Moskowitz
spectrum

The Pierson–Moskowitz spectrum [21] is an empirical spec-
trumof the ocean formed fromdata acquired fromaccelerom-
eters installed on weather ships. The spectral energy in terms
of angular frequency ω is expressed as:

S(ω) = αg2

ω5
exp

(
−β

(ω0

ω

)4)
(1)

where α = 8.1× 10−3, β = 0.74, g is the gravitation accel-
eration and ω0 = g/U , whereU is the wind speed at 19.5 m
above the ocean surface. The dominant angular frequency
ωm is equal to:

ωm = 0.87
g

U
(2)

The area under the spectrum is equal to the integral of the
function:

∫ ∞

0
S(ω)dω = αU 4

4βg2
(3)

The significant wave height can be found to be equal to four
times the square root of the area under the spectral density
[3].

3 Methodology

The aim of this work is to track the main oscillatory com-
ponent from video time series of pixel intensities that is
associated with the ocean’s movement. This enables the esti-
mation of the ocean dominant frequency and the significant
wave height. To achieve this, a methodology is introduced
that combines the SSA algorithm and the nonlinear Kalman
filter. It also incorporates ocean theory presented in Sect. 2.

Fig. 1 Example of matrix of w-correlations of SSA algorithm from
ocean video. From this example, a correlation of certain PCs is visible,
such as PCs 1–2, 3–4, 5–6, 7–8. Additionally, some higher PCs can be
considered to contain more noise (PCs 11-max)

3.1 Singular spectrum analysis (SSA) algorithm

Historically, the SSA algorithm is associated with work pub-
lished in the 1980s, e.g. [10]. In the context of time series
analysis, the SSA algorithm decomposes the input signal into
a set of additive components, which are labelled as either
trend, oscillatory or noise components.

In the context of this work, time series of pixel intensi-
ties is given to the SSA algorithm. The first four elementary
reconstructed components (RCs) are summed to provide a
new time series, which is given to the extended Kalman filter
in order to estimate the dominant frequency. The hypothesis
is that the SSA algorithm will concentrate the information of
the central component from the video, which is associated
with the dominant wave of the ocean, in the first RCs.

Although it would be expected that the dominant fre-
quency is isolated in the first RC, practically this was not
found to be the case. Empirically, selecting the first four in
all cases (see Sect. 4.2) was sufficient. This selection is also
based on observations from the matrix ofw-correlations (see
Fig. 1). Specifically, in many cases it was observed that the
first four RCs had a strong correlation.

The next step involves the determination of the dominant
frequency from the sum of RCs 1–4 of the SSA algorithm.
Practically, the Fourier transform of this time series includes
more than one peak. Selecting the highest peak does not in all
cases correspond to the dominant frequency of the ocean (see
Fig. 2). Since this selection ofRCsusually includesmore than
onewave, determining one frequency is not a straightforward
task. This is the reason the extended Kalman filter is used in
the following step.
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Fig. 2 Example of Fourier transform of the sum of RCs 1–4 of the
SSA algorithm from shipborne video (solid blue line) showing multiple
peaks that do not correspond to the ocean dominant frequency (here
indicated with red dashed line from buoy measurements) (color figure
online)

3.2 Extended Kalman filter algorithm

The extended Kalman filter algorithm with the environment
definition described in the following text is very efficient at
distinguishing one main frequency and isolating the remain-
ing video elements as noise. As mentioned in the previous
section, the goal is to identify the principal component of
water movement from the sum of RCs 1–4, which is hypoth-
esised to be related to the dominant wave of the ocean. The
true signal is a sinusoid:

x = a sin(ωt + φ) (4)

where a is the amplitude, φ the phase, and t is the time. The
derivative of the signal with respect to time is equal to:

ẋ = aω cos(ωt + φ) (5)

and the second derivative:

ẍ = −aω2 sin(ωt + φ) (6)

The second derivative can be expressed as a function of the
angular frequency and the true signal as:

ẍ = −ω2x (7)

This is useful in the context of this work, because it does
not include amplitude and phase, and instead focuses on the
true signal. Additionally, the sinusoidal form of the signal is
now included in the environment definition. The environment
definition is:

g =
⎛
⎝ ẋ
ẍ
ω̇

⎞
⎠ =

⎛
⎝ 0 1 0

−ω2 0 0
0 0 0

⎞
⎠

⎛
⎝ x
ẋ
ω

⎞
⎠ (8)

The Jacobian of matrix g is computed at each time step
with the current estimates of the states. By taking the par-
tial derivatives of the matrix, the system’s dynamics matrix
F is found to be equal to:

F = ∂g
∂x

=
⎛
⎝ 0 1 0

−ω̂2 0 −2ω̂x̂
0 0 0

⎞
⎠ (9)

where ω̂ is the predicted value or estimate of ω and similarly
x̂ is the predicted value or estimate of x at the current time
step. The fundamental matrix is not used for propagating
the states, but rather only for the calculation of the gains,
and is approximated with the first two terms of Taylor series.
With the environment definition described here, the nonlinear
Kalman filter can be solved as in [2].

The derivative of the angular frequency is equal to zero.
The true state of the angular frequency is constant because
the sea state is not expected to change in the duration of the
video. Although the unknown true state of the angular fre-
quency is constant, the algorithm’s estimation of this value
varies at each iteration, as can be seen in Fig. 3c. Includ-
ing the angular frequency is our environment definition is
important because the value estimate is used for inferring the
value of the significant wave height in the next step of the
methodology.

The Kalman filter outputs a value of the unknown angu-
lar frequency. This angular frequency can be used directly
as the ocean dominant angular frequency. In the follow-
ing section, this value is given as input to the theory of
the Pierson–Moskowitz spectrum in order to get a value of
the significant wave height. As a side note, the described
methodology is performed on one pixel time series. For
acquiring more accurate and reliable dominant frequency
estimations, a set of pixels (or all pixels) can be used
individually and the dominant frequency is found as the aver-
age. In the case of the experimental results of this work
(see Sect. 4), a set of pixels equal to the image width is
used.

Figure 3 demonstrates the functionality of methodology.
The time series of pixel intensities is used as input to the
SSA algorithm, and the principal component of the move-
ment of water in the video is speculated to be included in
the sum of RCs 1–4 (Fig. 3a). This main component is iso-
lated from all other video components with the extended
Kalman filter (Fig. 3b). The filter provides an estimate
of what we hypothesise to be the ocean dominant angu-
lar frequency in each time step (Fig. 3c) and the limits of
certainty for that prediction from the square root of the
corresponding diagonal element of the covariance matrix
(Fig. 3d).
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(a) SSA algorithm (b) Extended Kalman filter

(c) Angular frequency estimation (d) Theoretical errors in the estimation.

Fig. 3 Example of running the methodology with shipborne video. a
Time series of pixel intensities from video (solid blue line) and the sum
of reconstructed components (RCs) 1–4 of the SSA algorithm (dashed
red line) b The extended Kalman filter (first state estimate in dashed
red line) attempts to establish one main frequency from the sum of RCs
1–4 (solid blue line). The extended Kalman filter gives in the third state

the estimate of the unknown angular frequency. c Angular frequency
estimation (third state) of the extended Kalman filter in regard to time
compared to in situ buoy measurements. d Theoretical errors in the
angular dominant frequency estimation in regard to time (color figure
online)

3.3 Significant wave height

The significant wave height (hs) can be found as equal to
four times the square root of the area under the ocean spectral
density [3]. The dominant frequency from the previous steps
can be given as input to the Pierson–Moskowitz spectrum
equation (see Sect. 2). The shape of this empirical spectrum
can then be used in order to approximate hs . From Eqs. (2)
and (3), hs can be expressed in terms of dominant angular
frequency ωm (found in the previous steps) as:

hs = 2

(
0.87

ωm

)2 √
α

β
(10)

whereα = 8.1×10−3 andβ = 0.74. The values of dominant
frequency and significant wave height are the outputs of the
methodology.

4 Experimental results

Two sets of video data that have corresponding in situ mea-
surements are used in order to test the accuracy of the
proposed technique. Both sets comprise videos with dura-
tion of approximately one minute. The first set is taken from
a shipborne camera in experiments done on the 24 Novem-
ber 2014 in the North Atlantic sea. Two buoys measured the
ocean at the same time in a nearby location. The sea state
in this set of videos is approximately the same, as the state
is not expected to change in a large degree in the time span
of a few hours. The significant wave height of the shipborne
video is approximately 3.1m-3.4m.

The second set of video data is taken from a camera on the
Frying Pan Shoals tower, a former lighthouse located approx-
imately 39 miles southeast of Southport, North Carolina. A
24-h live video footage of the ocean is available online [13].
Although the camera is panning showing a panoramic view,
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Shipborne and tower video data. a Ship video with horizon stabilisation b Ship video left tracking point c Ship video after preprocessing d
Tower video e Buoy station 41013 f Tower video after preprocessing. Lines in (c) and (f) denote the selection of pixels utilised for the estimations

in some time instances the camera is stable at fixed positions,
enabling us to capture the ocean surface. A nearby buoy, sta-
tion 41013 [17], owned and maintained by the National Data
Buoy Center provides sea state measurements.

4.1 Preprocessing

The preprocessing step involves stabilisation. For the ship-
borne video, the rotational movement of the ship (pitch, roll,
yaw) is stabilised by stabilising the horizon. This is achieved
with the rotational tracker of Adobe After Effects [1]. Two
rectangles are drawn above the video in order to stop the
tracking points from moving horizontally while tracking the
horizon. Figure 4a shows a typical frame from ship video
and the rectangles drawn in order to track the horizon, and
Fig. 4b presents how each tracking point is selected.

For the tower video, the video is stabilised only in cases of
high local windwith the stabilisation features of AdobeAfter
Effects. A single set of pixel locations is used for computa-
tional efficiency as in Fig. 4c and f. Figure 4c presents the
result from ship video after preprocessing. Figure 4d shows
a typical frame from tower video and Fig. 4f the result after
preprocessing.

4.2 Mainmethodology

The first set of data from the ship examine the behaviour
of the methodology for an approximately statistically sta-
tionary sea state. The second set of data from the tower

examine the behaviour for a variety of sea states, as the videos
were captured in different days. The SSA algorithm is run
in all cases for a window length of 350, which is determined
empirically.

Thematrix ofw-correlations provides a good indication of
whether the window is too small or too large. Specifically, in
cases of smaller window size the association between RCs in
the main diagonal is weak (the model is too general). With a
larger window size, high values are concentrated in positions
further away from the main diagonal. In this case, it can be
interpreted as the algorithm is overfitting. From empirical
observations, the estimations are relatively insensitive to the
window length. That is, even if different window lengths are
used (for example 250 or 450) the impact on the estimations
is minimal (see Sect. 4.3).

The shipborne results are presented in Fig. 5. Each point
represents a one minute video captured in the same day.
The buoys were deployed on the sea surface after 9:15 a.m.,
any videos before then are presented here only to show the
behaviour of the methodology. As mentioned, the sea state
is not expected to change in a large degree in the span of 1 h.
The error metrics between the video estimations and buoy
measurements are presented in Table 1.

From Fig. 5, it is observed that the video estimations vary
in values but are close in proximity towhat the buoys indicate
to be the true sea state. FromTable 1, the 0.19mofRMSEand
4.83% of MAPE indicate that the video estimations are not
very distant from the buoy measurements. Until this point,
the results support the hypothesis of the present work that
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Fig. 5 Shipborne video showing stability of video estimations of a
similar sea state and correlation of the significant wave height (hs ) esti-
mation between video and buoys. Buoy 1 hs = 3.18 m (9:15–10:00
am), hs = 3.18 m (10:00–11:00 am), Buoy 2: hs = 3.15 m (9:15–
10:00 am), hs = 3.41 m (10:00–11:00 am). Videos before 9:15 am do

not have corresponding buoy measurements. They are included in this
figure because the sea state is not expected to change in a large degree in
the time span of 1 h. They are useful in demonstrating that the method-
ology provides consistent estimations for approximately the same sea
state

Fig. 6 Tower video results showing correlation of the significant wave height (hs ) estimation between video and buoy across a variety of sea states.
Buoy hs : min = 0.5 m, max = 3.6 m. The dashed lines denote the significant wave height range of the sea states according to the Beaufort scale

Table 1 Error metrics with shipborne video (includes only videos with
concurrent buoy sea state)

Error metric Value

Mean absolute error (MAE) 0.15

Root mean square error (RMSE) 0.19

Mean absolute percentage error (MAPE) 4.83

the methodology estimates the significant wave height in a
satisfactory degree of accuracy.

The tower video are used for examining the behaviour of
the method across a variety of sea states. The tower video
results are presented in Fig. 6. Each point represents a video
captured on a specific date. The technique estimates lower

dominant frequencies (higher hs) for higher sea states and
higher dominant frequencies (lower hs) for lower sea states,
as expected.

The error metrics from tower video are presented in
Table 2. Although the error metrics of 0.23 m RMSE and
15.29% of MAPE are higher than the ones observed from
shipborne video, they still remain in acceptable levels in
showing that the estimations are meaningful. It should be
mentioned that theMAPEmetric provides higher error when
the pairs of true-estimated values are lower. This is one pos-
sible reason for the higher value of MAPE with the tower
video, as the tower video is captured in both lower and higher
sea states. The experimental results show the methodology’s
potential for estimating the significant wave height.
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Table 2 Error metrics with tower video

Error metric Value

Mean absolute error (MAE) 0.19

Root mean square error (RMSE) 0.23

Mean absolute percentage error (MAPE) 15.29

4.3 Sensitivity analysis

From the matrix of w-correlations (see Fig. 1), it is observed
that in many cases the first two or the first four elementary
reconstructed components (RCs) have a strong correlation.
It is also observed that components after RC 10 contain more
noise. Additionally, there is a strong correlation between dif-
ferent components, such as RCs 3–4 and RCs 5–6.

From empirical observations with multiple videos, the
selection of only the first two RCs does not provide accurate
estimations. The selection of RCs 1–4, 1–6 and 1–8 provides
more accurate estimations. From RCs 1–10 and higher the
estimations become less accurate. Possible reason for this
effect is the inclusion of more noise as the component num-
ber increases. For example, see Fig. 7.

In terms of the window length parameter of the SSA algo-
rithm, values have been tested ranging from 50 to 1000 (the
number of frames is approximately 1000 for the shipborne
video and 2000 for the tower video). For values between 100
and 850, the sea state estimation does not vary in a large
degree. For example, see Fig. 8.

The speculation for the less accurate results with a small
window size is that the model is too general; that is, the
association between the different elementary reconstructed
components (RCs) is not clearly defined. Similarly, the spec-
ulation for the less accurate results with a very high window
size is that the model is too specific; that is, the association
between the different RCs is overspecified.

Fig. 7 Example of sensitivity analysis with a varying selection of RCs
of the SSA algorithm with tower videos as input. The root mean square
error (RMSE) for the estimation of the significant wave height

Fig. 8 Example of sensitivity analysis with a varying window size of
the SSA algorithm with tower videos as input. The root mean square
error (RMSE) for the estimation of the significant wave height

A two-term Taylor series is used for approximating the
fundamental matrix, which is only used for the calculation
of the Kalman gains. The sea state estimation is approxi-
mately the same with the use of higher-order Taylor series.
Up to five-term Taylor series have been included for the
sensitivity analysis, with no significant improvements in the
estimation of the sea state. Includingmore terms could poten-
tially be beneficial if the approximate fundamental matrix
was used for propagating the states. However, in this work
the propagation of the states is achieved with integration of
the differential equations over the sampling interval.

5 Conclusion

The range of significant wave height for which the technique
is tested is between 0.5 and 3.6 m. Higher sea states are not
examined, and thus, the applicability in such instances is not
known. Testing the technique in stable and varying sea states
shows the potential of the methodology at estimating the sea
state from video.

Future work will include further testing for higher sea
states. In the context of practical utilisation of the present
work, in some cases estimation of higher sea states might
not be required. For example, in the case of use of the work
for the execution of maritime operations, very high sea states
can already be identified.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
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unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
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