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Abstract
In deep neural network compression, channel/filter pruning is widely used for compressing the pre-trained network by judging
the redundant channels/filters. In this paper, we propose a two-step filter pruningmethod to judge the redundant channels/filters
layer by layer. The first step is to design a filter selection scheme based on �2,1-norm by reconstructing the feature map of
current layer. More specifically, the filter selection scheme aims to solve a joint �2,1-norm minimization problem, i.e., both
the regularization term and feature map reconstruction error term are constrained by �2,1-norm. The �2,1-norm regularization
plays a role in the channel/filter selection, while the �2,1-norm feature map reconstruction error term plays a role in the robust
reconstruction. In this way, the proposed filter selection scheme can learn a column-sparse coefficient representation matrix
that can indicate the redundancy of filters. Since pruning the redundant filters in current layer might dramatically influence the
output feature map of the following layer, the second step needs to update the filters of the following layer to assure output of
feature map approximates to that of baseline. Experimental results demonstrate the effectiveness of this proposed method. For
example, our pruned VGG-16 on ImageNet achieves 4× speedup with 0.95% top-5 accuracy drop. Our pruned ResNet-50 on
ImageNet achieves 2× speedup with 1.56% top-5 accuracy drop. Our pruned MobileNet on ImageNet achieves 2× speedup
with 1.20% top-5 accuracy drop.

Keywords Filter pruning · Channel pruning · Feature map reconstruction · �2,1-norm

1 Introduction

In the past few years, we have witnessed a rapid development
of convolutional neural networks [1–7]. In order to achieve
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higher accuracy, the general strategy is to make deeper and
more complicated networks [8–12]. However, these strate-
gies to improve accuracy are not efficient with respect to
model size and speed. In many mobile terminal devices such
as robotics, self-driving car and augmented reality, the recog-
nition tasks need to be carried out in a timely fashion on a
computationally limited platform [13–16].

There has been rising interest in building small and effi-
cient neural networks in the recent literature [17–28]. Many
different approaches can be generally categorized as two
groups: (1) training small networks directly [22–27,29]; (2)
compressing pre-trained networks [17–21,28,30].

The former aims to train a small network structure
[22–27,29], where the popular method isMobileNets includ-
ing three versions. More specifically, MobileNet-V1 adopts
the depthwise separable convolution to greatly reduce the
amount of computation and the number of parameters,
thereby improving the computation efficiency. Based on
MobileNet-V1,MobilieNet-V2 introduces the inverted resid-
ual structure with a linear bottleneck. Based on MobileNet-
V1 and MobileNet-V2, MobileNet-V3 is proposed recently.
However, the above MobileNets do not consider the case of
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redundant filters. In fact, the redundancy in the filters takes
up the computation in the process of forward and back prop-
agation. Generally speaking, convolutional neural network
has the high redundancy of filters [8,31]. Therefore, it would
reduce the running time of neural networks by removing the
redundant filters.

The latter aims to compress the pre-trained convolu-
tional neural network (CNN), where the popular method
is pruning. Pruning includes parameter pruning and chan-
nel/filter pruning. For most CNNs, convolutional layers are
the most time-consuming part, while fully connected layers
involve massive network parameters. Therefore, the parame-
ter pruning aims to reduce the storage,while the channel/filter
pruning aims to reduce the computation cost. Generally,
parameter pruning may suffer from the irregular memory
acquisition and eliminates the possibility of improving effi-
ciency. Therefore, special hardware or software is needed
to assist with the calculation, which may increase computa-
tion time [19,32–34]. To avoid the limitations of parameter
pruning mentioned above, this paper focuses on studying the
channel/filter pruning by removing the entire channels/filters
[12,18–21,35,36], whose benefits of removing the redundant
channels/filters can be seen from [12,35,36]. Lebedev and
Lempitsky [18], Wen et al. [19] employ the group sparsity
to select the redundant filters, but the bad convergence speed
and structured filter generating speed will heavily influence
the pruning efficiency. Max response [20] uses the �1-norm
to calculate the sum of its absolute weights of a filter, and
the high absolute weight sum means that the filter is impor-
tant. Since max response measures the importance of filter
one by one, it may ignore the correlations between different
filters. To this end, channel pruning [21] aims to use �1-norm
to indirectly select the redundant filters by using the feature
map of current layer and the filter of the next layer to recon-
struct the feature map of the next layer, which needs to solve
a lasso problem and thus has a high computation complexity
in terms of optimal solution.

In this paper, we propose a two-step feature map recon-
struction method to prune the redundant filters and channels.
In the proposed method, both the reconstruction term and the
regularization term employ the �2,1-norm to implement the
learning task of filter pruning under the robust reconstruc-
tion. To the best of our knowledge, we are the first one to
propose a filter pruning method based on two-step feature
map reconstruction, where robust reconstruction and filter
selection are simultaneously performed. Unlike most of filter
pruning methods, our method is able to select the represen-
tative filters by two-step feature map reconstruction, so that
the removed filters would not influence the following layers.

The remainder of this paper is organized as follows: In
Sect. 2, we present the background. In Sect. 3, we present
the proposed method and its optimal solution. In Sect. 4,
we give the theoretical analysis of our method. In Sect. 5,

we perform the experiments to demonstrate the effectiveness
and efficiency of our method. Finally, a conclusion is drawn
in Sect. 6.

2 Background

To prune a feature map with ni channels, ni+1×ni ×kh ×kw

convolutional filtersW are often applied on N×ni ×kh ×kw

input volumes X sampled from this feature map of i-th layer,
which produces N ×ni+1 output matrix Y i+1. Here, N is the
number of samples, ni+1 is the number of output channels,
and kh , kw are the kernel size. For simple representation, bias
term is ignored in the filter pruning methods. To prune the
input channels from ni to desired n

′
i (0 ≤ n

′
i ≤ ni ), while

minimizing reconstruction error, the channel pruningmethod
[21] is proposed as follows:

min
β,W

∥
∥
∥
∥
∥
Y i+1 −

ni∑

c=1

βcXcWT
c

∥
∥
∥
∥
∥

2

F

+ λ‖β‖1,

s.t ., ‖β‖0 ≤ n
′
i ,∀i‖W c‖F = 1.

(1)

‖·‖F is Frobenius norm. Xc is N × kh × kw matrix sliced
from c-th channel of input volumes X , c = 1, 2, . . . , ni . W c

is ni × kh × kw filter weights sliced from c-th channel of W .
β is coefficient vector of length ni for channel selection, and
βc (c-th entry of β) is a scalar mask to c-th channel (i.e., to
drop the whole channel or not).

Similar to the above channel pruning method [21], some
other filter-level pruning methods [12,20,30,35] also have
been explored. The core of the filter pruning is tomeasure the
importance of each filter. The major difference of filter prun-
ing is the selection strategy: Max response [20] calculates
the absolute weight sum of each filter (i.e.,

∑
W(i, :, :, :),

where i means the i-th filter, i ∈ {1, 2, . . . , ni+1}) as its
importance score. ThiNet [12,35] first uses a greedy strategy
to search a subset of featuremap such that the output by some
channels is almost same with that by all the channels. More
specifically, ThiNet aims to search a subset of feature map
by minimizing the following reconstruction error.

min
S

N
∑

d=1

(

Yd
i+1 −

∑

c∈S
Xd
cW

d
c
T

)2

,

s.t ., |S| = ni × r , S ⊂ {1, 2, . . . , ni }
(2)

where d is the sampling number, r is the compression ratio,
S is the subset of feature map-based channels, and |S| is the
number of elements in a subset S.

After obtaining the subset S, the redundant channels of
feature map Xd

c and filter Wd
c are removed. For simplicity,

we call the feature map and filter without redundancy as X̂
d
c

123



Signal, Image and Video Processing (2021) 15:1555–1563 1557

and Ŵ
d
c . ThiNet further minimizes the reconstruction error

by assigning weights q for Ŵ
d
c .

min
w

N
∑

d=1

(Yd
i+1 −

∑

c∈S
X̂
d
c Ŵ

d
c

T
q)2,

s.t ., |S| = ni × r , S ⊂ {1, 2, . . . , ni }.
(3)

It is worth noting that both channel pruning method and
ThiNet method are driven by data to demonstrate the effec-
tiveness of filter selection strategy, and first k and max
response are non-data-drivenmethods. Besides, HRank [30],
as a data-driven method, is proposed as follows:

min
δi j

K
∑

i=1

ni∑

j=1

δi j (w
i
j )

g
∑

t=1

Rank(oij (t, :, :)), s.t .,
ni∑

j=1

δi j = ni2.

(4)

where K means the number of convolutional layers, ni rep-
resents the number of filters in the i-th convolutional layer,
δi j is an indicator which is 1 if the j-th filter in the i-th layer
(i.e., wi

j ) is unimportant or 0 if wi
j is important, g means

the number of input images, oij (t, :, :)means the feature map

generated by wi
j , and ni2 means the number of least impor-

tant filters in the i-th layer.

3 Buildingmodel of filter pruning

Formally, for one input image, let ni denote the number of
input channels for the i-th convolutional layer and hi , wi be
the height and width of the input feature maps. The convolu-
tional layer transforms the input feature map yi ∈ R

ni×hi×wi

into the output feature map yi+1 ∈ R
ni+1×hi+1×wi+1 , which

are used as input feature maps for the next convolutional
layer. This is achieved by applying ni+1 3D filters Fi, j ∈
R
ni×k×k (All the filters, together, constitute the filter matrix

Fi+1 ∈ R
ni+1×ni×k×k) on the ni input channels, in which

one filter generates one feature map channel. The number of
operations of the convolutional layer is ni+1ni k2hi+1wi+1. If
a filter Fi, j is pruned, its corresponding featuremap xi+1, j is
removed, which reduces ni k2hi+1wi+1 operations. The fil-
ters that apply on the removed feature map channels from
the filters of the next convolutional layer are also removed,
which saves an additional ni+2k2hi+2wi+2 operations.

Furthermore, if there are m input images, they will
produce the feature map, such as the i-th feature map
yi ∈ R

m×ni×hi×wi , and the i + 1-th feature map yi+1 ∈
R
m×ni+1×hi+1×wi+1 . For simplicity, we sample from yi and

generate Y i ∈ R
Ni×ni . The detailed sampling way can refer

[21]. Here, Ni is the number of samples of i-th layer, and ni
is the channel number of feature map of i-th layer. To prune
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Fig. 1 Illustration of redundant filters learned automatically by our
method

the output channels from ni to desired n
′
i , while minimizing

reconstruction error, we formulate the proposed objective
function as follows:

min
b,A

∥
∥
∥(Y T

i − b1T ) − A(Y T
i − b1T )

∥
∥
∥
2,1

+ λ‖A‖2,1. (5)

where Y i is Ni ×ni matrix. A ∈ R
ni×ni is a coefficient repre-

sentation matrix. The designed objective function can make
A be column-sparse, and thus, it can indicate the redundancy
of channels of feature map and filters in current layer (see
Fig. 1).

Without loss of generality, we remove the layer index i ,
and thus, our objective function can be rewritten as follows:

min
b,A

∥
∥
∥(Y T − b1T ) − A(Y T − b1T )

∥
∥
∥
2,1

+ λ‖A‖2,1. (6)

Using some mathematical techniques, problem (6) can be
rewritten as

min
b,A

∥
∥
∥

((

Y T − b1T
)

− A
(

Y T − b1T
)) √

W1

∥
∥
∥

2

F
+ λ

∥
∥
∥A

√

W2

∥
∥
∥

2

F
,

(7)

where W2 ∈ R
n×n and W1 ∈ R

N×N are two diago-
nal matrices, whose diagonal elements are W cc

2 = 1
2‖(A)c‖2

and W cc
1 = 1

2
∥
∥((YT −b1T )−A(YT −b1T ))c

∥
∥
2
, respectively. (A)c

means the c-th column of matrix A. When ‖(A)c‖2 = 0,
we let W cc

2 = 1
2‖(A)c‖2+ζ

. (ζ is a very small constant.) Sim-

ilarly, when
∥
∥((Y T − b1T ) − A(Y T − b1T ))c

∥
∥
2 = 0, we

let W cc
1 = 1

2
∥
∥((YT −b1T )−A(YT −b1T ))c

∥
∥
2+ζ

. In this way, the

smaller W cc
1 is, the higher possibility to be outliers the c-

th response has. The smaller W cc
2 is, the more important the

c-th filter is. Here,
√
W1 gives the weights of the responses.

The clean responses are weighted more heavily, while the
responses that are outliers are weighted less heavily. This
leads to the robustness of our method to outliers. On the other
hand, the regularization term A

√
W2 can guide the selection
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of filters. Through adjusting the parameter λ, our method
can select the effective filters under the robust reconstruction
criterion. Moreover, it can be seen that the minimization of
2tr((YT − (AY T + b1T ))W1(Y T − (AY T + b1T ))T +2λtr(AW2AT )

forces
∥
∥((Y T − b1T ) − A(Y T − b1T ))c

∥
∥
2 and ‖(A)c‖2 to

be very small when W2 and W1 are large. Finally, some
columns of (Y T − b1T ) − A(Y T − b1T ) and A may be
close to zero, and thus, a column-sparse (Y T − b1T ) − A(Y T − b1T )

and A can be obtained.
Our goal is to remove some redundant output channels

without the loss of the performance. After we design an algo-
rithm to judge the redundant channels and filters and then
prune them, we should assure that the feature map of next
layer is almost kept so that the removed channels does not
influence the final classification result. Therefore, we need
to reconstruct the filters in next layer with current remaining
channels by linear least squares, whose objective function is
shown as follows:

min
F

′
i+1

∥
∥
∥Y i+1 − (Y

′
i )(F

′
i+1)

T
∥
∥
∥

2

F
. (8)

whereY i+1 means the featuremap of i+1-th layer,Y
′
i means

the feature map of i-th layer after the removal of redundant
channels, and F

′
i+1 means the filters of i + 1-th layer after

the removal of redundant channels. Here, F
′
i+1 is ni+1 ×

ni kk reshaped Fi+1. It is worth noting that if r channels are
redundant in Y i , Y

′
i ∈ R

N×(ni−r), F
′
i+1 ∈ R

ni+1×(ni−r).
To sum up, the flowchart is given in Fig. 2, which mainly

includes two steps: One is to judge the redundant filters by
reconstructing the feature map of the current layer, and the
second step is to learn the new filters by reconstructing the
feature map of the next layer. Our method is proceeded layer
by layer. For one layer such as i+1-th layer, the original com-
putation cost is ni+1ni k2hi+1wi+1 flops, while the remained
computation cost is (ni+1 − r f )(ni − rc)k2hi+1wi+1 flops.

Discussion: Some recent works [20,21] also introduce the
sparse norm, such as �1-norm [20] or Lasso [21]. However,
we must emphasize that we use different formulations and
different ideas. Lasso [21] uses the current filters and the pre-
vious feature map to reconstruct the feature map of current
layer and add the sparse constraint on each channel, but the
computation complexity of their model is very high. More-
over, both of them [20,21] need to give the value of sparsity
n

′
i . Different from Lasso, we perform robust reconstruction

for the feature map of current layer. If the feature map has
the redundancy, our model can automatically conclude the
redundant filters of its previous layer. Furthermore, we need
to assure that the remaining filters can recover the feature
map of next layer. Besides, they [20,21] use �1-norm to select
the redundant channel, while we use �2,1-norm to select the

Fig. 2 Flowchart of the proposed neural network compression method

redundant channel from the perspective of feature map of
current layer.

3.1 The optimal solution of problem (6)

The global optimal solution of problem (7) can be easily
obtained by using an iterative re-weighting method, which
includes the following two steps.

Step 1: Given A, we compute b. The optimization prob-
lem (6) becomes,

min
b

∥
∥
∥(Y − b1T ) − A(Y − b1T )

∥
∥
∥
2,1

. (9)

Setting the derivative of (9) with respect to b to be zero, we
get v = (XW1−AXW1)1

1TW11
.

Step 2: Given b, we compute A. The optimization prob-
lem (7) becomes,

min
A

∥
∥
∥

((

Y − b1T
)

− A(Y − b1T )
) √

W1

∥
∥
∥

2

F
+ λ

∥
∥
∥A

√

W2

∥
∥
∥

2

F
.

(10)

Setting the derivative of (10) with A to be zero, we get
A = (Y − b1T )W1(Y − b1T )T (λW2 + (Y − b1T )W1

(Y−b1T )T )−1.
Iterating the above two steps will reach the global optimal

solution. Algorithm 1 gives more details.
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Algorithm 1. Optimization Algorithm of Problem (6)

Input: Feature map Y , parameter λ;
1: Initialize W1 = I , W2 = I and b = 0;
2: while not converge do
2.1: Compute A = (Y T − b1T )W1(Y T − b1T )T

(λW2 + (Y T − b1T )W1(Y T − b1T )T )−1;

2.2: Compute b = YT W11
1T W11

;

2.3: Compute W1
2.4: Compute W2
end while

Output: Representation matrix A, optimal mean vector b.

4 Theoretical analysis

4.1 Convergence analysis

Before giving the convergence proof of the optimization
algorithm, we need to first give Lemma 1 [37].

Lemma 1 For any nonzero vectors U, q ∈ R
d ,

‖U‖2 − ‖U‖22
2‖q‖2

≤ ‖q‖2 − ‖q‖22
2‖q‖2

. (11)

Based on Lemma 1, we prove Theorem 1.

Theorem 1 Algorithm 1 will monotonically decrease the
value of the objective function of the optimization problem
(7) in each iteration and converge to a local optimal solution.

Proof For simplicity, we denote the updated b and A by b̃
and Ã. Since the updated b̃ and Ã are the optimal solution of
problem (5), according to the definition of W1 and W2, we
have

tr

(
N

∑

i=1

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2
2

2 ‖xi − Axi − (I − A) b‖2

)

+ λtr

(
n

∑

i=1

‖ãi‖22
2 ‖ai‖2

)

≤ tr

(
N

∑

i=1

‖xi − Axi − (I − A) b‖22
2 ‖xi − Axi − (I − A) b‖2

)

+ λtr

(
n

∑

i=1

‖ai‖22
2 ‖ai‖2

)

.

(12)

On the one hand, according to Lemma 1, we have

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2 −

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2
2

2 ‖xi − Axi − (I − A) b‖2
≤ ‖xi − Axi − (I − A) b‖2 − ‖xi − Axi − (I − A) b‖22

2 ‖xi − Axi − (I − A) b‖2
.

(13)

Using matrix calculus for problem (13), we have the follow-
ing formulation:

N
∑

i=1

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2 −

N
∑

i=1

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2
2

2 ‖xi − Axi − (I − A) b‖2

≤
N

∑

i=1

‖xi − Axi − (I − A) b‖2 −
N

∑

i=1

‖xi − Axi − (I − A) b‖22
2 ‖xi − Axi − (I − A) b‖2

.

(14)

On the other hand, according to Lemma 1, we have

‖ãi‖2 − ‖ãi‖22
‖ai‖2

≤ ‖ai‖2 − ‖ai‖22
‖ai‖2

. (15)

Similarly, using matrix calculus for problem (15), we have
the following formulation:

n
∑

i=1

(

‖ãi‖2 − ‖ãi‖22
2 ‖ai‖2

)

≤
n

∑

i=1

(

‖ai‖2 − ‖ai‖22
2 ‖ai‖2

)

.

(16)

By combining problem (12) and problem (14) with prob-
lem (16), we have

∥
∥xi − Ãxi − (

I − Ã
)

b̃
∥
∥
2,1 + λ

∥
∥ Ã

∥
∥
2,1

≤ ∥
∥xi − Axi − (I − A) b̃

∥
∥
2,1 + λ ‖A‖2,1 .

(17)

Since problem (5) has an obvious lower bound 0, the
optimization problem (5) converges to the global optimal
solution.

4.2 Computational complexity analysis

The main computational complexity of Problem (6) has two
steps in each iteration: The first step is to compute b, whose
computational complexity is O(n3); The second step is to
compute A, whose computational complexity is also O(n3)
at most. Therefore, the computational complexity of one iter-
ation will be up to O(n3). If Algorithm 1 needs t iterations,
the total computational complexity is on the order of O(tn3).

5 Experiments

We prune the filters of three types of networks, i.e., VGG-16
[6], ResNet-50 [38] and MobileNet [22], which is imple-
mented on ImageNet [39], CIFAR-10 [40] and CIFAR-100
[40]. ImageNet comprises 1.28 million training images and
50000 validation images from 1000 classes. We fine-tune
networks on the training set and report the accuracy on the
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validation set with the shorter side of images resized to 256.
For data augmentation, we follow the standard practice [21]
and perform the random size cropping to 224×224 and ran-
dom horizontal flipping, and more experimental details can
refer [21]. CIFAR-10 consists of 10 classes images, and each
class consists of 6000 images, where 50000 images are for
training and 10000 for validation. Similarly, CIFAR-100 con-
sists of 100 classes images and each class consists of 600
images, where 50000 images are for training and 10000 for
validation. On CIFAR-10 and CIFAR-100 datasets, we fine-
tune networks with the size of training images which are
resized to 32x32, and with the per-pixel mean subtracted on
the training and validation set. For data augmentation, we
adopt random horizontal flipping.

Our method is compared to the classical first-k and max
response [20], the state-of-the-art channel pruning [21], Thin
Net [35] and HRank [30] that are similar to our method to
some extent.

Implementation: Our method is performed on the net-
work layer by layer. In ourmethod, there is a parameterλ, and
thus, our method involves in the process of parameter selec-
tion.More specifically,when ourmethod performs parameter
selection on a layer, the other layers are fixed as baseline. One
common way of parameter determination is the grid search-
ing method. We vary this parameter within a certain range
{10−6, 10−5, . . . , 106}, and the value of parameter with the
highest classification result is considered as the most optimal
parameter. After the parameters of our method on all the lay-
ers of a network are determined, the compressed network is
obtained. Theoretically, if the redundant filters of i-th layer
are removed, the updated filter of the i + 1-th layer almost
can recover the feature map of the i+1-th layer, and thus, the
final classification performance can be preserved. For a fair
comparison, all the methods adopt the same speedup ratio.
For example, all the methods use the 2 times of speedup ratio
(i.e., 2×) on the ResNet-50. More specifically, based on the
2 times of speedup ratio on the ResNet-50, the effective fil-
ters number is first acquired by channel pruningmethod [21],
and then, the same effective filters number acquired by chan-
nel pruning method [21] is adopted by all the other methods
including ours.

5.1 VGG-16 pruning

5.1.1 Experimental results of single layer

We implement three methods to compress VGG-16 network,
and the experimental results are shown inFig. 3. It can be seen
from Conv2_1 layer that, with the increase in speedup ratio,
the classification accuracy of three methods drops dramati-
cally. However, our method outperforms the other methods
when the speedup ratio is from 2× to 4×, where 2× means
that the running time of compressed network is 0.5 times of

Fig. 3 Result of single layer under different speedup ratios (without
fine-tuning)

Fig. 4 Result of whole model under different speedup ratios on VGG-
16(without fine-tuning)

that of baseline network. At this moment, the classification
accuracy drops about from0.1 to 0.84%compared to the clas-
sification accuracy of baseline. More specifically, compared
to baseline, when the classification accuracy drops 0.84%,
our method has a 4× speedup ratio (i.e., our flops are 25%
of baseline).

5.1.2 Experimental results across all layers

Guided by the experimental results of single layer, we
observe that there is a big redundancy on the first sev-
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Table 1 Fine-tuning results (accuracy drops) of VGG-16 on ImageNet
with 4× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 3.9B 131.7M −2.23 −1.27

Max response 3.9B 131.7M −1.91 −1.26

Channel pruning 3.9B 131.7M −2.04 −1.21

Thin Net 3.9B 131.7M −2.04 −1.22

HRank 3.9B 131.7M −2.15 −1.09

Ours 3.9B 134.1M −1.86 −0.95

The bold fonts indicate the best result

Table 2 Fine-tuning results (accuracy drops) of VGG-16 on CIFAR-10
with 4× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 79.5M 4.2M −1.23 −0.16

Max response 79.5M 4.2M −0.25 +0.1

Channel pruning 79.5M 4.2M −0.09 +0.06

ThiNet 79.5M 4.2M −0.34 −0.11

HRank 79.5M 4.2M −0.37 −0.06

Ours 79.5M 4.2M −0.07 −0.04

The bold fonts indicate the best result

Table 3 Fine-tuning results (accuracy drops) of VGG-16 on CIFAR-
100 with 4× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 79.5M 4.4M −6.49 −3.71

Max response 79.5M 4.4M −5.25 −2.61

Channel pruning 79.5M 4.4M −4.55 −2.30

ThiNet 79.5M 4.4M −4.42 −1.77

HRank 79.5M 4.4M −5.73 −2.59

Ours 79.5M 4.4M −3.56 −1.47

The bold fonts indicate the best result

eral layers of VGG-16, while its last layers are not very
redundant. To this end, we prune more filters on shallow
layers while remaining the origin filters on conv5_x lay-
ers, and the detailed filter pruning case can refer channel
pruning [21]. The experimental results without fine-tuning
are shown in Fig. 4, which shows that three methods obtain
the similar results when the speedup ratio is small. With the
increase in speedup ratio, the advantage of our method is
highlighted. The experimental results with fine-tuning are
shown in Tables 1, 2 and 3. It can be seen that, with the same
speedup ratio (thus the flops (i.e., flops) and parameters (i.e.,
#Param) of all the methods are same), our method outper-
forms the other methods with respect to top-1 classification
accuracy.

Table 4 Fine-tuning results (accuracy drops) of ResNet-50 on Ima-
geNet with 2× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 1.7B 12.3M −6.71 −3.63

Max response 1.7B 12.3M −5.14 −2.26

Channel pruning 1.7B 12.3M −4.83 −2.23

ThiNet 1.7B 12.3M −3.48 −1.58

HRank 1.7B 12.3M −3.86 −2.46

Ours 1.7B 12.3M −3.54 −1.56

The bold fonts indicate the best result

Table 5 Fine-tuning results (accuracy drops) of ResNet-50 on CIFAR-
10 with 2× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 65.0B 448.6M −1.09 +0.08

Max response 65.0B 448.6M −0.51 +0.06

Channel pruning 65.0B 448.6M −0.55 +0.06

ThiNet 65.0B 448.6M −0.53 −0.21

HRank 65.0B 448.6M −0.39 +0.12

Ours 65.0B 448.6M −0.27 −0.12

The bold fonts indicate the best result

5.2 ResNet pruning

We also apply the pruningmethods on ResNet that is a multi-
path network. The structure is more complex than VGG-16.
Through the experiments of single layers, we observe that
there is a big redundancy on the shallow layers. To this end,
we prune the branch2a and branch2b layers but remain the
branch2c layer in this network. The detailed filter pruning
case on ResNet-50 can refer channel pruning [21]. We com-
pared the four pruning methods (i.e., first k, max response
[20], channel pruning [21], ThiNet [35] andHRank [30])with
2× speedup ratio, and the experimental results are shown in
Tables 4, 5 and 6, where the negative value means the accu-
racy is higher than baseline. It can be seen that with the same
speedup ratio, our method is comparable with channel prun-
ing, ThiNet and HRank, but outperforms the classical first
k and max response methods. For example, in Table 4, our
method obtains the better top-1 classification accuracy than
first k, max response, channel pruning and HRank, but worse
than ThiNet. However, we obtain the better top-5 classifica-
tion accuracy than ThiNet. Therefore, we say our method
is comparable with ThiNet. In Table 6, our method obtains
the worse top-1 classification accuracy than channel pruning
and HRank, while we obtain the better top-5 classification
accuracy than HRank. Therefore, we say our method is com-
parable with HRank.
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Table 6 Fine-tuning results (accuracy drops) of ResNet-50 on CIFAR-
100 with 2× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 64.4M 429.8K −4.45 −0.05

Max response 64.4M 429.8K −2.90 −1.94

Channel pruning 64.4M 429.8K −1.34 +0.24

ThiNet 64.4M 429.8K −2.22 −1.32

HRank 64.4M 429.8K −1.57 −0.20

Ours 64.4M 429.8K −2.08 −0.08

Table 7 Fine-tuning results (accuracy drops) of MobileNet on Ima-
geNet with 1.5× speedup ratio

Flops #Param Top-1 (%) Top-5 (%)

First k 0.36B 3.4M −2.14 −1.46

Max response 0.36B 3.4M −2.05 −1.27

Channel pruning 0.36B 3.4M −2.15 −1.29

ThiNet 0.36B 3.4M −2.14 −1.32

HRank 0.36B 3.4M −1.94 −1.33

Ours 0.36B 3.4M −1.79 −1.20

The bold fonts indicate the best result

5.3 MobileNet pruning

As a lightweight network, MobileNet does not have a high
degree of redundancy. The detailed filter pruning case on
MobileNet can refer the strategy used in channel pruning
[21].We compared the four pruningmethods (i.e., first k,max
response [20], channel pruning [21], ThiNet [35] and HRank
[30]) with 1.5× speedup ratio. The experimental results in
Table 7 show that our method outperforms the other methods
with the same speedup ratios.

6 Conclusion

In this paper, we propose a two-step feature map recon-
struction method to prune the redundant filters and channels,
which is used to compress the CNN networks, such as VGG-
16, ResNet-50 and MobileNet. The experimental results on
different networks with different datasets show the effective-
ness of our method.
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