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Abstract
In the paper, the intra-annual growth patterns and tree water balance of four different tree species (Pinus sylvestris, Picea 
abies, Larix decidua and Abies alba) were examined. Seasonal radial increment, tree water deficit (ΔW) and maximum daily 
shrinkage (MDS) were derived from the records obtained using high-resolution digital band dendrometers. The study area 
was located in Arboretum Borová hora (350 m a. s. l., Zvolen valley, Central Slovakia) characterised by a warmer climate 
(Picea abies) and warmer and drier climate (Abies alba, Larix decidua, Pinus sylvestris) compared to the sites of tree origins. 
Monitored species exhibited remarkably distinct growth and water balance patterns over the 2015 growing season character-
ised with the highly above normal temperature and uneven precipitation distribution. A. alba exhibited smooth continuous 
growth least affected by varying environmental conditions. Of all analysed species, only A. alba showed significant positive 
correlations of radial growth and ΔW with temperature and global radiation, despite environmental water limitations. The 
lowest cumulative growth, lower negative values of ΔW and greater MDS of L. decidua indicate a higher water limitation 
of this species. The results showed more pronounced sensitivity of P. sylvestris to increased temperature and drought. All 
monitored variables of environmental conditions, except precipitation, significantly influenced MDS values of all studied 
tree species. Based on 30 variables describing radial stem growth patterns and water status we identified large inter-species 
variability and discrete species-specific groups, while the indicators of growth and water status of L. decidua and P. sylvestris 
were similar and the most different patterns were observed between A. alba and L. decidua. The behaviour of P. abies was 
closer to A. alba than to the other two species.

Keywords  Climate-tree physiology relation · Dendrometer · Tree water balance

Introduction

Future climate projections indicate an increase in the fre-
quency and severity of climatic extremes at global and 
regional scales (Seneviratne et al. 2021), which may affect 
species distributions and compositions, functionality and 
stability of ecosystems. Tolerance to extreme climatic 
conditions is the outcome of various combinations of 
physiological, anatomical, and morphological adjust-
ments (Lindner et al. 2010). Forests growing outside their 
natural environmental conditions belong to most sensitive 
ecosystems. Altitude is one of the most important fac-
tors influencing the spatio-temporal patterns of vegetation 
responses, including tree growth (Mäkinen et al. 2002). 
The growth of trees at high altitudes in Central Europe 
is primarily influenced by temperature (Frank and Esper 
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2005). Hence, an increase in temperature has usually a 
positive impact on tree growth at such sites (Rozenberg 
et al. 2020). However, at lower altitudes, where mois-
ture conditions are driving factors (Mäkinen et al. 2002), 
adverse effects of rising temperatures, linked to summer 
droughts, are noticeable (Rozenberg et al. 2020). While 
many studies have examined morphological and physio-
logical adaptations of species to water availability (Bena-
vides et al. 2019), there is limited knowledge about inter-
specific variations in growth sensitivity.

Temperate tree species periodically increase their radial 
stem dimensions during growing seasons depending on envi-
ronmental variables. Daily stem circumference changes are 
the cumulative results of the formation of new xylem cells 
(physiological growth) and reversible elastic changes of stem 
tissues caused by water inflow (stem swelling or expansion) 
and water outflow (stem shrinkage) (Daudet et al. 2005; De 
Swaef et al. 2015). Stem shrinkage represents tissue elas-
ticity, and is a function of wood density, i.e. it is species-
specific (Zweifel et al. 2014). The timing of the diurnal 
dynamics of stem tissue water depletion and replenishment 
depends on actual environmental conditions, transpiration 
and sap flow (Perämäki et al. 2001; Zweifel et al. 2006). Cur-
rently, a widely used method in the research of climate-tree 
water balance-growth relations is based on monitoring of 
stem circumference changes using automatic dendrometers. 
Non-destructive continuous observations of stem circum-
ference changes using high precision dendrometers provide 
time series of fluctuations in tree water reserves at different 
time scales, from minute changes to seasonal tree growth in 
relation to changes in environmental conditions (Leštianska 
et al. 2015, 2020, 2023; Oberhuber et al. 2015; Zweifel et al. 
2021). These analyses enable us to deduce growth rates and 
identify patterns of intra- and inter-annual growth variability 
in response to changing environment.

One way of investigating water changes in plant tissues 
and relative plant water content in relation to its hydration 
state at high temporal resolution is to use the tree water defi-
cit (∆W) (Hinckley and Lassoie 1981; Zweifel 2016). ∆W 
is known as tree water deficit-induced stem shrinkage and 
it is an indicator of the absolute stem water deficit (Dietrich 
et al. 2018). ∆W allows accounting for accumulated water 
deficits also over an extended period of drought (from few 
days to months) (Zweifel et al. 2005; Dietrich et al. 2018).

Another stem water indicator derived from stem cir-
cumference changes is maximum daily shrinkage (MDS) 
(e.g. Zweifel et al. 2005; Ehrenberger et al. 2012), which 
quantifies the reduction in stem radius over 1 calendar day 
(Deslauriers et al. 2007), and hence, it is an indicator of tree 
plasticity to respond to current air and soil conditions (Gio-
vannelli et al. 2007). ∆W and MDS are currently often used 
in ecophysiological research to assess drought stress because 

they are mainly driven by a combination of atmospheric and 
soil conditions (Zweifel et al. 2016; Dietrich et al. 2018).

Assessing the species-specific response of stem size to 
climate presents challenges as it necessitates uniform site 
and stand conditions to isolate the influence of climate 
accurately. In our research, we conducted a comparison of 
changes in the stem circumference between species that were 
growing at the same site situated in warmer and drier condi-
tions compared to their natural habitats. The selected conif-
erous species for this study included Picea abies L. Karst, 
Abies alba Mill., Pinus sylvestris L., and Larix decidua 
Mill., all of which are native in central Europe.

The Norway spruce (Picea abies) holds great economic 
significance in Europe. It has been extensively cultivated 
across various climatic conditions, demonstrating its adapt-
ability to environment (Caudullo et al. 2016). Neverthe-
less, it is widely acknowledged that spruce is vulnerable to 
drought that can have a considerable impact on its growth 
rates and overall health (Boden et al. 2014). Silver fir (Abies 
alba) is primarily found in the mountain ranges of the Alps 
and Carpathians and its ecotypes show great variation in 
the resistance to frost, drought and shading. Climate change 
is believed to have had an adverse impact on the growth 
performance of fir populations in Europe in recent decades 
(Battipaglia et al. 2009). Scots pine (P. sylvestris) is an ever-
green conifer with a broad Euro-Siberian distribution. It is a 
moderately drought-sensitive species. Despite its effective 
water-saving mechanisms, it exhibits sensitivity to climate 
fluctuations (Bouriaud and Popa 2009) and its productiv-
ity may decline at exposed locations with water deficit, as 
pine is commonly found at dry sites. European larch (Larix 
decidua) is characteristic of mountainous regions of the Car-
pathians and the Alps (Danek et al. 2017). At lower altitudes, 
it is considered a non-native species, which is why studies on 
larch growth in such areas are less prevalent. Larix decidua 
is considered a light-demanding, pioneer tree species that 
does not show significant decline related to climate change 
and thrives on soils with high water supply (Keller et al. 
1997). However, several studies (e.g. Lévesque et al. 2013; 
Schuster and Oberhuber 2013; Dyderski et al. 2018) indicate 
that it is significantly sensitive to soil water deficit.

The key questions of our work address the intra-annual 
stem circumference variation patterns in relation to species 
and environmental conditions. Intra-annual variations are 
still not completely understood, because analyses of fine-
resolution intra-annual stem growth dynamics across spe-
cies, sites and years are demanding. The main aim of this 
paper is to evaluate the intra-annual growth and water status 
of four coniferous tree species and identify possible climate-
growth patterns interactions. Based on band dendrometer 
records (BDR) we aim to i) identify the intra-annual growth 
patterns of each tree species, aiming to gain insights into the 
impact of atmospheric and soil conditions, ii) identify the 
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environmental factors that drive tree growth and tree water 
status of tree species, iii) identify species-specific irrevers-
ible and reversible changes in stem circumference under 
changing environmental conditions. To fulfill these inten-
tions, we used a unique dataset of short-term atmospheric 
and edaphic measurements as well as radial measurements 
from stem dendrometers installed on the trees of four conif-
erous species (Picea abies, Abies alba, Pinus sylvestris and 
Larix decidua) that were planted at the same site located in 
warmer and drier conditions than their natural habitats. The 
year 2015 characterised by dry periods and above normal 
temperature during the growing season serves as a model 
year to examine how trees may cope with predicted climatic 
changes in future. We hypothesised that selected tree species 
showed different physiological reactions to water availability 
due to differences in their water management and storage 
strategies in the stem. Additionally, we also hypothesised 
that the differences in growth and water regime patterns 
would be more distinct between different tree species than 
between trees of the same species.

Material and methods

Study site and tree species

The research was carried out in the Arboretum of Technical 
University in Zvolen, located in Central Slovakia (48°35′N, 
19°07′E, altitude 353 m a.s.l). This facility serves the pur-
pose of conserving the gene pool of the Carpathian den-
droflora ex situ (Lukáčik 2015). The study area represents 
common upland forest communities in Central Slovakia. 
The climate at the site is temperate with average annual air 
temperature 8.2 °C and annual precipitation total 651 mm. 
During the growing season (April–September), a long-term 
average temperature is 14.7 °C and the total precipitation 
is 377 mm (calculated from long-term data obtained from 
a nearby meteorological station in Sliač, situated at an 
altitude of 313 m a.s.l. and provided by the Slovak Hydro-
meteorological Institute (SHMI), representing a period of 
1961–1990). Cambisol is a dominant soil type there (https://​
geo.​envir​oport​al.​sk/​atlas​sr). The description of the climatic 
conditions of the origin of the studied species (Fig. 1) was 
derived from CRUTEM4 datasets (Jones et al. 2012) and 
Panoply software.

Four research plots, each representing a single species, 
namely Scots pine (Pinus sylvestris), Norway spruce (Picea 
abies), European larch (Larix decidua) and Silver fir (Abies 
alba) were selected within the Arboretum area to ensure 
similar environmental conditions at all plots. The selected 
provenances of the four tree species currently grow in condi-
tions that are generally warmer for Picea abies, and warmer 
and drier for Pinus sylvestris, Larix decidua and Abies alba 

compared to their original natural habitats (Fig. 1). For 
this study, a total of 20 trees (five adult trees at each plot) 
of approximately the same age of around 50 years were 
selected. The descriptive statistics of their tree circumfer-
ences at breast height are provided in Table 1.

Environmental data

Meteorological data: global radiation (GR, W.m−2), air 
temperature (AT, °C), relative air humidity (RH, %), pre-
cipitation (P, mm) were recorded with an automatic mete-
orological station (EMS Brno, CZ) installed at an open area 
near research plots (from 80 to 150 m from plots). Vapour 
pressure deficit (VPD, Pa) was calculated based on relative 
humidity and air temperature records. Monthly climate char-
acteristics (average, totals) were derived from the measured 
meteorological data of air temperature and precipitation, 
and compared with the long-term averages representing 
the period 1961–1990 calculated from the data measured 
at the climatological station Sliač (313 m a.s.l.) provided 
by SHMI. The assessment of the abnormality of the current 
weather was carried out according to the methodological 
instructions of SHMI (Lapin et al. 1988).

Soil water potential (SWP, bar) was measured at three 
different depths (15, 30 and 50 cm) under forest canopy at 
each study plot using gypsum blocks and MicroLog SP3 
(EMS Brno, CZ). Average daily SWP values per plot cal-
culated from all depths were used for further analyses. All 
measurements (meteorological and soil water potential data) 
were recorded at 20-min intervals and processed to represent 
a daily level.

Dendrometer records and their analyses

To characterise intra-annual radial growth patterns, high-res-
olution automatic band dendrometers (model DRL 26, EMS 
Brno, CZ, accuracy ± 0.01 mm) were used to monitor 20 
sample trees of Abies alba, Pinus sylvestris, Picea abies and 
Larix decidua (i.e. five trees per species). The dendrometers 
were installed on stems at a height 2.0–2.5 m from stem base 
in April 2015, after carefully smoothing and removing the 
outermost bark layer. Stem circumferences were measured 
at 20 min intervals. The measurements lasted from April 15 
to October 19, 2015 capturing the growing season.

Dendrometer records were analysed using two methods: 
(i) a daily cycle approach and (ii) a stem cycle approach. 
Both approaches involve dividing the data into three distinct 
phases based on stem dynamics: stem contraction (phase 
1), expansion (phase 2), and stem circumference increment 
(phase 3) (Downes et al. 1999; Deslauriers et al. 2003). The 
daily approach operates on 24-h scale (from 0:00 to 0:00). 
In our study, one day was represented by 72 stem circumfer-
ence values, each recorded every twenty minutes.

https://geo.enviroportal.sk/atlassr
https://geo.enviroportal.sk/atlassr
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The stem cycle approach describes stem dynamics inde-
pendently of individual calendar days and operates on a 
time scale different from 24 h. A contraction phase refers 
to the period between the maximum and subsequent mini-
mum values of BDR. An expansion phase is the period 

between the BDR minimum and the subsequent maxi-
mum value. An increment phase is a part of the expan-
sion phase that occurs when the stem size exceeds the 
previous absolute maximum and continues until it reaches 
the subsequent maximum. According to Deslauriers et al. 
(2007), the difference between the expansion maximum 
and the previous maximum represents the positive stem 
circumference variation (∆R+, mm). If the maximum of 
the previous cycle was not exceeded, a zero or a negative 
value of ∆R (∆R–, mm) was assigned. The duration (h, 
hours) of each phase was derived from the dendrometre 
records. From diurnal BDR we determined if the positive 
(∆R+) and negative (∆R–) stem circumference variations 
occurred on a particular calendar day. Subsequently, we 
counted the occurrences of ∆R+ and ∆R– within prede-
fined 15-day intervals.

Fig. 1   Tree-species specific requirements on annual climate parameters (coloured areas) derived from Kölling (2007) compared with local long-
term values (empty circles), local values representing the year 2015 (filled circles), and values representing the sites of their origins (squares)

Table 1   Descriptive statistics of stem circumferences (cm) measured 
at 1.3 m above ground at the beginning of 2015

Stem circumference (cm)

Tree species Number 
of trees

Minimum Maximum Mean Standard 
deviation

P. sylvestris 5 73.7 100.0 89.0 10.0
L. decidua 5 74.6 101.5 89.2 9.6
P. abies 5 76.7 85.3 80.7 6.5
A. alba 5 75.0 121.5 94.4 12.3
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Seasonal circumference increment was calculated as a 
difference between the BDR values at the end and the start 
of the season.

Tree water deficit (∆W, mm) as an indicator of tree water 
status indicator was assessed using dendrometer records 
that were de-trended for growth following the method by 
Ehrenberger et al. (2012). It was determined by calculating 
the difference in stem size recorded by dendrometers at a 
specific time point and the stem size under fully hydrated 
conditions (ΔW = 0), which is estimated from the growth 
line (Oberhuber et al. 2015).

Maximum daily shrinkage (MDS, mm) reflects the daily 
cycle of water uptake and loss. It refers to the difference 
between daily maximum and minimum stem circumferences 
and is used to quantify the proportion of water taken during 
the night compared to the amount of water lost from elastic 
cambial and phloem tissues during the day (Deslauriers et al. 
2007).

The identification of stem cycles from BDR, duration of 
each phase of stem dynamics, and the quantification of ∆W, 
MDS and ∆R was performed using custom routines devel-
oped in the “DendrometeR” R package (van der Maaten 
et al. 2016).

Statistical analyses

The Spearman rank-correlation coefficients were calcu-
lated to explore the relationships between daily values of 
environmental variables: global radiation (GR), precipita-
tion (P), relative air humidity (RH), vapour pressure deficit 
(VPD), mean (ATmean), minimum (ATmin) and maximum 
(ATmax) air temperature, and soil water potential (SWP), 
and stem characteristics extracted from BDR (tree water 
deficit (ΔW), maximum daily shrinkage (MDS), and stem 
circumference variation (∆R)).

The correlations between the time series of daily 
BDR values of individual trees within single trees spe-
cies (Table 3b) and the average curves of different species 
(Table 3a) were calculated using the normalized cross-cor-
relation approach. To describe the tree radial growth pattern 
and stem water status in more detail, another 30 variables 
were derived from BDR (Table 2) beside the mentioned 
indicators (∆R, ΔW, MDS). Principal component analysis 
(PCA) was applied to all variables to assess the differences 
and similarities between four coniferous species. PCA was 
performed in the R environment using “factoextra” pack-
age and “ggplot2” for data visualization (Kassambara and 
Mundt 2020). We used four methods: “daily.stats”, “cycle.
stats”, “smooth.spline function” and “∆W” to process the 
data. Daily values were calculated with “daily.stats” (marked 
D in Table 2), while “cycle.stats” was used to identify the 
magnitude of three distinct phases (contraction, expansion 

and growth, marked as C in Table 2) within stem cycles in 
dendrometerR package (van der Maaten et al. 2016).

Results

Environmental conditions during the study period

The courses of meteorological characteristics (daily global 
radiation totals, daily mean temperature, relative humid-
ity, vapour pressure deficit, and daily precipitation totals) 
between April 15 and October 19, 2015 are depicted in 
Fig. 2. The local daily mean relative air humidity varied 
between 45 and 100% (Fig. 2). The monthly mean relative 
air humidity in the period was 79 ± 8%. Rain events were 
unevenly distributed (Fig. 2). The onsite meteorological data 
representing the year 2015 were compared with the long-
term normal (1961–1990) from the nearest meteorological 
station (Sliač, 313 m a.s.l., 3.5 km from the study area of 
Borová hora). The average air temperature (16.9 °C) and 
the precipitation total (412 mm) during the observed period 
(April–October) of the year 2015 exceeded the long-term 
normal by 2.2 °C and 4%, respectively (Fig. 3). All monthly 
air temperatures in the assessed period exceeded the long 
term monthly normals, while the maximum difference was 
observed in August (+ 4.4 °C) (Fig. 3).

High monthly precipitation total (99 mm, 155% of the 
long-term normal) was recorded in July (Fig. 3), although 
most of the rain events occurred within few days at the end 
of July (Fig. 2). The longest period without precipitation 
lasting for approximately 40 days started on June 10 and 
finished on July 19, 2015 (Fig. 2). During 20 days in this 
period, the daily mean air temperature exceeded 20 °C, caus-
ing a notable decrease of soil water potential (Fig. 2). The 
vapour pressure deficit reached maximum values in July 
(17.7 hPa). The daily totals of global radiation reached the 
highest values in June and July (Fig. 2). A similar dry and 
warm period started in the middle of August and continued 
until late September.

Stem growth and tree water status derived 
from BDR

Rapid radial growth occurred from late May to late June 
irrespective of species. Temporal species-specific stem 
circumference variations and seasonal stem circumference 
increments derived from BDR exhibited substantial differ-
ences between tree species (Figs. 4 and 5). The most inten-
sive radial growth was found for A. alba. Both A. alba and P. 
abies followed a similar pattern in stem circumference varia-
tions with low fluctuations over the season. P. sylvestris and 
L. decidua showed pronounced fluctuations in the seasonal 
courses of their stem circumferences (Fig. 4). The largest 
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seasonal increment was recorded for A. alba (13.6 ± 4.2 
mm) followed by P. sylvestris (8.8 ± 2.5 mm), and P. abies 
(5.8 ± 1.4 mm). L. decidua had the lowest radial increment 
(4.9 ± 2.9 mm) (Figs. 4 and 5).

Despite large absolute differences in stem circumference 
temporal development (Fig. 4), the inter-species cross-
correlations of BDR were high (R2 = 0.79–0.98, p < 0.05, 
Table 3a). Intra-species cross-correlations of stem circum-
ference variations were higher, since the average cross-cor-
relation values exceeded R2 = 0.90 for all species except for 
L. decidua which exhibited contrasting growth responses of 
individual trees (Table 3b).

Positive stem circumference variations (∆R+) dominated 
in A. alba during the whole season, except for early Sep-
tember. In P. abies ∆R+ dominated in the first half of the 
growing season. Higher proportions of negative stem cir-
cumference variations (∆R–) with similar temporal distribu-
tion patterns were recorded for P. sylvestris and L. decidua 
(Fig. 6).

Daily averages and seasonal cumulative values of tree 
water deficit (∆W) (Fig. 7) increased in the following order: 
A. alba (-0.1 mm, -12.5 mm), P. abies (-0.2 mm, -37.4 mm), 
P. sylvestris (-0.7 mm, -123.8 mm), and L. decidua (-1.0 
mm, -195.4 mm). Lower values of daily ∆W for P. sylves-
tris and L. decidua were recorded during the longer rainless 
period in July and from the middle of August until October 
(Fig. 7). Species specific maximum daily shrinkage and sea-
sonal cumulative shrinkage were the highest for L. decidua 
(0.34 mm, 64.4 mm) followed by P. sylvestris (0.33 mm, 
62.5 mm), P. abies (0.16 mm, 30.4 mm) and A. alba (0.15 
mm, 27.4 mm). The lowest values of ∆W of P. abies and A. 
alba were at the beginning of the season (Fig. 7). Close to 
zero values of ∆W occurred after precipitation events, while 
in the case of P. sylvestris and L. decidua they usually lasted 
only few days (Fig. 7) despite the fact that high values of 
SWP remained for much longer time (Fig. 2).

Peak values of MDS generally occurred in mid-July, 
which coincided with low precipitation totals (Fig. 8). L. 

Table 2   Variables describing 
radial stem growth pattern and 
water status derived from band 
dendrometre records used in 
principal component analysis, 
where D indicates daily.stats, C 
cycle.stats, S smooth.spline and 
∆W tree water deficit applied 
methods. Early, mid and late 
stages of the growing season 
refer to 1st, 2nd and 3rd equally 
long parts of the study period

No Variable Unit Applied method

1 Cumulative time of expansion in the growing season hours D
2 Cumulative time of contraction in the growing season hours D
3 Cumulative time of radial increment in the growing season hours D
4 Number of cycles per season number C
5 Average time of daily expansion hours D
6 Average time of daily contraction hours D
7 Average time of daily radial increment hours D
8 Average time of a cycle hours C
9 Average amplitude of expansion mm C
10 Average amplitude of contraction mm C
11 Average amplitude of radial increment mm C
12 Average amplitude of a cycle mm C
13 Circumference increment in early stage of growing season mm C
14 Circumference increment in mid-stage of growing season mm C
15 Circumference increment in late stage growing season mm C
16 Total circumference increment during growing season mm C
17 Relative circumference increment in early stage of growing season % C
18 Relative circumference increment in mid stage of growing season % C
19 Relative circumference increment in late stage of growing season % C
20 Average stem water deficit per day mm ∆W
21 Average circumference increment per cycle mm C
22 Average maximum daily shrinkage (MDS) mm D
23 Number of complete stem cycles per growing season number C
24 Cumulative stem water deficit mm ∆W
25 Cumulative maximum daily shrinkage (MDS) mm D
26 Cumulative residuals of BDR deviation from spline function mm S
27 Cumulative sum of radial growth mm D
28 Average MDS in early stage of growing season mm D
29 Average MDS in mid stage of growing season mm D
30 Average MDS in late stage of growing season mm D
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decidua and P. sylvestris were more sensitive to moisture 
conditions indicated by pronounced changes in daily dehy-
dration/rehydration, while P. abies and A. alba showed 
higher drought resistance (Figs. 7 and 8).

The differences in growth responses and water status 
characteristics between trees and species were further 
analysed by principal component analysis (PCA) (Fig. 9). 
The derived 30 variables describing growth patterns and 
water status in details (Table 2) were distributed in 2D 

space of two first components (Fig. 9). Closer distances 
between variables indicate higher correlations between 
them (e.g. variables 14–15, 13–16, for variable descrip-
tion see Table 2). The PCA results revealed that the first 
component accounted for 52.9% of the total variance in 
the analysed data, while the second component explained 
additional 14.6%. The first component primarily repre-
sented tree water deficit characteristics. In contrast, the 
second component was predominantly influenced by 

Fig. 2   Seasonal courses of daily 
mean air temperature (AT) and 
daily totals of global radiation 
(GR), daily precipitation (P), 
daily mean relative air humid-
ity (RH), daily mean vapour 
pressure deficit (VPD), and soil 
water potential (SWP) at indi-
vidual plots during the growing 
season of 2015

Fig. 3   Anomalies of local monthly precipitation totals (left) and of local monthly average air temperature values (right) for the period of April to 
October in the year 2015 in comparison to long-term monthly means representing the period 1961–1990
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variables derived from the maximum daily shrinkage. In 
the PCA biplot, four distinct clusters emerged, each cor-
responding to different tree species. The cluster labelled 
'F', representing A. alba, is prominently positioned on the 
right. This positioning is influenced by variables V13 to 
V16, which denote growth metrics. Additionally, variables 
V20 and V24, associated with tree water deficit, played a 

significant role in shaping this cluster. The cluster cor-
responding to L. decidua was formed on the opposite side 
of the biplot. This species exhibited a contrasting growth 
pattern and water status when compared to A. alba. The P. 
sylvestris cluster showed a positive correlation with vari-
ables V28, 27, 29, 25, 26, 22, 11, and 12, which describe 
the maximum daily shrinkage. The P. abies cluster located 

Larix decidua

Picea abies Abies alba

Pinus sylvestris

ΔW

MDS

stem cycle 
with ΔR+

stem cycle 
with ΔR–

Fig. 4   Courses of stem circumference changes of P. sylvestris, L. 
decidua, P. abies and A. alba from April 15 to October 19 in the year 
2015. Each line represents an average from 5 trees of the same spe-
cies. Detailed figures show the period with no rainfall (20–23 July 
2015) followed by the short rainy interval (24–26 July 2015) and indi-
cate distinct phases of the stem cycle: contraction (red), expansion 
(green) and increment (black), using hourly data points. Maximum 
daily shrinkage (MDS) represents the variance between the high-
est and lowest values of stem size recorded within a day. Tree water 

deficit (ΔW) indicates the difference between the actual stem size and 
the growth line (red lines) that represents the stem size under fully 
hydrated circumstances. The positive stem circumference variation 
(∆R+, indicated by the orange error in the detailed figure for A. alba) 
was calculated when the stem circumference exceeded the previous 
morning maximum. The negative stem radial variation (∆R–, indi-
cated by the orange error in the detailed figure for L. decidua) was 
calculated when the previous cycle maximum was not reached
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in the first quadrant is mainly influenced by growth related 
variables V17 and V21.

Stem circumference characteristics 
and environmental conditions

Spearman correlation coefficients revealed significant 
impacts of monitored environmental factors on daily changes 
of positive stem circumference variation (∆R+) and tree 
water status (∆W, MDS) during the studied period from 
April 15 to October 19, 2015 (Table 4). ∆R+ of all tree spe-
cies positively correlated with all atmospheric characteristics 
and negatively with SWP (Table 4). ∆R+ of all species was 
significantly correlated with characteristics related to water 
regime (RH, P, VPD, SWP), while more significant relation-
ships were found for L. decidua and P. sylvestris than for P. 
abies and A. alba. The strongest positive correlation of ∆R+ 
to precipitation was revealed for P. sylvestris. P. abies had 
the highest correlation coefficient between ∆R+ and SWP.

In the case of ∆W, the highest positive correlations were 
found between ∆W and SWP for all species (Table 4), 

while the highest and lowest values were recorded for L. 
decidua and A. alba, respectively. Significant negative cor-
relations of ∆W to ATmean, ATmin, ATmax and VPD 
were obtained only for P. sylvestris and L. decidua. In the 
case of A. alba and P. abies, ∆W showed a positive cor-
relation with GR. ∆W positively correlated with air tem-
perature characteristics (ATmean, ATmin, ATmax) only 
in the case of A. alba.

All four species revealed highly significant relationships 
between MDS and environmental variables, whereby air tem-
perature (mean, min, max) showed the highest positive cor-
relations with MDS of all species. MDS of all species was 
positively correlated with global radiation, while the lowest 
value of the correlation coefficient was found for P. sylvestris. 
Significant and high positive values of correlation coefficients 
were also revealed between MDS and VPD for all species. The 
results showed that MDS was negatively correlated to RH and 
SWP, while P. sylvestris was found to be the most sensitive to 
SWP values and the other monitored species were more sensi-
tive to relative air humidity (Table 4). No significant correla-
tions were found between MDS and precipitation (Table 4).

Fig. 5   Tree species specific sea-
sonal circumference increments 
in the growing season (April–
October) of the year 2015. 
Box plots represent the mean, 
standard deviation, and 95% 
variation range of increment 
values (p > 0.05), with n = 5 for 
individual species

 Mean      Mean±Standard deviation      Mean±1,96*Standard deviation 

Pinus Larix Picea Abies
-2

0

2

4

6

8

10

12

14

16

18

20

22

24

)
m

m(tne
mercni

ecneref
mucri

C

Table 3   a) Inter-species and b) 
intra-species cross-correlations 
between stem band dendrometre 
records

Species a) b)

R2 R2

P. sylvestris L. decidua P. abies A. alba No. of trees Min Max Mean Std

P. sylvestris 1.00 - - - 5 0.93 0.99 0.97 0.016
L. decidua 0.82 1.00 - - 5 0.14 0.99 0.67 0.295
P. abies 0.93 0.85 1.00 - 5 0.96 0.99 0.98 0.012
A. alba 0.95 0.79 0.98 1.00 5 0.90 0.99 0.97 0.035



	 Biologia

Discussion

Tree growth is controlled by a multitude of factors, with 
climate being one of the most crucial. Climate envelope 
models visualise the current distribution of plant species, 

as demonstrated by Kölling (2007). Despite some limita-
tions this approach has a potential to estimate future spe-
cies spatial distribution and their sensitivity under chang-
ing climate (Walentowski et  al. 2017). Our study was 
performed under conditions that are projected for coming 

Fig. 6   Frequency of positive (∆R+) and negative (∆R–) stem circum-
ference variations in 15-day intervals of band dendrometre records 
(BDR). Black columns (∆R+) indicate that the previous day maxi-
mum BDR was exceeded on the given day. Grey columns (∆R–) indi-

cate that the maximum BDR of the previous day was not reached. 
Bars of the histogram represent 15-day intervals and dates on x axis 
refer to the middle of each interval

Fig. 7   Mean species-specific 
tree water deficit (ΔW, mm) 
from April 15 to October 
19, 2015. The solid red line 
indicates the stem size under the 
fully hydrated conditions
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decades as the mean temperature in the analysed grow-
ing season of 2015 exceeded the long-term value by + 2.4 
°C. Higher annual air temperatures were observed also in 
the preceding (2014: + 2.8 °C; 2013: + 1.5 °C; 2012: + 1.7 
°C) as well as in the following years (2016: + 1.7 °C, 
2017: + 1.1 °C, 2018: + 2.8 °C). In addition, the meteoro-
logical drought in the year 2015 was identified as one of 
the most severe droughts since the summer event of 2003, 
affecting a large part of continental Europe (Ionita et al. 
2017; Laaha et al. 2017) including Slovakia (Fendeková 
et al. 2017). The responses of stem radial growth and water 
status to environmental conditions in 2015 reflected the 
position of environment with regard to species-specific 
climate envelopes illustrated in Fig. 1. Notably, the highest 
sensitivity was found for L. decidua, followed by P. abies, 
and P. sylvestris. The weakest response was revealed for 

A. alba, for which both the long-term (1961–1990) and 
the 2015 climatic conditions occurred inside the species 
climate envelope (Fig. 1).

Monitored species exhibited remarkably different growth 
patterns over the 2015 growing season characterised by 
the highly above normal temperature and uneven precipi-
tation distribution (Figs. 2 and 3). Larix decidua showed 
the lowest cumulative growth (Fig. 4). We assume that the 
limited growth of L. decidua at the studied site resulted 
from environmental conditions that occurred outside the 
climatic envelope of the species causing its higher stress 
and stimulating strong individual tree responses. Although 
L. decidua has been shown to develop a specific drought 
avoidance strategy by osmotic adjustment resulting from 
the accumulation of solutes (Anfodillo et al. 1998), it was 
found to be sensitive to water stress when growing at dry 

Fig. 8   Mean species-specific 
maximum daily shrinkage 
(MDS, mm) from April 15 to 
October 19, 2015

Table 4   Spearman rank-correlation coefficients for the relation-
ships between daily environmental variables (GR = global radia-
tion; ATmean = mean air temperature; ATmin = minimum air tempera-
ture; ATmax = maximum air temperature; RH = relative air humidity; 

P = precipitation; VPD = vapour pressure deficit; SWP = soil water 
potential) and positive stem circumference variation (∆R+), maxi-
mum daily shrinkage (MDS) and daily water deficit (∆W) of P. abies, 
P. sylvestris, L. decidua and A. alba 

Significance levels: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001

GR ATmean ATmin ATmax RH P VPD SWP

Pinus sylvestris ΔR+ -0.237** -0.187** -0.024 -0.214** 0.325*** 0.458*** -0.335*** 0.239***
ΔW -0.088 -0.316*** -0.235** -0.322*** 0.118 0.246*** -0.244*** 0.619***
MDS 0.152* 0.517*** 0.568*** 0.476*** -0.092 0.141 0.301*** -0.527***

Abies Alba ΔR+ 0.154* 0.162* 0.198** 0.109 0.111 0.297*** -0.016 0.221**
ΔW 0.219** 0.213** 0.220** 0.158* 0.033 0.167* 0.069 0.233**
MDS 0.358*** 0.404*** 0.297*** 0.410*** -0.370*** 0.003 0.437*** -0.012

Picea abies ΔR+ 0.101 0.007 0.057 -0.038 0.179* 0.241*** -0.125 0.411***
ΔW 0.221** 0.052 0.044 0.007 0.087 0.093 -0.030 0.465***
MDS 0.395*** 0.620*** 0.571*** 0.606*** -0.343*** -0.067 0.546*** -0.169*

Larix decidua ΔR+ -0.179* -0.068 0.052 -0.087 0.311*** 0.345*** -0.254*** 0.170*
ΔW 0.106 -0.244*** -0.257*** -0.252*** 0.071 0.083 -0.183* 0.684***
MDS 0.353*** 0.619*** 0.611*** 0.581*** -0.223** 0.085 0.460*** -0.269***
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and low elevation sites (Eilmann and Rigling 2012; Danek 
et al. 2021), especially during summer months, which was 
also confirmed by our results (Figs. 4 and 10). The weak 
adjustability of L. decidua to drought is possibly related to 
its deciduous habit and/or anisohydric strategy due to which 
high transpiration rates are maintained under long-lasting 
drought events (Leo et al. 2013) finally causing the impair-
ment of tree water status (Bréda et al. 2006).

L. decidua as well as P. abies have been suggested to 
be sensitive to reduced soil moisture availability, especially 
at xeric and mesic sites across the European Alps situated 
at low to mid‐elevations (e.g. Lévesque et al. 2013; Danek 
et  al. 2021). Based on Heres et  al. (2014), and Morán-
Lopéz et al. (2014), P. abies performance and recruitment 
are highly threatened by increased aridity. Compared to L. 
decidua, P. abies is generally considered a more drought‐
sensitive species, because it is shallow‐rooted and more con-
servative concerning its water use (Anfodillo et al. 1998). 
It has also been shown that L. decidua regulates stomatal 
conductance more strongly than P. abies during atmospheric 
drought (Peters et al. 2019). At the same time, relative ΔW 
was consistently larger in L. decidua (Fig. 7), while MDS in 
study trees of P. abies reached much lower values compared 
to L. decidua (Fig. 8). This indicates a more anisohydric 
behaviour of L. decidua under severely limiting soil mois-
ture conditions (Bréda et al. 2006) and high sensitivity of L. 
decidua to drought (Eilmann and Rigling 2012; Lévesque 
et al. 2014). P. abies has a better water-saving strategy than 
L. decidua (Anfodillo et al. 1998). In several studies (e.g. 
Oberhuber et al. 2015; Peters et al. 2019) P. abies exhib-
ited an isohydric behaviour, thus minimizing the risk of 

hydraulic failure via timely stomatal closure, consequently 
strongly reducing sap flow and reduction of excessive water 
losses. According to Střelcová et al. (2013), stomatal clo-
sure under advanced drought may cause a decrease in the 
response of P. abies to meteorological parameters, and soil 
water availability becomes the main limiting factor for tran-
spiration. In our study, in the advancing drought, when soil 
water potential reached low values, ΔW of P. abies did not 
respond proportionally to changes in evaporation conditions 
(Table 4). The use of internal water storage is a significant 
factor affecting the sap flow variability of P. abies (Preisler 
et al. 2022). Utilization of internal stem water reserves 
makes P. abies in the short term less dependent on soil water 
content. Water stored in xylem and phloem tissues can meet 
tree transpiration demands for about a week (Čermák et al. 
2007). However, without sufficient refilling, internal water 
storage cannot support transpiration for a longer period with-
out the risk of xylem cavitation. It is possible that P. abies 
did not utilize stem water reserves for transpiration during 
the drier year 2015, likely because of much lower sap flow 
(i.e. closed stomata) and lower requirements for stored trunk 
water. Similarly, Schäfer et al. (2018) observed a decrease 
in ΔW values of P. abies with the increasing drought. This 
anomaly was likely due to reduced transpiration rates driven 
by high evaporative demands and exhausted soil water 
reserves. We presume that this was the main reason why 
ΔW was small during the extreme drought in 2015.

Both L. decidua and P. sylvestris grew in cascades sepa-
rated by plateaus representing stagnation periods (Fig. 4), 
which can be explained by SWP decline during rainless peri-
ods (Fig. 2). The remarkable plateau in BDR of P. sylvestris 

Fig. 9   Species-specific 
responses of stem circumfer-
ence variations analysed by 
principal component analy-
sis. Abbreviations in labels: 
V1–30variables describing 
growth patterns and water status 
listed in Table 2; F1–5–fir trees 
(A. alba); F_avg–average value 
for fir; S1–5–spruce trees (P. 
abies); S_avg–average value 
for spruce; P1–5–pine trees (P. 
sylvestris); P_avg–average value 
for pine; L1–5–larch trees (L. 
decidua); L_avg–average value 
for larch
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and L. decidua (Fig. 4) observed during June and July 2015 
corresponded with the prevalence of negative stem radial 
variations (∆R–) in R+/R– ratios (Figs. 4 and 6). Positive 
stem radial variations (ΔR+) dominated in A. alba and partly 
in P. abies mostly at the beginning of the growing season, 
which agrees with Deslauriers et al. (2007). The increase of 
circumference became evident after “water storage cells” 
were rehydrated following precipitation events, which is 
in accordance with Zweifel et al. (2005) and Vieira et al. 
(2013). ∆R+ of all species was correlated with characteris-
tics related to water regime (RH, P, VPD, SWP), while for 
L. decidua and P. sylvestris all relationships were significant. 
The strongest positive correlation of ∆R+ to precipitation 
was revealed for P. sylvestris. P. abies had the highest cor-
relation coefficient between ∆R+ and SWP. It indicates that 
P. sylvestris reacts more to atmospheric conditions while 
P. abies is more responsive to soil moisture. Notable stem 
shrinkages (ΔR–) observed in our study do not mean there 
was no radial growth at the same time. It suggests that the 
amplitude of stem shrinkage due to the net loss of stem water 
content exceeded the real stem circumference increment. 
Water consumption by plants depends not only on the water 
content in the soil but also on the water content in plant tis-
sues. Primarily, plants draw water from the soil to meet their 
demands. With the decreasing soil water content in rainless 
periods, the physiological water scarcity in the plant body is 
observed and the plant growth is slowed down.

The fact that P. sylvestris was more responsive species 
than A. alba or P. abies was unexpected because the actual 
climatic conditions of P. sylvestris occurred within the 
species-specific envelope (Fig. 1). Besides, this species is 
known to be drought resistant. This is attributed to its rela-
tive isohydric strategy, which involves efficient stomatal con-
trol to reduce transpiration and prevent water losses (Irvine 
et al. 1998). P. sylvestris is known to be well protected 
against drought due to its embedded stomata and pronounced 
waxy layer on the epidermis (Krakau et al. 2013). However, 
its sensitivity to increased temperatures and drought has 
been a cause for concern regionally (Galiano et al. 2010). 
P. sylvestris was more sensitive to higher temperatures and 
was particularly responsive to ATmax (Table 4). Our results 
may therefore also be related to the generally higher vulner-
ability of P. sylvestris to longer summer drought periods 
and higher mean temperatures, as observed in many regions 
(Weber et al. 2010). This idea is substantiated by the fact 
that the dry year covered in this study belongs to those with 
well-documented summer droughts, such as 2003 (Merlin 
et al. 2015) or 2015 (Ionita et al. 2017). Our results unveiled 
that the drought-avoidance strategy of P. sylvestris might 
not be sufficient to counterbalance the negative impacts of 
climate change. Our study thereby confirms that in the Car-
pathian Mountains pine will be threatened by more frequent 
droughts in future, which is in accordance with Bouriaud 

and Popa (2007). A long-term reduction in P. sylvestris 
growth since 1950 has already been observed in multiple 
studies (Heres et al. 2014; Morán-Lopéz et al. 2014). Close 
relationships of radial stem growth derived from BDR to 
atmospheric and soil water status were previously reported 
for P. sylvestris at xeric sites (Oberhuber and Gruber 2010) 
and for a drought-prone mixed coniferous forest (Oberhuber 
et al. 2014).

In contrast, A. alba exhibited smooth continuous growth 
least affected by varying environmental conditions in spite 
of the lowest SWP values during the season (Fig. 2). Hence, 
A. alba was the most resistant tree species to changed con-
ditions defined by increased temperature and periodical 
droughts. This supports the results of Vitali et al. (2017) 
who presented A. alba as an adaptive species to chang-
ing conditions, especially drought. Due to this, fir is often 
considered as a prospective species under climate change 
(Lindner et al. 2008), since fir productivity should not be 
adversely affected by increasing temperature (Bošeľa et al. 
2018; Usoltsev et al. 2019). Of all analysed species, only 
A. alba showed significant positive correlations of radial 
growth and tree water deficit (∆W) with temperature and 
global radiation (Table 4). Even under low SWP, A. alba did 
not show remarkable stem shrinkage and performed intense 
growth (Figs. 2 and 4).

MDS of all tree species showed similar responses to all 
monitored environmental variables (Table 4). During the 
longer period characterized by a lack of soil water in the 
rainless period or during the period with a low amount of 
precipitation, MDS decreased (Figs. 2 and 8) due to the 
insufficient tissue rehydration during the night. In general, 
the transpiration of trees depends not only on VPD, which 
reflects air temperature and relative air humidity, but also 
on radiation (Penman 1948). Stem shrinkage and expan-
sion typically follow a diurnal pattern with a minimum 
stem radius in the afternoon and a maximum stem radius 
in the early morning. It is proportional to the loss of water 
from elastic tissues and can cover up to 100% of the tran-
spired water on a cloudy day (Zweifel and Häsler 2001). 
However, high VPD accelerates sap flow, particularly under 
sufficient soil water content (Flo et al. 2021). In general, 
small MDS values indicate either a small gradient between 
water demand and water supply or a large gradient but under 
conditions of a low tissue saturation, i.e., already existing 
stem shrinkage. Thus, a small MDS value may indicate a day 
with little light or a day with closed stomata and thus limited 
transpiration and assimilation (Güney et al. 2020). On the 
contrary, large MDS values indicate days with open stomata 
and thus large transpiration and high assimilation (Güney 
et al. 2020). All monitored variables of environmental condi-
tions, except precipitation, significantly influenced MDS val-
ues of all studied tree species (Table 4), which agrees with 
other studies (Herzog et al. 1995). The strong correlation of 
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MDS with VPD indicates a close coupling of transpiration, 
sap flow and diurnal stem shrinkage (Steppe et al. 2006). As 
reported by Dietrich et al. (2018), while MDS is an indica-
tor of tree water status under conditions of sufficient water 
availability, it is not a reliable indicator of tree water status 
over longer time intervals involving drought periods. During 
a dry period when SWP progressively decreases, tree water 
potential does not fully recover during night-time, which in 
turn slows down the rehydration of elastic stem tissues. In 
such cases, the tissues may not be completely refilled during 
the night and thus, the stem remains in a partly shrunk state 
(Zweifel et al. 2001).

As Dietrich et al. (2018) pointed out, ∆W describes daily 
canopy water potential better than MDS during longer peri-
ods of stem shrinkage. ΔW is closely related to drought and 
is affected mainly by a combination of atmospheric and 
soil conditions (Oberhuber et al. 2015; Zweifel 2016). Low 
values of tree water deficit indicate water stress. ΔW val-
ues during the dry year 2015 were driven primarily by soil 
water potential, which was also confirmed in other studies 
(Ježík et al. 2015; Leštianska et al. 2020). Our data showed 
that SWP affected ΔW of P. sylvestris and L. decidua more 
strongly than ΔW of P. abies (Table 4). This outcome most 
likely indicates that in the short term, the use of water stored 
in the living tissues of the bark makes P. abies less depend-
ent on the current water availability in the soil, which is con-
sistent with the results of Turcotte et al. (2011). We observed 
lower values of ∆W for P. sylvestris and L. decidua sug-
gesting higher water stress of these species. This was sup-
ported also by higher correlation values (r = 0.62 and 0.68, 
respectively) between ∆W and SWP for P. sylvestris and 
L. decidua than for P. abies and A. alba (r = 0.47 and 0.23, 
respectively) (Table 4).

PCA based on 30 variables describing radial stem growth 
pattern and water status (Table 2) and 20 individual trees 
identified discrete species-specific groups (Fig.  9) and 
hence large inter-species variability (Fig. 9). High intra-
species cross-correlation values (Table 3) confirmed uniform 
growth responses of the studied trees of the same species 
except for L. decidua, which showed very variable seasonal 
courses of BDR of individual trees (Table 3b). Generally, 
we can state that the indicators of growth and water status 
of L. decidua and P. sylvestris were similar (Fig. 9). The 
most different patterns were observed for A. alba and L. 
decidua. The behaviour of P. abies was closer to A. alba 
than to the other two species. According to Carpenter and 
Brock (2006), the increasing variance in respective system 
processes serves as a decisive symptom of approaching a 
critical threshold. The most uniform response was observed 
for A. alba indicating least stressful conditions for this spe-
cies. Relatively high resilience of A. alba to climate change 
has already been pointed out by other studies (Bouriaud and 
Popa 2009; Latreille et al. 2017). Research outcomes suggest 

that silver fir could be better suited for the future European 
climate, as it grew well during the mid-Holocene period 
under warmer conditions than what we have been experienc-
ing today (Ruosch et al. 2016). According to Bošela et al. 
(2014), there has been a notable increase in the radial growth 
of silver fir across the entire Western Carpathian region after 
its recovery from the period of severe growth decline during 
1970–1980 (Büntgen et al. 2014). Although our study did 
not examine population-level responses, it clearly indicated 
that Silver fir was generally more resistant and resilient to 
drought events and is therefore a suitable alternative to P. 
abies or L. decidua.

Conclusions

The present study examined intra-annual stem circum-
ference variation patterns of four coniferous tree species 
(Larix decidua, Picea abies, Pinus sylvestris and Abies 
alba) using high-resolution dendrometer data consider-
ing both tree water status and radial growth in relation to 
environmental conditions. The study focused on the year 
2015 when the mean temperature in the analysed growing 
season exceeded the long-term value and the meteoro-
logical drought was identified as one of the most severe 
droughts since the summer 2003 affecting a large part of 
Europe including Slovakia. Monitored species were grow-
ing at the same site situated at a lower elevation in warmer 
and drier conditions compared to their natural habitats and 
were exposed to similar microclimatic conditions above 
and below ground. The analyses revealed profound differ-
ences in seasonal growth and tree water balance patterns 
between the coniferous species. ΔW indicated different 
strategies of water status regulation of anisohydric and 
isohydric species. L. decidua showed the lowest cumu-
lative growth probably due to the most adverse climatic 
conditions that occurred outside its climatic envelope as 
well as the impairment of tree water status related to its 
anisohydric strategy. Significantly lower negative values 
of tree water deficit and greater MDS of L. decidua indi-
cate a higher water limitation of this species. The fact that 
P. sylvestris was a more responsive species than A. alba 
or P. abies was unexpected. However, our results are in 
agreement with a growing number of regional studies that 
report a more pronounced sensitivity of P. sylvestris to 
increased temperatures and drought. Of all analysed spe-
cies, only A. alba showed substantial growth due to sig-
nificant positive correlations of radial increment and tree 
water deficit with temperature and global radiation, despite 
environmental water limitations. Based on derived 30 vari-
ables describing radial stem growth patterns and water 
status we identified discrete species-specific groups and 
large inter-species variability. The patterns differed most 
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between A. alba and L. decidua, while the behaviours of P. 
abies and A. alba were similar. Although our study did not 
examine population-level responses, it indicated that A. 
alba was generally more resistant and resilient to drought 
and therefore seems to be a suitable alternative to P. abies 
or L. decidua. The observations from the year 2015 pro-
vided us with insights about how different tree species 
can cope with the increased occurrence of dry periods and 
above-normal air temperature. However, to generalize the 
obtained outcomes, longer data series are needed since the 
effect of consecutive dry years might drastically change 
the capacity of individual trees and tree species to recover 
from drought events.
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