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Abstract
We propose a greedy variational method for decomposing a non-negative multivariate signal as a weighted sum of Gaussians,
which, borrowing the terminology from statistics, we refer to as a Gaussian mixture model. Notably, our method has the
following features: (1) It accepts multivariate signals, i.e., sampled multivariate functions, histograms, time series, images,
etc., as input. (2) The method can handle general (i.e., ellipsoidal) Gaussians. (3) No prior assumption on the number of
mixture components is needed. To the best of our knowledge, no previous method for Gaussian mixture model decomposition
simultaneously enjoys all these features.We also prove an upper bound, which cannot be improved by a global constant, for the
distance from any mode of a Gaussian mixture model to the set of corresponding means. For mixtures of spherical Gaussians
with common variance σ 2, the bound takes the simple form

√
nσ . We evaluate our method on one- and two-dimensional

signals. Finally, we discuss the relation between clustering and signal decomposition, and compare our method to the baseline
expectation maximization algorithm.

Keywords Gaussian mixture model (GMM) · Matching pursuit (MP) · Variational greedy approximation · Electron
microscopy

1 Introduction

Mixtures of Gaussians are often used in clustering to fit
a probability distribution to some given sample points. In
this work we are concerned with the related problem of
approximating a non-negative but otherwise arbitrary sig-
nal by a sparse linear combination of potentially anisotropic
Gaussians. Our interest in this problem stems mainly from
its applications in transmission electron microscopy (TEM),
where it is common to express the reconstructed 3D image
as a linear combination of Gaussians [5–8]. Consequently,
because the projection of a Gaussian is a Gaussian, TEM
projection data can be treated as 2D images made up of lin-
ear combinations of Gaussians [14].

Methods for sparse decomposition of multivariate signals
as Gaussian mixture models (GMMs) may be considered in
two classes. The first class contains methods based on the
expectation maximization algorithm that is commonly used
for fitting a GMM to a point-cloud and adapt it to input data
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in the form of multivariate signals [7,8]. The second class is
the class of greedy variational methods [4,5,9]. The proposed
method, which belongs to the latter class, is similar to—and
is inspired by—both [9] and [5]. It is a continuously param-
eterized analogue of orthogonal matching pursuit where at
each iteration the L2-norm of the error is non-increasing. The
significance of the proposed method, and what distinguishes
it from earlier work on GMM decomposition of signals, is
that

1. The resulting GMM may contain ellipsoidal Gaussians.
This allows for a sparser representation than what could
be achieved with a GMM only consisting of spherical
Gaussians.

2. The number of Gaussians does not need to be set before-
hand.

We are not aware of previous methods for GMM decompo-
sition of signals that enjoys both of these properties at the
same time.

We complement our algorithm with a theorem (Theorem
1) that upper bounds the distance from a local maximum of
a GMM to the set of mean vectors. This provides theoret-
ical support for our initialization of each new mean vector
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Fig. 1 Results from Experiment 1

at a maximum of the residual. We remark that Theorem 1
could also be of interest in its own right. Indeed the number
of modes of Gaussian mixtures has been investigated previ-
ously [1,3], but the authors of this paper are not aware of any
existing quantitative bounds on the distance from a mode of
a GMM to its mean vectors in the multivariate setting.

The rest of this paper is organized as follows. In Sect. 2 we
define the GMM decomposition problem. Section 3 contains
a description of the proposed algorithm together with numer-
ical examples. Section 4 is devoted to theoretical questions;
in particular, we state and prove the afore-mentioned upper
bound. Finally, in Sect. 5 we provide a conclusion.

2 Problem statement

For x0 ∈ R
n and� ∈ R

n×n symmetric non-negative definite
we define g(x0, �) as the Gaussian density in n dimensions
with mean vector x0 and covariance matrix �2, i.e.,

g(x0, �)(x) := C� exp

{
−1

2
(x − x0)

T �−2 (x − x0)

}
,

where C� is a normalizing factor, ensuring that |g(x0, �)|1
= 1. Further, by a GMM we mean a linear combination of
the form1

M∑
m=1

amg(xm, �m), am > 0, M > 0.

The problemwe consider is to construct an algorithmwith
the following properties. Given input in the form of a non-
negative signal d ∈ R

k1×···×kn , where ki is the number of
grid points along the i :th variable, the output should be a
list of GMM parameters, i.e., it is a list (a∗

m, x∗
m, �∗

m)Mm=1 of

1 We do not require the GMM to be normalized, i.e., we do not require
that

∑M
m=1 am = 1.

weights, mean vectors and square roots of covariance matri-
ces. The output should be such that

1. the residual

r := d −
M∑

m=1

a∗
mg(x

∗
m, �∗

m)

has a small L2-norm. (We remark that any sufficiently
regular non-negative function can be uniformly approx-
imated arbitrarily well using GMMs; see Sect. 4.)

2. the approximation is sparse, i.e., the number ofGaussians
M in the sum should ideally be as small as possible given
the L2-norm of the residual.

3 Proposedmethod

In each iteration of our algorithm, a new Gaussian is added
to the GMM by a procedure that corresponds to one iteration
of a continuously parameterized version of matching pursuit
(MP), c.f. [10]: The starting guess x0 for the mean vector is
defined to be a global maximum of r ′, which is a smoothed
version of the current residual r . Likewise �0 is set to be a
square root of the matrix of second-order moments of r ′′

|r ′′|1 ,
where r ′′ is r restricted to a neighborhood of x0. The initial
weighta0 is given by projecting theGaussian atomdefined by
(x0, �0) onto the residual, i.e., it is given as the global mini-
mum of the convex objective a → |r −ag(x0, �0)|22, a ≥ 0.

We found that this vanilla MP type of approach was
by itself not capable of producing a good approximation.
Because of this, we update the already obtained Gaussians in
a way that bears some resemblance to the projection step of
orthogonal MP (OMP) [13]: Starting from (a0, x0, �0), the
parameters defining the most recently added Gaussian are
updated by minimizing the L2-norm of the residual.2 The
final step of an outer iteration is to simultaneously adjust all
Gaussians in the current GMM, again by minimizing the L2-
norm of the residual. We propose to use the L-BFGS-B [2]
method with non-negativity constraints on the weights for
all of the three afore-mentioned minimization problems. Our
algorithm runs until some user-specified stopping criterion is
met and is summarized in pseudo-code in Algorithm 1. Our
implementation of Algorithm 1 is in Python. The source code
and consequent examples below are available upon request.

We now assess the space and time complexity of the pro-
posed method in terms of the final number M of Gaussians
used and the dimension n of the input signal. Let Ni denote
the number of parameters of i Gaussians, so Ni = O(in2).

2 This step is not crucial for the performance of the algorithm, but was
empirically found to improve the final data fit.
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Fig. 2 Results from Experiment 2. Note the faint spherical Gaussian
on the upper left “leg.”

Fig. 3 Results from Experiment 3

The most demanding step of a single outer iteration of the
proposed algorithm is the simultaneous adjustment of all
Gaussians. If this step is done using L-BFGS-B, this amounts
to a cost ofO(Ni ), both in terms of space and time [2]. Sum-
ming over the M iterations we hence find the space and time
requirements of the proposed method to be O(M2n2).

Algorithm 1
1: procedure GMM decomposition

Input: Signal d, hyper-parameters τ1, τ2 ∈ Z+
Output: GMM parameters

(
a∗
m , x∗

m , �∗
m

)M
m=1

2: M ← 0, r ← d
3: while stopping criterion is not met do
4: M ← M + 1
5: r ′(y) ← 1

τ1

∑
z∈A(y) r(z),

A(y) := {τ1 grid points closest to y}
6: x0 ← argmaxy r

′(y)
7: r ′′ ← restriction of r to the τ2 grid points

closest to x0
8: �0 ← square root of matrix of second order

moments of r ′′
|r ′′ |1

9: a0 ← argmina≥0|r − ag(x0, �0)|22
10: (a∗, x∗, �∗) ← loc. min. |r − ag(x, �)|22 , a ≥ 0︸ ︷︷ ︸

initialized at a0,x0,�0

11:
(
a∗
M , x∗

M , �∗
M

) ← (a∗, x∗, �∗)
12:

(
a∗∗
m , x∗∗

m , �∗∗
m

)M
m=1 ← (

a∗
m , x∗

m , �∗
m

)M
m=1

13:
(
a∗
m , x∗

m , �∗
m

)M
m=1 ←

loc. min.

∣∣∣∣∣d −
M∑

m=1

amg(xm , �m)

∣∣∣∣∣
2

2

, am ≥ 0

︸ ︷︷ ︸
initialized at (a∗∗

m ,x∗∗
m ,�∗∗

m )
M
m=1

14: r ← d − ∑M
m=1 a

∗
mg(x

∗
m , �∗

m)

3.1 Main numerical results

The theoretical results that our algorithm relies on are valid
for any dimension. However, motivated by TEM data acqui-
sition, we limit our examples up to 2D, which is sufficient for
recovering the 3D structure [14]. As proof of concept for the
proposed method, we ran our algorithm on small toy exam-
ples in 1D and 2D. We refer to the examples as Experiment
1–Experiment 3, see Figs. 1, 2, 3. A clean signal dclean was
generated by discretizing GMMswith parameters as in Table

1, 2, 3 to the grids
{
yk = −10 + 20k

1000

}1000
k=0 and{

yk,� = ( − 10 + 20k
65 ,−10 + 20�

65

)}64
k,�=0 in the 1D and 2D

experiments, respectively. From this signal, noisy data were
then generated as d = dclean+ε where ε denotes white Gaus-
sian noise with standard deviation σnoise. The latter was cho-
sen so that SNR = 20, where SNR := 10 log10

Var(dclean)
σ 2
noise

. As

stopping criterion we used SNRstop ≥ 20, where SNRstop :=
10 log10

Var(dest)
Var(d−dest)

, and where dest := ∑
m a∗

mg(x
∗
m, �∗

m).
In all minimization sub-procedures we used the L-BFGS-B
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Table 1 Input and output GMM parameters for Exp. 1

Input Output

am xm �2
m am xm �2

m

1 0 1 5.0272 1.3052 2.2632

8 0 4 1.0116 −7.9756 0.9512

1 −2 1 1.0351 8.0478 1.1041

1 2 1 5.8708 −1.1215 2.4119

1 −8 1

1 8 1

method with non-negativity constraints on the weights and
ran it until convergence. Hyper-parameters τ1 and τ2 (intro-
duced in line 5 and 7 inAlgorithm1) should ideally be chosen
based on the amount of noise in the data; however, we found
that the exact values were not so important in our toy exam-
ples, and we used the ad-hoc chosen values τ1 = 10 and
τ2 = 20. We leave a more careful sensitivity analysis with
respect to these parameters to future studies. The total run-
time was a few minutes on a computer with an Intel Pentium
CPU running at 2.90GHz, using ∼ 8 GB of RAM. The final
results of our experiments are tabulated in Table 1, 2, 3 and
are plotted in Figure 1, 2, 3. Intermediate results for the 2D
experiments are plotted in Figure 4, 5.

Remark 1 The number ofmodes of aGMM is not necessarily
equal to the number of means. Indeed, there might be more
modes than means [1]. Alternatively, there could be fewer
modes than means, for example, in Experiment 2, a low-
amplitude Gaussian and high-amplitude Gaussian are close
to each other, and there is only onemodewithin the vicinity of
both means. Our method successfully recovered the param-
eters of both Gaussians. There is also a mode at the center
dominantly formed by the superposition of the tails of three
anisotropic Gaussians, where our algorithm did not intro-
duce a spurious Gaussian. Similar performance is observed
in Experiment 3. We attribute this to the greedy nature of
the algorithm where a predefined number of Gaussians is not
enforced in the decomposition.

3.2 Clustering and comparison to expectation
maximization

As one of themain techniques in unsupervised learning, clus-
tering seeks to subdivide data into groups based on some
similarity measure. A common approach in clustering is
based on Gaussian mixtures. In this approach, one is given a
point-cloud P ⊂ R

n and the goal is to find a GMM f such
that the probability that P is a sample from f is maximal
among all GMMs with a prescribed number of components.

There are many ways of transforming a point-cloud into a
signal and vice-versa. Thus onemayuse themethodproposed

Table 2 Input and output GMM parameters for Exp. 2

Input

am xm �2
m

2 (−1.5,−2.5981)

(
0.7969 1.272
1.272 2.2656

)

2 (−1.5, 2.5981)

(
0.7969 −1.272
−1.272 2.2656

)

2 (3, 0)

(
3 0
0 0.0625

)

1 (−1.75,−3.0311)

(
1 0
0 1

)

Output

am xm �2
m

1.9833 (−1.4937,−2.5862)

(
0.5758 1.1181
1.1181 2.4908

)

1.9901 (3.0075,−9.7258 × 10−4)

(
2.982 0.0082
0.0082 0.0623

)

2.001 (−1.4994, 2.5924)

(
0.7858 −1.2663
−1.2663 2.2805

)

1.0101 (−1.7466,−3.038)

(
0.9878 0.0126
0.0126 0.9731

)

in this paper for GMM-based clustering, and conversely, one
may use methods from clustering in order to decompose a
signal into aGMM.Belowwe illustrate both directions of this
“problem transformation” with some numerical examples.

3.2.1 Clustering via signal decomposition

A sample point-cloud P of size 105 was drawn from a nor-
malized version of the GMM in Experiment 3 above. Then a
signal d was generated from P by computing a histogram
based on the 2D grid used in the previous experiments.
Results from the expectation maximization (EM) algorithm
and the proposedmethod applied to P and d, respectively, are
shown in Fig. 6. The two methods resulted in approximately
the same likelihood of P given the computed GMMs.

3.2.2 Signal decomposition via clustering

A noisy signal d was generated as in Experiment 3 described
in Sect. 3.1, except that the GMMwas normalized before dis-
cretization. We then associated a point-cloud P to the noisy
signal, following the methodology in [7]. More precisely, P
had

⌊
C−1d(y)

⌋
points at grid-point y, where the constant

C := 10−5 ∑
y d(y) was chosen so that P had roughly 105

points in total. Using P we estimated a GMM with the EM
algorithm. The performance of EM depended on the random
initialization. A typical result using EM applied to P , along
with the result from the proposed method applied to d, is
shown in Fig. 7. We remark that it is possible that a better
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Table 3 Input and output GMM parameters for Exp. 3

Input

am xm �2
m

5 (−5, 5) Id2
1 (5,−5) Id2
3 (5, 5) Id2
4 (−5,−5) Id2
5 (−2, 0) Id2
5 (0,−2) Id2
5 (2, 0) Id2
5 (0, 2) Id2

Output

am xm �2
m

4.9685 (9.7331 × 10−4, 2.0079)

(
0.9781 0.0125
0.0125 1.012

)

4.9517 (−4.9988, 5.0024)

(
1.0006 0.0127
0.0127 1.0103

)

3.9821 (−5.005,−4.9978)

(
0.9919 0.0017
0.0017 0.9731

)

2.9853 (4.9935, 5.0071)

(
0.9955 −0.0308
−0.0308 0.9976

)

5.0608 (−1.9916, 0.0076)

(
1.0128 0.0154
0.0154 0.9977

)

5.0322 (0.0034,−1.9952)

(
0.9968 0.0145
0.0145 1.0038

)

1.0048 (5.0158,−5.0174)

(
1.007 0.0083
0.0083 1.0034

)

4.9247 (2.0213, 0.0077)

(
0.9743 −0.0097
−0.0097 0.9997

)

Fig. 4 Iterations from Experiment 2

Fig. 5 Iterations from Experiment 3

Fig. 6 Results from clustering via signal decomposition
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Fig. 7 Results from signal decomposition via clustering

result with EMmay be obtained using some other procedure
for generating the point-cloud from the given signal.

4 Theoretical considerations

The main theoretical contribution of our paper is Theorem
3.4, which says that a mode of a GMM cannot lie too far
away from the set of means. This theorem generalizes the 1D
result that any mode will lie within one standard deviation
away from some mean, and provides theoretical support for
our way of initializing each iteration of our method. Before
turning to this theorem, we need three lemmas. In the first
two lemmas we compute some integrals over the n-sphere
of certain polynomials, and in the third lemma we provide
expressions for the gradient and Hessian of a GMM. We
also prove, in Proposition 6, that any sufficiently nice non-
negative function may be approximated in L∞ to any desired
accuracy by a GMM.

4.1 Location of modes of Gaussianmixtures

Lemma 1
∫
Sn−1

(x, y)kdy = |x |kCk, x ∈ R
n, k ∈ N,

where Ck := ∫
Sn−1 (e1, y)k dy.

Proof Omitted due to space constraints. �

Lemma 2 Let A be a symmetric n × n matrix. Then

∫
Sn−1

(y, Ay)dy = Tr(A)C2, where C2 is as in Lemma 1.

Proof Let λi , i = 1, . . . , n be the eigenvalues of A and take
U ∈ O(n) s.t. A = UT DU , D := diag (λ1, . . . , λn).

∫
Sn−1

(y, Ay)dy =
∫
Sn−1

(y,UT DUy)dy

=
∫
Sn−1

(Uy, DUy)dy =
∫
Sn−1

(y, Dy)dy

=
n∑

m=1

λm

∫
Sn−1

(y, eme
T
m y)dy

=
n∑

m=1

λm

∫
Sn−1

(em, y)2dy = C2

n∑
m=1

λm = C2Tr(A).

�
Lemma 3 The gradient and Hessian of a Gaussian mixture
model 3

f (x) =
∑
m

am exp

{
−1

2
(x − xm)T �−2

m (x − xm)

}
,

am > 0, �m > 0, are given by

∇ f =
∑
m

am
(
−�−1

m

) (
�−1

m x − �−1
m xm

)

× exp

{
−1

2
(x − xm)T �−2

m (x − xm)

}

H f =
∑
m

am

[(
�−2

m (x − xm)
) (

�−2
m (x − xm)

)T − �−2
m

]

× exp

{
−1

2
(x − xm)T �−2

m (x − xm)

}

Proof Since this is a standard result, we omit the straightfor-
ward proof. �

Theorem 1 Consider a Gaussian mixture model in n dimen-
sions

f (x) =
∑
m

am exp

{
−1

2
(x − xm)T �−2

m (x − xm)

}
,

am > 0, �m > 0. Let σm,max and σm,min be the maximal and
minimal eigenvalues of �m. Let x ′ be a local maximum of f .
Then there exists an index m such that

|x ′ − xm | ≤ √
nσ 2

m,maxσ
−1
m,min.

Proof Since x ′ is a localmaximumwe have H f (x ′) ≤ 0, i.e.,(
y, H f (x ′)y

) ≤ 0, y ∈ R
n . We integrate the last inequality

over the unit-sphere and make use of Lemma 3 to conclude:∑
m

am

∫
Sn−1

yT Am(x ′, y)ydy exp {· · · } ≤ 0, where

Am(x ′, y) :=
[(

�−2
m

(
x ′ − xm

)) (
�−2

m

(
x ′ − xm

))T − �−2
m

]
.

Hence there exist some index m such that
∫
Sn−1

yT Am(x ′, y)ydy ≤ 0,

3 In the interest of readability we have abused notation and absorbed
the normalizing constants C�m into the weights am .
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which leads to

∫
Sn−1

(
y, �−2

m

(
x ′ − xm

))2
dy −

∫
Sn−1

(
y, �−2

m y
)
dy ≤ 0.

We apply Lemma 1 and Lemma 2 and obtain:

C2

∣∣∣�−2
m

(
x ′ − xm

)∣∣∣2 − C2Tr
(
�−2

m

)
≤ 0.

Now C2 > 0 since C2 is an integral of a continuous
non-negative function that is not everywhere zero. Hence∣∣�−2

m

(
x ′ − xm

)∣∣2 ≤ Tr
(
�−2

m

)
. Note that σ−4

m,max

∣∣x ′ − xm
∣∣2

≤ ∣∣�−2
m

(
x ′ − xm

)∣∣2 and that Tr
(
�−2

m

) ≤ nσ−2
m,min. So

σ−4
m,max

∣∣x ′ − xm
∣∣2 ≤ nσ−2

m,min, and the claim of the theorem
follows. �
Corollary 4 Let f be a mixture of spherical Gaussians with
common variance σ 2, i.e.,

f (x) =
∑
m

am exp

{
− 1

2σ 2
|x − xm |2

}
, σ > 0, am > 0.

If x ′ is local maximum of f , then there is an index m such
that |x ′ − xm | ≤ √

nσ.

Proof This is an immediate consequence of Theorem 1. �
Proposition 5 The bound in Theorem 1 cannot be improved
by a constant, i.e., for any δ > 0 there exist a GMM f such
that some mode x ′ of f satisfies

|x ′ − xm | >
√
nσ 2

m,maxσ
−1
m,min − δ,

for all mean vectors xm of f .

Proof We explicitly construct a family { fε}ε of functions
that satisfy the statement of this proposition. For ε such
that min

(
δ,

√
nσ

)
> ε > 0 let fε be the 2n component

n-dimensional spherical GMM with common variance σ 2,
common amplitude a and with means at ±(

√
nσ − ε)ei , for

i = 1, 2, . . . , n. We shall prove that fε has a mode in the
origin, and thus it has a mode at distance

√
nσ − ε from the

set of means of fε .4 Lemma 3 implies

∇ fε(0) = a
∑
m

σ−2xm exp

{
− 1

2σ 2 |xm |2
}

= aσ−2 exp

{
−

(√
nσ − ε

)2
2σ 2

}∑
m

xm .

4 Numerical experiments suggest that fε has a mode in the origin also
for ε = 0. A proof of this (if it is true) would however need an argument
different from the one given here, since H f0(0) = 0.

By symmetry
∑

m xm = 0, so fε has a critical point in the
origin. Hence we are done if we prove that H fε(0) < 0.
Again by Lemma 3:

H fε(0) = a
∑
m

(
σ−4xmx

T
m − σ−2 In

)
e− 1

2σ2
|xm |2

= 2ae− (
√
nσ−ε)2

2σ2

n∑
i=1

(
σ−4(

√
nσ − ε)2ei e

T
i − σ−2 In

)

= 2ae− (
√
nσ−ε)2

2σ2 σ−2 [
σ−2(

√
nσ − ε)2 − n

]
︸ ︷︷ ︸

<0

In .

Hence H fε(0) < 0. �

4.2 Function approximation by Gaussianmixtures

The ability of GMMs to approximate functions in L p spaces
has been investigated previously, see, e.g., [12] where it is
noted that any probability density function may be approx-
imated in the sense of L1 by GMMs. For completeness, we
here give a proof of the density of GMMs in the L∞-norm.
The proof relies on the machinery of quasi-interpolants [11].

Proposition 6 Let u be a twice-differentiable and compactly
supported non-negative function on R

n such that u and all
its partial derivatives up to order two are bounded. Then u
may be approximated in L∞ arbitrarily well by Gaussian
mixtures.

Proof Let g = g(0, �) be an n-dimensional centered Gaus-
sian density function with non-degenerate covariance matrix
�2. As is noted on page 50 in [11], g generates an approx-
imate quasi-interpolant of order 2. This follows from the
observation that f satisfies both Condition 2.15 in [11, p.
33], with moment order N = 2, and Condition 2.12 in [11,
p. 32], with decay order K , for all Z � K > n. Hence
Theorem 2.17 in [11, p. 35] is applicable and implies that
for any twice-differentiable real-valued function u on R

n

such that u and all its partial derivatives up to order two
are bounded, one has that for any ε > 0 that there exists
a D = D(ε) > 0 such that for all h,

∣∣u − Mh,Du
∣∣∞

is bounded from the above by cDh2 max|α|=2|∂αu|∞ +
ε
(
|u|∞ + √Dh|∇u|∞

)
≤ A

(
cDh2 + ε + √Dh

)
,

where A := √
nmax0≤|α|≤2|∂αu|∞, c is a constant inde-

pendent of u, h and D and the quasi-interpolant Mh,Du(x)
is defined by

Mh,Du(x) := D−n/2
∑
m∈Zn

u(hm)g

(
x − hm√Dh

)
. (1)

Note that the weights u(hm) are non-negative since u is
non-negative, and that the compact support of u allows us
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to restrict the domain of summation in (1) to a finite subset
of Zn . Hence Mh,Du(x) is a GMM. Now for a given ε > 0
we let ε′ := ε

2A and pick D > 0 such that:

∣∣u − Mh,Du
∣∣∞ ≤ A

(
cDh2 + ε′ + √

Dh
)

= ε/2 + A
(
cDh2 + √

Dh
)

.

Next we take h small enough, so that A
(
cDh2 + √Dh

)
≤

ε/2, and conclude that
∣∣u − Mh,Du

∣∣∞ ≤ ε. �

5 Conclusion

Motivated primarily by applications in TEM, we have devel-
oped a new algorithm for decomposing a non-negative
multivariate signal as a sum of Gaussians with full covari-
ances. We have tested it on 1D and 2D data. Moreover, we
have also proved an upper bound for the distance from a
local maximum of a GMM to the set of its mean vectors.
This upper bound provides motivation for a key step in our
method, namely the initialization of each newGaussian at the
maximum of the residual. Finally we remark that while we
have only tested the proposed method on functions sampled
on uniform grids, it is straightforward to extend the method
to handle input data in the form of multivariate functions
sampled on non-uniform grids.
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